
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

DOI : 10.1109/JSTARS.2015.2394778

Title : Wavelet-Based Classification of Hyperspectral Images Using Extended Morphological

Profiles on Graphics Processing Units

Author(s): Pablo Quesada-Barriuso, Francisco Argüello, Dora B. Heras, and J.A. Benediktsson

Published in : Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of
(Volume:8 , Issue: 6)

Page(s): 2962 - 2970

http://dx.doi.org/10.1109/JSTARS.2015.2394778

2962 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

Wavelet-Based Classification of Hyperspectral
Images Using Extended Morphological
Profiles on Graphics Processing Units

Pablo Quesada-Barriuso, Francisco Argüello, Dora B. Heras, and Jón Atli Benediktsson

Abstract—The availability of graphics processing units (GPUs)
provides a low-cost solution to real-time processing, which may
benefit many remote sensing applications. In this paper, a
spectral–spatial classification scheme for hyperspectral images
is specifically adapted for computing on GPUs. It is based on
wavelets, extended morphological profiles (EMPs), and support
vector machine (SVM). Additionally, a preprocessing stage is used
to remove noise in the original hyperspectral image. The local com-
putation of the techniques used in the proposed scheme makes
them particularly suitable for parallel processing by blocks of
threads in the GPU. Moreover, a block-asynchronous updating
process is applied to the EMP to speedup the morphological
reconstruction. The results over different hyperspectral images
show that the execution can be speeded up to 8.2× compared
to an efficient OpenMP parallel implementation, achieving real-
time hyperspectral image classification while maintaining the high
classification accuracy values of the original classification scheme.

Index Terms—Feature extraction, graphics processing
unit (GPU), image classification, morphological operations,
parallel processing, remote sensing, wavelet transforms.

I. INTRODUCTION

I N REMOTE sensing (RS), the amount of data stored in
the hyperspectral images has increased the computational

cost of the techniques used, and high performance computing
(HPC) has become vital today [1], [2], especially for time crit-
ical applications such as on-board target detection for maritime
rescue [3]. For example, in the field of spectral unmixing, spe-
cific algorithms as pixel purity index [4] and spectral unmixing
chains involving endmembers extraction [5] were success-
fully parallelized in multicore processors, graphics processing
units (GPUs), and field programmable gate arrays (FPGAs). In
the applications of target detection, GPU real-time processing
has been achieved through artificial neural networks [3] and
orthogonal subspace projections [6].

Manuscript received September 15, 2014; revised December 22, 2014;
accepted January 14, 2015. Date of publication February 10, 2015; date of
current version July 30, 2015. This work was supported in part by the Ministry
of Science and Innovation, Government of Spain, TIN2013-41129-P. The
work of P. Quesada-Barriuso was supported by the Ministry of Science and
Innovation, Government of Spain, under a MICINN-FPI Grant.

P. Quesada-Barriuso, F. Argüello, and D. B. Heras are with the Centro
de Investigación en Tecnoloxías da Información, University of Santiago de
Compostela, 15842 Santiago de Compostela, Spain (e-mail: pablo.quesada@
usc.es; francisco.arguello@usc.es; dora.blanco@usc.es).

J. A. Benediktsson is with the Faculty of Electrical and Computer
Engineering, University of Iceland, 107 Reykjavik, Iceland (e-mail: benedikt@
hi.is).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2015.2394778

Regarding classification of hyperspectral images, the support
vector machine (SVM) algorithm is generally recognized as the
classifier that offers the best results in classification accuracy,
even when the number of training samples is small [7]. This
is why a variety of implementations for GPU processing can
be found in the literature [8]–[10]. For example, the GPUSVM
library [8] was successfully used in the GPU spectral–spatial
classification scheme presented in [11].

The research efforts in these areas have led to more com-
plete remote sensing applications, such as parallel open source
libraries for remote sensing processing [12] and specific parallel
spectral–spatial classification schemes [11], [13].

The classification accuracy can be improved if spatial infor-
mation is incorporated [2]. Among the different spatial tech-
niques, the extended morphological profile (EMP) [14] based
on mathematical morphology has been widely investigated. The
EMP is commonly created from the principal components [15],
but other techniques as the wavelet transform can be used to
reduce the dimensionality of the image. The discrete wavelet
transform (DWT), which is usually based on two filters, is also
applied in the spatial domain to filter the noise introduced in
the acquisition of the image. The spectral and spatial informa-
tion can be combined before the classification, i.e., by a stacked
vector, or after the classification by a majority vote (MV). In
[16], a scheme named WT-EMP combines a feature reduction
in the spectral domain by wavelets to create an EMP, and a pre-
processing to remove noise in the original hyperspectral image,
before the classification by an SVM.

In this paper, the WT-EMP scheme proposed in [16] is
mapped to the GPU to achieve real-time classification, using
the compute unified device architecture (CUDA) developed
by NVIDIA. An example of the DWT is shipped in the
CUDA software development kit to compute very large one-
dimensional (1-D) signals, but only supports signals with a
length power of two. In this work, the proposed 1-D-DWT
implementation is adapted to compute thousands of transfor-
mations (pixel vectors in the spectral domain) in parallel. In
the case of the two-dimensional (2-D)-DWT, the GPU imple-
mentations [17]–[19] cannot manage more than two filters.
Therefore, a new implementation is required to manage the
three filters that are used in the denoised step of [16]. An asyn-
chronous reconstruction algorithm, based on the hybrid iterative
updating process originally proposed in [20], can speedup the
computation of the EMP used in the scheme. This proposal
introduces a novelty respect to the GPU morphological recon-
struction found in the literature [21], by scanning the image

1939-1404 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

QUESADA-BARRIUSO et al.: WAVELET-BASED CLASSIFICATION OF HYPERSPECTRAL IMAGES USING EMPs ON GPUs 2963

Fig. 1. Spectral–spatial classification scheme (WT-EMP) based on wavelets
and EMPs.

in all directions at the same time. Despite the different SVM
solutions for GPU found in the literature, the classification is
performed by a new implementation adapted for multi-class
problems.

