
Rúa Jenaro de la Fuente, s/n –Campus Vida – Universidade de Santiago de Compostela -15782 Santiago de Compostela – citius.usc.es 

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 
all other uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works. 

GPU-based acceleration of ECG characterization using high-
order Hermite Polynomials

A. Gil, D. G. Márquez, G. Caffarena, A. Iriarte, A. Otero 

Version: accepted article 

A. Gil, D. G. Márquez, G. Caffarena, A. Iriarte, A. Otero (2016) GPU-based acceleration of ECG 
characterization using high-order Hermite Polynomials. Current Bioinformatics, 11(4), 430-439. 

Doi: 10.2174/1574893611666160212235711 

How to cite: 

Copyright information: 



GPU-based acceleration of ECG characterization using high-order 
Hermite Polynomials 
A. Gil1, D. G. Márquez2, G. Caffarena1 , A. Iriarte1, A. Otero1  

1Department of Information Technologies, University CEU San Pablo, Spain 

2Centro Singular de Investigación en Tecnoloxías da Información (CITIUS), University of Santiago de 
Compostela, Spain 

 

Abstract: In this paper we address the acceleration of the Hermite function characterization of 
the heartbeat by means of massively parallel Graphics Processors Units. This characterization 
can be used to develop tools to help the cardiologist to study and diagnose heart disease. 
However, obtaining this characterization, especially when a large number of functions is used to 
achieve a high accuracy in heartbeat representation, is very resource intensive. This paper 
addresses off-line and on-line heartbeat characterization, assessing the acceleration capabilities 
of Graphics Processors Units for these tasks. Polynomials up to the 30th order are used in the 
study. The results yield that the off-line processing of long electrocardiogram recordings with a 
GPU can be computed up to 186  faster than a standard CPU, while real-time processing can be 
up to 110  faster. 

INTRODUCTION   

Cardiovascular disease is the leading cause of death 
by natural causes in the world (WHO 2010)[1]. The 
electrocardiogram (ECG), a recording of the 
electrical activity of the heart, is a simple and 
inexpensive diagnostic tool that provides a great deal 
of information about the physiological processes that 
concur in the alterations of the electrical impulse in 
the myocardium. The use of the ECG as a diagnostic 
tool is increasing significantly worldwide. Its use has 
been common in hospitals from developed countries 
for decades, but now it is spreading fast in large 
emerging countries such as China and India (Reddy 
C 1998)[2](Gaziano CPC 2010)[3]. The increase in 
the quality of life that the inhabitants of these 
countries are enjoying, and the adoption of Western 
habits, bring an associated significant increase in 
cardiovascular disease. Furthermore, the quantified 
self movement, which promotes the idea of spreading 
ECG use beyond the clinic so it can be part of 
everyday life (Swan SAT 2012)[4] (Min MNA 
2011)[5], is enabling the application of ECG 
technology not only to study pathologies which have 
developed to the point of presenting symptoms, but 
also in the early identification of diseases that are not 
(yet) symptomatic. 
In the clinical routine, ECG analysis is still 
performed by visual inspection of an expert 
cardiologist. This is a very tedious task, especially in 
the case of the long term ECG, such as Holter 

recordings, which usually last form 24 to 72 hours and 
can be comprised of up to 12 leads. Each of these leads 
contains about 100,000 beats per 24 hours of 
monitoring. An additional disadvantage of the visual 
inspection of ECG recordings is that its outcome relies 
heavily on the cardiologist who performs it (Willems 
NEJM 1991)[6]. 
In this context, it is undoubted the interest in 
developing efficient computational methods of ECG 
analysis capable of processing massive amounts of data 
in an objective way. Among these methods, those 
located at an early stage of identification and 
morphological detection of the beat stand out for their 
importance. The information they provide is used for 
the characterization of the cardiac cycle on which the 
interpretation of the underlying disease process is 
subsequently performed. Errors that occur in this phase 
usually invalidate the outcome of the interpretation. The 
identification of the beat is a problem solved with 
acceptable accuracy in the literature (around 99.7% in 
reference databases). The morphological beat 
identification and classification by its origin in the 
myocardium, more commonly known as arrhythmia 
detection, is still an open problem (de Chazal ITB 
2004)[7], particularly in the analysis of long term 
recordings (Kiranyaz ESA 2011)[8]. 
In the literature, different approaches for the detection 
and classification of arrhythmias can be found. One 
approach is to segment the waves that make up the beat 
(P, Q, R, S and T waves) and characterize these waves 
by parameters such as height, width, or their relative 
temporal distance (Hamilton ITB 1986)[9]. While this 
approach has the advantage of solving the task using 