The kernels have specially been adapted to optimize the
use of the GPU resources, as well as the memory hierarchy.
Using techniques that match the computing model of the GPU
architecture, such as the local computation of the DWT and
the morphological operations, the scheme can efficiently be
implemented in the GPU for real-time classification.

This paper is organized as follows. The spectral–spatial clas-
sification scheme is described in Secttion II and the GPU pro-
cessing in Section III. The results are presented in Section IV
and finally, Section V presents the conclusion.

II. WT–EMP SPECTRAL–SPATIAL SCHEME

This section briefly describes the WT-EMP spectral–spatial
classification scheme proposed in [16], which is summarized
in Fig. 1. The spectral part of the scheme comprises the 1-D
wavelet feature reduction, and the spatial part the EMP and
a 2-D wavelet denoising of the original hyperspectral image.
Finally, an SVM performs the classification of the resulting
data.

Wavelets are mathematical tools for signal processing anal-
ysis at different scales [22]. The DWT of a signal x[n] can
be computed as the convolution of the signal with two filters
[23]. A low-pass filter generates the approximation coefficients
a[n], whereas a high-pass one produces the detail coefficients
d[n]. This process is recursively applied to the approximation
sequence. In the WT-EMP scheme, a wavelet decomposi-
tion is applied on the spectral dimension of the hyperspectral
image to reduce the number of bands. From the remaining m
approximation coefficient-bands resulting from the 1-D-DWT
feature reduction, the spatial features are created using an
EMP [14].

The EMP captures spatial structures at different scales if
increasing sizes of a structuring element (SE) used in the mor-
phological operations are applied. First, for each coefficient-
band Wi (i = 1, . . . ,m), a morphological profile (MP) of n

openings (γr) and n closings (φr) by reconstruction using an
SE of growing size is created as follows:

MP(n)(Wi) = {γ(n)
r (Wi), . . . , γ

(1)
r (Wi),Wi,

φ(1)
r (Wi), . . . , φ

(n)
r (Wi)}.

Second, the EMP is created from the MP(n) of each
coefficient-band Wi as follows:

EMP(n)
m (W)={MP(n)(W1),MP(n)(W2), . . . ,MP(n)(Wm)}.

In addition to the construction of the EMP, preprocessing is
applied to the original hyperspectral image to reduce noise (see
bottom of Fig. 1). This preprocessing step is performed by soft-
thresholding using a separable 2-D-DWT with the set of filters
for perfect reconstruction presented in [24]. Finally, the clas-
sification is carried out by an SVM classifier. The input to the
classifier is the stacked vector built from the denoised image
and the EMP.

III. WT–EMP GPU PROCESSING

This section first describes the GPU architecture and
then highlights the challenges of GPU programming in
Secttion III-A. The GPU implementation details are described
in Section III-B–III-E.

A. GPU Architecture Overview

The recent GPUs provide massively parallel processing capa-
bilities based on a single instruction, multiple data (SIMD)
programming model. In particular, the CUDA developed by
NVIDIA is organized in a set of streaming multiprocessors
(SMXs) with many cores inside. The GPU can manage thou-
sands of threads concurrently and execute the same instruction
on different data by grouping 32 threads (warps) as the mini-
mum collaborative size. The threads are arranged in 1-D, 2-D,
or 3-D blocks that are scheduled to any of the available SMXs.

The memory hierarchy plays a key role in performance. The
GPU has a global memory, a texture memory and a constant
memory that are available for all the threads at any SMX.
There is also an on-chip memory, known as shared memory,
that enables extremely rapid read/write access to the data. This
shared memory is only available for the threads of the same
block.

In the Kepler architecture used in the experiments of this
paper, there is also a L1 and L2 cache hierarchy. The caches
are managed by the GPU but the programmer can take advan-
tage of this cache hierarchy by exploiting the memory access
pattern when reading data from the global memory (the same
when writing data to the global memory).

The threads within the same block can be synchronized,
e.g., to communicate intermediate results in the shared memory
as part of a parallel computation. However, it is not possible
to synchronize threads among different blocks. Owing to this
restriction, the communication among all the threads must be
through the global memory.

2964 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

Different aspects must be taken in consideration to efficiently
exploit the computational capabilities of the GPU [25]. For
example: 1) Data transfer between the CPU and the GPU should
be minimized. 2) The memory access pattern must be coalesced
to consecutive memory locations. 3) Data loaded in shared
memory should be reused to reduce read/write accesses to the
global memory. 4) The number of threads per block must be
optimized to run the maximum concurrent blocks allowed in
each SMX. 5) Minimizing the global synchronization among
blocks leads to a reduction in the execution time of the program.
Paying attention to these aspects is vital for GPU programming.

B. 1-D-DWT on GPU

The 1-D-DWT is applied to each pixel vector in the spec-
tral domain using the Cohen-Daubechies-Feauveau 9/7 wavelet
(CDF97) with nine coefficients for the low-pass filter. The num-
ber of decompositions applied to each pixel vector is adjusted
to produce at the end m = 4 coefficients. Only the approxima-
tion coefficients are used at the next level of decomposition,
whereas the detail coefficients are discarded. Note that in this
case, it is not necessary to compute the inverse 1-D-DWT.

The 1-D-DWT proposed in this work is adapted to compute
thousands of transformations of the pixel vectors in parallel.
The hyperspectral image is copied to the global memory of the
GPU as a matrix with one pixel vector per row. Threads are
configured in 1-D blocks of size the multiple of 32 nearest to
the number of hyperspectral bands.

In the kernel, threads within the block load data from the
global to the shared memory, where the convolution for the
1-D-DWT takes place. The kernel performs all the spectral
decompositions in shared memory. Extra data are loaded with
a circular padding in shared memory for the convolution of
the last elements. Finally, the result is copied back to global
memory. Data are rearranged as a hyperspectral cube before
the next step.

C. EMP on GPU

The EMP is the set of MPs created through opening and clos-
ing by reconstruction for each coefficient-band resulting from
the previous step. The opening by reconstruction γ

(n)
r (I) of

an image I is defined as the reconstruction by dilation of I
from the erosion with an SE of size n of I (in the following, J
will denote the eroded image). The reconstruction is an iterative
process defined as [26]

δ
(n)
I (J) = δ

(1)
I ◦ δ(1)I ◦ · · · ◦ δ(1)I︸ ︷︷ ︸

until stability

(J)

where δ
(1)
I (J) is the geodesic dilation of the marker J with

respect to a mask I defined as

δ
(1)
I (J) = min((J ⊕B), I)

where J ⊕B is the dilation of J by an SE B of size 1.
Similarly, the closing by reconstruction φ

(n)
r (I) is defined as

the reconstruction by erosion of I from the dilation of the

image. Although, this approach can easily be implemented,
even in parallel for multicore architectures [26], it requires

Algorithm 1. Sequential Reconstruction Algorithm [26]

Require: J the marker image and I the mask image.

1: procedure SR(J, I)
2: repeat
3: for each pixel p in forward scanning do � forward scan
4: J(p) = min(max{J(q), q ∈ N+

G (p) ∪ {p}}, I(p))
5: end for
6: for each pixel p in backward scanning do � backward

scan
7: J(p) = min(max{J(q), q ∈ N−

G (p) ∪ {p}}, I(p))
8: end for
9: until stability

10: end procedure

Algorithm 2. GPU Block-Asynchronous Reconstruction
(BAR)

Require: J the marker image and I the mask image.
1: procedure MMRECONSTRUCTION(J, I)
2: repeat � inter-block updating
3: <BAR>(J, I)
4: Global synchronization among blocks
5: until stability
6: end procedure

7: kernel <BAR>(J, I) � intra-block updating
8: sharedmem[BLOCK] = J[BLOCK] from global memory
9: repeat

10: sharedmem(p) = min(max{sharedmem(q),
q ∈ NG(p) ∪ {p}}, I(p))

11: Local synchronization among threads � Asynchron-
ous among blocks

12: until stability
13: J[BLOCK] = sharedmem[BLOCK] to global memory
14: end kernel

a high number of iterations to reach stability. For single-core
computers, a sequential reconstruction (SR) algorithm, based
on forward and backward scanning that reduces the number of
iterations, can be applied. Nevertheless, a hybrid reconstruction
algorithm (HRA) based on queues [26] is the best tradeoff.

The SR algorithm is summarized in Algorithm 1. N+
G (p)

and N−
G (p) are the backward (left, left-up, up, and right-up)

and forward (right, left-down, down, and right-down) neigh-
borhood of pixel p, respectively. A GPU implementation of
the SR algorithm has been proposed in [21], where the scans
are performed separately in different kernels. At each iteration,
i.e., kernel execution, only one scan (forward or backward) is
performed.

The implementation proposed in this paper is based on
a block-asynchronous propagation [20], and unlike the SR
algorithm, multiple scans are performed in both directions
at the same time. Therefore, the data are reused in shared

QUESADA-BARRIUSO et al.: WAVELET-BASED CLASSIFICATION OF HYPERSPECTRAL IMAGES USING EMPs ON GPUs 2965

memory. The GPU proposal for the BAR algorithm is shown
in Algorithm 2, where the kernel is placed between < > sym-
bols and BLOCK stands for the data region that is processed
by a block of threads. In the algorithm, an iterative process
executes the reconstruction until stability is reached. Each iter-
ation performs one call to the reconstruction kernel (line 3
in the algorithm) and a global synchronization among blocks
(line 4). These iterations are called inter-block updates. Threads
are configured in 2-D blocks and threads within the block
load data from global to shared memory. The kernel (lines 7–
14) consists in a loop where the updating is performed (line
10) requiring only synchronization among the threads inside
the block (line 11) using only shared memory. These iterations
are called intra-block updates and are asynchronous among
different blocks.

The main advantage of this GPU asynchronous implementa-
tion for the morphological reconstruction (consisting of intra-
and inter-block updates) is that as many updates as possible are
performed in shared memory with the available data before per-
forming a global synchronization among thread blocks. Data
updated within a block in shared memory can be reused, which
is much faster than the global memory updates [25]. In this
asynchronous proposal, the number of global synchroniza-
tion is reduced compared with the synchronous version of the
algorithm [20].

The update operation in the reconstruction operation is cal-
culated according to

J(p) = min(max{J(q), q ∈ NG(p) ∪ {p}}, I(p)) (1)

where J is the marker image, I is the mask image, and
NG(p) = {N+

G (p) ∪N−
G (p)} the complete neighborhood of

pixel p. The forward and backward scans are joined in one step
as defined in (1).

D. 2-D-DWT Denoising on GPU

The 2-D-DWT has widely been investigated for parallel pro-
cessing on GPU [17]–[19]. In [19], a 2-D-DWT based on the
properties of separable filters, as described in Section II-C,
obtained the best results, compared to a lifting-based wavelet
transform scheme. In the case of separable 2-D-DWT, the 1-D-
DWT is extended by applying the wavelet analysis separately
to each dimension. However, the 1-D-DWT directly applied by
columns it is inefficient because the memory accesses to global
memory are not coalesced and there is no data reuse in the
cache.

The 2-D-DWT process of this paper uses the set of filters
for perfect reconstruction presented in [24]. Three filters are
used: one low-pass filter h and two high-pass filters g1 and g2.
First, the 1-D-DWT by rows is applied to the original image to
produce three temporal subbands (one for each filter) L, H1, H2,
as shown in Fig. 2(a). The 2-D-DWT by columns applied to the
temporal subbands produces nine new subbands corresponding
to the LL, LH1, LH2, H1L, H1H1, H1H2, H2L, H2H1, and
H2H2 subbands, as shown in Fig. 2(b). In order to implement
this wavelet on GPU, the techniques described above must be
adapted.

Fig. 2. 2-D-DWT global memory requirements (indicated with a white back-
ground), for an image of n×m pixels, using a set of three filters and two levels
of wavelet transform. (a) Temporal buffer for separable wavelet transform.
(b) and (c) memory used in the first and the second level of decomposition,
respectively.

Fig. 3. Threads within a block and data read from global to shared memory in
the separable 2-D-DWT by (a) rows and (b) columns. Each square represents
4× 1 data items in the shared memory. The grey squares correspond to the data
allocated in the extended shared memory used in the kernel in the case of the
2-D-DWT by rows.

1) Implementation: The 2-D-DWT denoising uses three fil-
ters of six coefficients each [24]. All are applied in the same
kernel call, so data are reused among the filters. Threads within
the block read two data items in shared memory. In the transfor-
mation by rows, the last threads of each block load additional
extra data from global memory to shared memory, as illustrated
in Fig. 3(a). The gray squares correspond to the extra data allo-
cated in shared memory. To achieve this, the shared memory
used per block is extended with four values, corresponding to
the data necessary to compute all the convolution in shared
memory. Note that the four rightmost threads of the block in
Fig. 3(a) load three data items.

In the transformation by columns, each thread loads two
data items into the shared memory as illustrated in Fig. 3(b).
In this kernel, the threads of the first rows perform the con-
volution in shared memory, whereas the last threads perform
the convolution directly with the data read from the global
memory. The reason is that the shared memory requirements
are higher in the 1-D-DWT by columns and increasing even
more the shared memory use for all the threads would reduce
the number of active blocks per SMX, decreasing the perfor-
mance. The access pattern in global memory is coalesced, i.e.,
consecutive threads access to consecutive memory locations.
In addition, if the number of threads within the block in the
row dimension is multiple of 32, the GPU can execute the
same instruction on different data without any divergence in
the code.

2966 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

After performing L decomposition levels, a soft-thresholding
is applied to the detail coefficients at each level, correspond-
ing to the last eight subbands in Fig. 2(b) and (c). The kernel
is executed for each hyperspectral band after the forward 2-D-
DWT. Each thread computes the soft-thresholding [27] directly
in global memory.

After soft-thresholding, an inverse 2-D-DWT is applied first
by columns and then by rows to reconstruct the denoised image.

2) Memory Requirements: Fig. 2 also shows the memory
requirements of the 2-D-DWT implementation for an image
of n×m pixels and two levels of wavelet transform. The
first level of decomposition needs space for nine subbands of
n/2×m/2 pixels, as shown in Fig. 2(b), and the second level
needs space for nine subbands of n/4×m/4 pixels, as shown
in Fig. 2(c). In order to simplify the memory access pattern
and keep the data aligned in memory, 9× n/2×m/2× L sub-
bands are allocated at the beginning of the process, with L the
number of levels of decomposition applied to the image. The
memory that is allocated but not used in the second and succes-
sive decompositions is, for the case of a 610× 340 image, less
than 1% of the total amount of memory available in a GPU with
1 GB of global memory. This memory space is shaded in gray
in Fig. 2(c).

A temporal buffer of 3× n×m/2, see Fig. 2(a), is used
for the results produced by the separable 2-D-DWT when it
is applied by rows. All the memory allocated is reused for
each hyperspectral band of the original image where the soft-
thresholding is applied. The drawback of this 2-D-DWT in
terms of memory requirements, compared to the case of two fil-
ters, is that the subbands cannot be stored in one quarter of the
original image because nine bands are generated instead of the
four bands of the general case. Therefore, extra global memory
has been allocated to improve the memory access pattern and
keep the data memory aligned.

E. SVM Classification on GPU

In this section, the classification by SVMs is first introduced
and then the GPU implementation is detailed. Let us consider
a set of N pairs {xi, yi}Ni=1 with the pixel vectors xi ∈ �n

and the corresponding class yi ∈ {±1}. The standard two-
class SVM classifier consists in finding the optimal hyperplane,
which separates the two classes, maximizing the minimum dis-
tance between any data point of both classes. This is known as
the training phase of the SVM. The training samples that max-
imize the distance are called support vectors (SVs). When the
training samples are not linearly separable, the SVM approach
uses the kernel trick to map the data with a nonlinear trans-
formation to a higher dimensional space, in order to find a
linear separating surface between the two classes [7]. Several
types of kernels, such as linear, polynomial, splines, and the
Gaussian radial basis (RBF) are used in the SVM classification
phase.

For example, the discriminant function to estimate the class
of each pixel can be expressed using the RBF kernel as

f(x) =
∑
i∈S

αiyi exp(−γ‖xi − x‖2) (2)

where S is the set of SVs, αi is the weight of each SV according
to its importance in determining the class, exp(−γ‖xi − x‖2)
is the RBF kernel, and γ is a parameter inversely proportional
to the width of the kernel. All these parameters are obtained in
the training phase. The final decision function to classify a pixel
x into one of the classes is given by the sign of (2)

D(x) = {+1, if f(x) > 0;−1 otherwise}. (3)

When there are more than two classes, the multiclass SVM
problem is solved one-against-one (OAO), one-against-all, or
all-at-once [28]. Hsu and Lin [29] found that the OAO approach
is more suitable for practical use than other methods, mainly
because the training time is shorter. This multiclass method cre-
ates T = K(K − 1)/2 binary classifiers on all pairs of classes,
being K the number of classes. The final prediction for each
pixel is given by the MV in the T classifiers.

Although different implementations of the SVM algorithm
on GPU are available in the literature [8]–[10], a GPU imple-
mentation of the classification phase is proposed in this work.
Regarding the training phase, it requires a small number of
training samples and the GPU can not be fully exploited [11].
Therefore, the training phase has been executed in CPU using
the LIBSVM library [30].

The GPU implementation of the SVM classification phase is
as follows: data are copied to the GPU global memory at the
beginning of the classification and they are properly aligned to
get coalesced accesses. A loop in the host executes the RBF
kernel T times, with T the number of binary classifiers neces-
sary to solve the problem using the OAO approach. This kernel
is executed in global memory. Each thread computes one pixel
vector x directly in global memory according to (2). As the
threads access the same SVs, the global memory accesses are
broadcasted to the threads of the same block and also reused
among different blocks. At the end of the loop the results of the
T classifiers are kept in the global memory.

The second kernel computes (3) in registers and stores the
result in shared memory. In this kernel, each thread processes
one pixel. It counts the number of positive and negative votes
among the binary classifiers. The decision D(x) for each pixel
vector is stored in shared memory and used in the same kernel
to take the winner by an MV process. The voting corresponding
to one pixel is computed also by one thread. Afterward, the final
prediction is stored back in global memory.

This implementation of the SVM computes the multiclass
problem at once completely on GPU. Other implementations
such as [8] consider only the standard two-class SVM prob-
lem and require more time to compute a multiclass problem
because they need to execute the two-class classification T
times independently.

IV. RESULTS

The proposed GPU implementation is evaluated in terms
of execution times and speedups. As the GPU performance
depends on several factors, such as the number of threads
per block or the on-chip shared memory configuration, dif-
ferent configurations of these parameters are analyzed in
Section IV-A. Based on the best configuration, the performance

QUESADA-BARRIUSO et al.: WAVELET-BASED CLASSIFICATION OF HYPERSPECTRAL IMAGES USING EMPs ON GPUs 2967

Fig. 4. Hyperspectral images used in the experiments. (a) University of Pavia.
(b) Hekla volcano.

TABLE I
CPU AND GPU HARDWARE SPECIFICATIONS

of the scheme is analyzed in Section IV-B for real-time hyper-
spectral image classification over two remote sensing images.1

The first image was collected by the Reflective Optics System
Imaging Spectrometer (ROSIS-03) sensor over the University
of Pavia, Italy. The dimensions of this image are 610× 340
pixels with 103 spectral bands and nine classes identified in its
reference map. The second image was acquired by the AVIRIS
sensor over the Hekla volcano in Iceland [31]. This data set has
a spatial dimension of 560× 600 pixels, 157 spectral bands and
12 classes in the reference map. The color representation of the
images is shown in Fig. 4. The reference maps with the name
of the classes, as well as the number of training samples can
be found in [16] for Pavia and [32] for Hekla. A summary of
the overall accuracy (OA), average accuracy (AA), and Kappa
coefficient of agreement (k) [33] is also presented in this section
to show the accuracy of the resulting GPU classification. The
morphological reconstruction used in the EMP step is analyzed
in detail in Section IV-C.

Table I summarizes the hardware specifications of the CPU
and the GPU used in the experiments. The experiments were
executed under Linux using the gcc compiler version 4.6.3 for
the OpenMP implementation, and the nvcc compiler version 5.5
for the case of the CUDA implementation, respectively, with
full optimization flags (-O3) in both cases. The floating point
arithmetic operations have been executed in double precision
except the morphological operations that use bytes as the base
data type.

A. Analysis of the GPU Parameters

One factor used to measure the performance on the GPU
is the occupancy, that is defined as the ratio of the number

1Additional information related to the hyperspectral images. [Online]
Available:http://wiki.citius.usc.es/software/wt-emp-gpu

TABLE II
NUMBER OF ACTIVE BLOCKS PER SMX FOR THE DIFFERENT KERNELS

BASED ON THE BLOCK SIZE AND THE SHARED MEMORY REQUIREMENTS

L1 indicates that 48 kB are used for the L1 memory and 16 kB for the shared
memory. SM states for the opposite configuration. Results for Pavia image.
The best occupancy is indicated in bold.

of active warps per SMX to the maximum number of possi-
ble active warps. This metric can also be studied in the basis
of the total number of concurrent blocks per SMX. The high-
est number of concurrent blocks is desired as it maximizes the
occupancy while hides the latency of memory accesses. The
hardware resources that usually limit the occupancy in the GPU
are the registers usage, the shared memory requirements and
the block size [34]. The GPU used in the experiments is based
on the Kepler architecture. In particular, the GTX TITAN has
14 SMXs with the following limits per SMX: 2048 threads,
16 active blocks, 65 536 registers of 32 bits, and 64 kB of on-
chip memory that can be configured as a shared memory of 16
and 48 kB for the L1 cache or the opposite configuration. The
different kernels used in the GPU implementation have been
analyzed according to these resources. The number of registers
used per thread in the different kernels was always lower than
the maximum number of registers available per thread.

Table II shows the maximum number of active blocks based
on the block size and the on-chip memory configuration. The
text “na” in the table indicates that the block configuration was
not available for the kernel. For example, the 2-D-DWT by
columns requires a minimum of eight threads in the second
dimension in order to compute the convolution in shared mem-
ory. For the 1-D-DWT and the SVM kernels, the block size is
adapted to the multiple of 32 nearest to the size of the pixel
vector (128 for the image of Pavia).

From Table II can be observed that the 2-D-DWT (by rows)
can only be executed by 16 active blocks, the maximum pos-
sible for the GTX TITAN, when the GPU is configured to use
48 kB of shared memory. The reason is that the kernel requires
2176 bytes of shared memory per block. Therefore, in order to
have 16 active blocks per SMX, 34 816 bytes of shared memory
are required for this kernel.

The kernel computing the 2-D-DWT (by columns) is limited
by the amount of shared memory and the maximum number of
threads per SMX. This kernel uses 4 kB of shared memory. In
the SM configuration, there is enough shared memory for 12
blocks. However, as the block size is 32× 8, i.e., 256 threads
per block, the limit of 2048 threads per SMX is reached before

2968 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

TABLE III
EXECUTION TIMES IN SECONDS AND SPEEDUPS FOR EACH STEP OF

THE WT-EMP SCHEME IN THE CPU USING OPENMP (FOUR THREADS)
AND IN THE GPU USING CUDA

the limit of shared memory, resulting in a maximum number
eight active blocks.

The SVM kernel is also limited by the shared memory
requirements. In this case, as shown in Table II, a higher number
of concurrent blocks is achieved with the SM configuration.

B. Performance Over Real Hyperspectral Images

This section presents the results obtained for the best config-
uration of each kernel based on the analysis of Section IV-A.
In the case of having the same number of active blocks in
both configurations, the L1 configuration is preferred in order
to reduce the global memory accesses. The soft-thresholding
kernel was configured with blocks of 32× 4 threads. The exe-
cution time for the different steps of the WT-EMP scheme
are presented in Table III. This table also includes the time
for the initial data transfer of the hyperspectral image to the
GPU global memory. The size of the data transferred from the
CPU to the GPU is 162.9 MB for the University of Pavia and
402.5 MB for the Hekla image considering double precision.
The speedup of the GPU implementation is calculated compar-
ing to an optimized CPU multithreaded implementation using
OpenMP. Each execution time is calculated as the average of 10
executions.

The first thing to note is that the GPU total execution time is
below 2.5 s. This result represents a speedup of 8.2× and 6.3×
for the University of Pavia and the Hekla images, respectively,
including the data transfer from the CPU to the GPU.

Regarding the 1-D-DWT, speedup values of 28.7× and
30× are obtained for the two images. These improvements
are mainly obtained through the use of the shared memory.
All the 1-D-DWT levels of decomposition are applied in the
same kernel call; therefore, data are loaded once from global
memory to shared memory and reused at each level of the
wavelet decomposition. The speedups obtained for the 2-D-
DWT implementation, 3.4× and 3.9×, respectively, for each
image, are within the expected values for a separable 2-D-
DWT convolution by rows and columns. Similar speedups were
obtained in [17]–[19] by comparing OpenMP and GPU imple-
mentations. Note that in Table III, the time required for the
soft-thresholding is also included in the 2-D-DWT step. The
EMP obtained speedups of 6.9× and 7.6×, mainly due to the
block-asynchronous implementation. The performance of this
step is studied in detail in Section IV-C.

The execution time of the SVM classification takes
approximately 80% of the overall time. This is the most

TABLE IV
EXECUTION TIMES IN SECONDS FOR THE WT-EMP AND THE

WSHED-MV SCHEMES ON GPU, EXCEPTS THE TRAINING PHASE

PERFORMED IN CPU WITH THE LIBSVM LIBRARY

TABLE V
ACCURACIES IN PERCENTAGE FOR THE WT-EMP SCHEME OVER

THE HYPERSPECTRAL IMAGES USED IN THE EXPERIMENTS

The CPU and GPU results are exactly the same.

computationally expensive step of the scheme and it has been
speeded up 9.4× and 7.1× for the University of Pavia and the
Hekla images, respectively.

The execution time has also been compared to another GPU
spectral–spatial classification scheme [11] based on segmen-
tation by watershed and majority vote (WSHED-MV). In the
WSHED-MV scheme, the classification is carried out by the
GPU implementation of the SVM called GPUSVM of [8]. The
experiments of [11] have been repeated in the same conditions
but using the GTX TITAN GPU. For these experiments, the
values for the parameters were taken from [16] and [32] for
the Pavia and the Hekla images, respectively. Table IV shows
the execution times, including the data transfer as part of the
SVM step. The SVM training has been performed in CPU
using the LIBSVM library [30] in both classification schemes.
The preprocessing in the WT-EMP takes more time than in
the WSHED-MV scheme because the number of steps and the
complexity of the operations is higher in this scheme. The main
difference in the execution times relies on the SVM classifi-
cation, that also dominates the total time in the WSHED-MV.
This scheme takes 45.337 s for the image of Hekla. This time
is considered above the real-time performance for the AVIRIS
sensor, which collects 512 full pixel vectors in 8.3 ms [35].
Therefore, the limit can be established in 4.98 s for an image
of 512× 600 pixels. In the WT-EMP scheme, with a time of
2.565 s for the same image, there may be room for additional
pre- and post-processing.

The OA, AA, and k values presented in Table V shows
the classification accuracy results of the GPU implementation,
which is exactly the same than for the CPU one. A complete
study of the classification for remote sensing images using the
WT-EMP scheme was presented in [16].

C. Analysis of the Morphological Reconstruction on GPU

The morphological reconstruction used to create the EMP
has been analyzed separately because the block-asynchronous
implementation is a novelty regarding the state of the art in

QUESADA-BARRIUSO et al.: WAVELET-BASED CLASSIFICATION OF HYPERSPECTRAL IMAGES USING EMPs ON GPUs 2969

Fig. 5. Execution time of the morphological reconstruction for the HRA, the
SR_GPU, and the BAR algorithms for the image of Hekla.

mathematical morphology on GPU. For this purpose, a sub-
set of 512× 512 pixels of the image of Hekla has been used
in this experiment. This subset was scaled twice maintaining
the number of regions in order to study the performance of
the implementation when the image size is increased. The GPU
BAR algorithm is compared to the Fast Hybrid Reconstruction
(HRA) algorithm in CPU [26], and the GPU Sequential
Reconstruction (SR_GPU) algorithm proposed in [21]. The
marker image J has been created as J(p) = max{I(p)−
h, 0}, that is known as the hmax transform, as in [21]. A value
h = 10 was used to create the initial marker.

The results for the three algorithms are shown in Fig. 5.
Both, SR_GPU and BAR algorithms include the data trans-
fer from CPU to GPU memory. It can be observed that
the GPU proposals overcome the HRA algorithm. The GPU
BAR algorithm presents a better performance when the image
size increases. By performing multiple scans in shared mem-
ory at each iteration, this morphological reconstruction in
the GPU efficiently exploits the shared memory through the
block-asynchronous updating process [20]. The main differ-
ence to the SR_GPU algorithm relies on the forward and
backward scans. The SR_GPU scans the full image at each
iteration in one direction (forward or backward), while the
BAR scans the image by blocks, and in both directions at the
same time.

V. CONCLUSION

In this paper a spectral–spatial classification scheme (WT-
EMP) of hyperspectral images based on wavelets and mathe-
matical morphology has been specifically adapted for efficient
GPU computation. The different steps of the scheme, 1-D-DWT
feature reduction, EMP, and 2-D-DWT denoising, were specif-
ically designed for exploding the hardware available in these
architectures.

The proposed 1-D-DWT implementation was adapted to
compute thousands of transformations in parallel. The different
levels of the wavelet decomposition were applied in the same
kernel reusing the data of the shared memory. In the case of the
2-D-DWT, the implementation was designed with the purpose
of managing the three filters that are used in the denoised step,

and the number of times that data were loaded within the kernel
was minimized by computing the three filters in the same kernel
and by loading larger blocks of data.

A hybrid iterative updating process, adequate for asyn-
chronous computation, was successfully applied to the EMP.
The proposed BAR algorithm performs intra-block updates
(asynchronous updates that reuse shared memory) and inter-
block updates (that require global synchronization operations).

The implementation of the SVM classification stage com-
puted the multiclass problem completely on GPU. Other imple-
mentations that consider only the standard two-class SVM
problem need to execute the classification K(K − 1)/2 times
independently, being K the number of classes.

The scheme was tested on two real hyperspectral images,
captured by the ROSIS-03, and the AVIRIS hyperspectral sen-
sors. As a result, the execution time was speeded up 8.2× in
the classification of the Pavia image compared to an OpenMP
implementation.

By optimizing the kernels to efficiently exploit the GPU
resources, the proposed implementation achieved real-time
classification of the considered hyperspectral images.

ACKNOWLEDGMENT

The authors would like to thank P. Karas (Masaryk
University) for providing the code of the SR_GPU algorithm
[21]. The ROSIS-03 data were obtained from Prof. P. Gamba of
the University of Pavia, Italy.

REFERENCES

[1] J. A. Benediktsson, J. Chanussot, and W. M. Moon, “Very high-resolution
remote sensing: Challenges and opportunities,” Proc. IEEE, vol. 100,
no. 6, pp. 1907–1910, Jun. 2012.

[2] M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and
J. C. Tilton, “Advances in spectral-spatial classification of hyperspectral
images,” Proc. IEEE, vol. 101, no. 3, pp. 1–24, Mar. 2012.

[3] D. B. Heras, F. Argüello, J. L. Gómez, J. A. Becerra, and R. J. Duro,
“Towards real-time hyperspectral image processing, a GP-GPU imple-
mentation of target identification,” Proc. IEEE 6th Int. Conf. Intell. Data
Acquisit. Adv. Comput. Sys. (IDAACS), 2011, pp. 316–321.

[4] A. Plaza, J. Plaza, and H. Vegas, “Improving the performance of
hyperspectral image and signal processing algorithms using parallel, dis-
tributed and specialized hardware-based systems,” J. Signal Process.
Syst., vol. 61, no. 3, pp. 293–315, 2010.

[5] C. González et al., “Use of FPGA or GPU-based architectures for
remotely sensed hyperspectral image processing,” VLSI J. Integr., vol. 46,
no. 2, pp. 89–103, 2013.

[6] S. Bernabé, S. López, A. Plaza, and R. Sarmiento, “GPU implementation
of an automatic target detection and classification algorithm for hyper-
spectral image analysis,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 2,
pp. 221–225, Mar. 2013.

[7] J. A. Gualtieri and R. F. Cromp, “Support vector machines for hyperspec-
tral remote sensing classification,” in Proc. SPIE, vol. 3584, pp. 221–232,
1998.

[8] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast support vector
machine training and classification on graphics processors,” in Proc. 25th
Int. Conf. Mach. Learn. (ICML’08), 2008, pp. 104–111.

[9] S. Herrero-López, J. R. Williams, and A. Sanchez, “Parallel multiclass
classification using SVMs on GPUs,” in Proc. ACM 3rd Workshop Gener.
Purpose Comput. Graph. Process. Units, 2010, pp. 2–11.

[10] Q. Li, R. Salman, E. Test, R. Strack, and K. Kecman, “GPUSVM: A com-
prehensive CUDA-based support vector machine package,” Central Eur.
J. Comput. Sci., vol. 1, no. 4, pp. 387–405, 2011.

2970 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 8, NO. 6, JUNE 2015

[11] P. Quesada-Barriuso, F. Argüello, and D. B. Heras, “Computing effi-
ciently spectral–spatial classification of hyperspectral images on com-
modity GPUs,” in Recent Advances in Knowledge-Based Paradigms and
Applications. New York, NY, USA: Springer, 2014, vol. 234, pp. 19–42.

[12] E. Christophe, J. Michel, and J. Inglada, “Remote sensing processing:
From multicore to GPU,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 4, no. 3, pp. 643–652, Sep. 2011.

[13] S. Bernabé, A. Plaza, P. Reddy Marpu, and J. A. Benediktsson, “A new
parallel tool for classification of remotely sensed imagery,” Comput.
Geosci., vol. 46, pp. 208–218, 2012.

[14] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[15] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson,
“Spectral and spatial classification of hyperspectral data using SVMs
and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46,
no. 11, pp. 3804–3814, Nov. 2008.

[16] P. Quesada-Barriuso, F. Argüello, and D. B. Heras “Spectral–spatial
classification of hyperspectral images using wavelets and extended mor-
phological profiles,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 7, no. 4, pp. 1177–1185, Apr. 2014.

[17] J. Franco, G. Bernabé, J. Fernández, and M. Ujaldón, “The 2-D wavelet
transform on emerging architectures: GPUs and multicores,” J. Real-Time
Image Process., vol. 7, no. 3, pp. 145–152, 2011.

[18] F. Argüello, D. B. Heras, M. Bóo, and J. Lamas-Rodríguez, “The split-
and-merge method in general purpose computation on GPUs,” Parallel
Comput., vol. 38, no. 6–7, pp 277–288, 2012.

[19] V. Galiano, O. López, M. P. Malumbres, and H. Migallón, “Improving
the discrete wavelet transform computation from multicore to GPU-based
algorithms,”in Proc. Int. Conf. Comput. Math. Methods Sci. Eng., 2011,
pp. 544–555.

[20] P. Quesada-Barriuso, D. B. Heras, and F. Argüello, “Efficient 2-D and 3-D
watershed on graphics processing unit: Block-asynchronous approaches
based on cellular automata,” Comput. Electr. Eng., vol. 39, no. 8,
pp 2638–2655, 2013.

[21] P. Karas, “Efficient computation of morphological greyscale reconstruc-
tion,” Proc. 6th Doctoral Workshop Math. Eng. Methods Comput. Sci.,
2011, vol. 16, pp. 54–61.

[22] I. Daubechies, “Ten lectures on wavelets,” Society Indus. Appl. Math.,
vol. 61, pp. 198–202, 1992.

[23] M. Vetterli and C. Herley, “Wavelets and filter banks: Theory and design,”
IEEE Trans. Signal Process., vol. 40, no. 9, pp. 2207–2232, Sep. 1992.

[24] A. F. Abdelnour and I. W. Selesnick, “Nearly symmetric orthogonal
wavelet bases,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), 2001, vol. 6, pp. 3693–3696.

[25] D. Kirk and W. Hwu Wen-mei, Programming Massively Parallel
Processors: A Hands-on Approach. Amsterdam, The Netherlands:
Elsevier, 2010.

[26] L. Vincent, “Morphological grayscale reconstruction in image analy-
sis: Applications and efficient algorithms,” IEEE Trans. Image Process.,
vol. 2, no. 2, pp.176–201, Apr. 1993.

[27] D. L. Donoho, “Denoising by soft-thresholding,” IEEE Trans. Inf. Theory,
vol. 41, no. 3, pp. 613–627, Mar. 1995.

[28] A. Shigeo, Support Vector Machines for Pattern Classification. New
York, NY, USA: Springer, 2005.

[29] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass sup-
port vector machines,” IEEE Trans. Neural Netw., vol. 13, 415–425, Mar.
2002.

[30] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1–27:27,
2011.

[31] J. A. Benediktsson and I. Kanellopoulos, “Classification of multisource
and hyperspectral data based on decision fusion,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 3, pp. 1367–1377, May 1999.

[32] K. Bernard, Y. Tarabalka, J. Angulo, J. Chanussot, and
J. A. Benediktsson, “Spectral–spatial classification of hyperspectral
data based on a stochastic minimum spanning forest approach,” IEEE
Trans. Image Process., vol. 21, no. 4, pp. 2008–2021, Apr. 2012.

[33] A. J. Viera and J. M. Garrett, “Understanding interobserver agreement:
The kappa statistic,” Family Med., vol. 37, no. 5, pp. 360–363, 2005.

[34] J. Luitjens and S. Rennich, CUDA Warps and Occupancy, GPU
Computing Webinars (NVIDIA Corporation), 2011 [Online]. Available:
https://developer.nvidia.com/gpu-computing-webinars

[35] A. Plaza, J. Plaza, A. Paz, and S. Sánchez, “Parallel Hyperspectral Image
and Signal Processing,” IEEE Signal Process. Mag., vol. 28, no. pp. 119–
126, Apr. 2011.

Pablo Quesada-Barriuso received the B.S. degree
in computer science from the University of Las
Palmas de Gran Canaria, Spain, in 2007 and the M.S.
degree in graphics, games, and virtual reality from the
University Rey Juan Carlos, Spain, in 2010. He is cur-
rently pursuing the Ph.D. degree in computer science
at the University of Santiago de Compostela, Spain.

His research interests include image processing,
parallel algorithms, and GPUs.

Francisco Argüello received the B.S. and Ph.D.
degrees in physics from the University of Santiago,
Santiago, Spain, in 1988 and 1992, respectively.

He is currently an Associate Professor with the
Department of Electronic and Computer Engineering,
University of Santiago. His research interests include
signal and image processing, computer graphics,
parallel and distributed computing, and quantum
computing.

Dora B. Heras received the M.S. degree in physics
and the Ph.D. degree in physics from the University
of Santiago, Santiago, Spain, in 1994 and 2000,
respectively.

She is currently an Associate Professor with
the Department of Electronics and Computer
Engineering, University of Santiago. Her research
interests include parallel and distributed computing,
software optimization techniques for emerging
architectures, computer graphics, and image
processing.

Jón Atli Benediktsson received the Cand.Sci.
degree in electrical engineering from the
University of Iceland, Reykjavik, Iceland, in
1984, and the M.S.E.E. and Ph.D. degrees in
electrical engineering from Purdue University,
West Lafayette, IN, USA, in 1987 and 1990,
respectively.

He is currently a Pro Rector for Academic Affairs,
Eugene, OR, USA, and a Professor of Electrical
and Computer Engineering with the University of
Iceland. His research interests include remote sens-

ing, biomedical analysis of signals, pattern recognition, image processing, and
signal processing and he has authored extensively in these fields.

Prof. Benediktsson was the 2011–2012 President of the IEEE GEOSCIENCE

AND AND REMOTE SENSING SOCIETY (GRSS) and has been on the GRSS
AdCom since 2000. He was the Editor in Chief of the IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING (TGRS) from 2003 to 2008, and
has served as an Associate Editor of TGRS since 1999, the IEEE GEOSCIENCE

AND REMOTE SENSING LETTERS since 2003 and IEEE Access since 2013. He
is the Editorial Board of the PROCEEDINGS OF THE IEEE and the International
Editorial Board of the International Journal of Image and Data Fusion. He was
the Chairman of the Steering Committee of IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

(J-STARS) from 2007 to 2010. He is a Cofounder of the Biomedical Start up
Company Oxymap. He is a Fellow of the SPIE, and a member of the 2014 IEEE
Fellow Committee. He is a member of the Association of Chartered Engineers
in Iceland (VFI), Societas Scinetiarum Islandica, and Tau Beta Pi. He was the
recipient of the Stevan J. Kristof Award from Purdue University in 1991 as
an outstanding graduate student in remote sensing. In 1997, he was the recipi-
ent of the Icelandic Research Council’s Outstanding Young Researcher Award,
in 2000, he was granted the IEEE Third Millennium Medal, in 2004, he was
the corecipient of the University of Iceland’s Technology Innovation Award,
in 2006, the Yearly Research Award from the Engineering Research Institute,
University of Iceland, and in 2007, the Outstanding Service Award from the
IEEE Geoscience and Remote Sensing Society. He was the corecipient of the
2012 IEEE Transactions on Geoscience and Remote Sensing Paper Award, and
in 2013, the IEEE GRSS Highest Impact Paper Award. In 2013, he was the
recipient of the IEEE/VFI Electrical Engineer of the Year Award. In 2014, he
was the corecipient of the International Journal of Image and Data Fusion Best
Paper Award.