the same features that the cardiologist uses, the noise 
in the ECG, especially in extra-ambulatory ECG such 
as Holter recordings, makes it difficult to obtain a 
robust and reliable segmentation of the waves. Other 
authors use the sampled ECG data directly (Sörnmo 
2005)[10]. This often leads to a very high 
dimensional feature space, hindering the machine 
learning techniques required during the subsequent 
arrhythmia identification and classification stages. 
An increasingly popular solution is using a function 
space. The ECG samples are fitted with a linear 
combination of basis functions, and the coefficients 
of this linear combination are used as features for 
representing the beat. Although this was originally 
carried out with Laguerre orthogonal polynomials 
(Young ITBE 1963)[11], Hermite polynomials have 
lately become the most popular representation 
(Osowski ITBE 2004)[12] (Haraldsson AIM 
2004)[13] (de Chazal ITB 2004)[7]. Firstly, the shape 
of these polynomials resembles the shape of the 
beats, which permits obtaining relatively accurate 
representations using a small number of polynomials 
(see Fig. (1)). Secondly, this representation has also 
proven robust in the presence of noise. And finally, 
the fact that Hermite polynomials make an ortho-
normal basis implies that the information provided by 
different coefficients is not redundant. These 
advantages have made the Hermite representation 
very popular in the literature. A query in Google 
Scholar with the terms “hermite representation 
electrocardiogram” returns over 2100 scientific 
papers, of which over 900 have been published since 
2010. 
One disadvantage of the Hermite representation is 
that it is computationally demanding. This is 
especially true when polynomials with high degrees 
are used to obtain a more precise representation of 
the beat, thus enabling a better classification of 
arrhythmias in a subsequent stage. Parallel computing 
systems are used to solve complex scientific 
problems that require the processing of extremely 
large amounts of data, since they enable producing 
results in bounded computation times. Among the 
different available approaches, the use of Graphics 
Processing Units (GPU) has become a very attractive 
option for the acceleration of time-consuming 
computing techniques. These devices are multi-
threaded systems composed of several hundreds of 
processors with an optimized memory hierarchy. 
They are relatively cheap, easy to install and, in many 
cases, they are as powerful in terms of computation 
as hundreds of microprocessors working in parallel, 
while providing a low power consumption. A single 
commodity PC with one or several GPU devices 
attached is able to replace a whole cluster with tens 
and even hundreds of computers. Their application to 
the biomedical field is patent: MRI reconstruction 
(Kirk 2010)[14] (Nicholls IM 2010)[15], cardiac 
tissue simulation (Garcia-Molla CBM 2014)[16], 

biomolecular dynamics  (Zhang IWB 2013)[17] 
(Nicholls IM 2010)[15], bioinformatics  (Nicholls IM 
2010)[15], etc. 
In this paper, we assess the suitability of GPU 
parallelization for the fast characterization of ECG 
recordings by means of Hermite functions. The MIT-
BIH arrhythmia database (Moody IEM 2001)[18] is 
used as a benchmark, and two different scenarios are 
selected: off-line processing and on-line processing. 
The former aims at the processing of long recordings 
such as the ones obtained by a Holter device. The latter 
aims at real-time processing of the ECG. In (Márquez 
BIO 2013)[19] it was proved that 6 Hermite functions 
led to good enough results in terms of the Mean 
Squared Error (MSE) with respect to the original 
heartbeat. In (Gil IWB 2014)[20] preliminary results on 
the GPU-parallelization of the Hermite characterization 
for orders up to 9 were presented. However, the 
findings from (Márquez BIO 2013)[19] do not relate 
MSE with arrhythmia classification performance. The 
impact of Hermite polynomial order on arrhythmia 
classification is studied in (Márquez BSPC 2015)[21] 
concluding that to achieve optimal results it is 
necessary to reach an order in the range of 28-30.  
In this work the fast implementation of Hermite 
heartbeat characterization for both off-line and on-line 
processing, covering high-order polynomials, is 
presented. We extend and improve the GPU 
implementations and results from (Gil IWB 2014)[20]. 
First, Hermite function calculation is optimized in order 
to reduce computation time, and also to increase 
mathematical precision so that high-order polynomials 
can be considered. The range of polynomial order is 
extended up to 30 to increase the accuracy of the 
representation (Márquez BSPC 2015)[21]. And finally, 
an in-depth timing analysis is provided to shed some 
light on the way that parallelization is handled by the 
GPU device. 
The paper is organized as follows: Section 2 introduces 
the characterization of beats based on Hermite 
functions. Section 3 briefly introduces the GPU 
programming model. Section 4 explains the 
parallelization of the characterization algorithms for the 
off-line and on-line scenarios. The results are presented 
in Section 5 and, finally, the conclusions are drawn in 
Section 6. 

QRS APPROXIMATION BASED ON 
HERMITE FUNCTIONS   
The aim of using Hermite functions to represent beats is 
to obtain an accurate representation of the beat that is 
robust in the presence of noise and that permits 
addressing later stages of the ECG analysis, such as the 
classification of arrhythmias, with reasonable 
guarantees of success. The benchmarks used in this 
work are extracted from the MIT-BIH arrhythmia 
database (Moody IEM 2001)[18], conforming a total of 
48 ECG recordings whose beats have been manually 



annotated by at least two cardiologists. Each file from 
the database contains 2 ECG channels, sampled at a 
frequency of 360 Hz and with duration of 
approximately 2000 beats (half an hour).  
The ECG data is processed in order to extract 
information about the morphology of the beat (i.e. the 
QRS complex), as well as information about the 
distance between each pair of consecutive beats (i.e., 
the RR intervals). The QRS of the beats permits the 
identification of most arrhythmia types. The T wave 
provides very little additional information for 
arrhythmia detection once the QRS morphology has 
been considered (Sörnmo 2005)[10]. The P wave 
does provide relevant information for certain types of 
arrhythmias. However, its signal-to-noise ratio is 
very low, making it impossible to identify it reliably, 
especially in ambulatory ECG such as Holter 
recordings (Swan SAT 2012)[4]. Hence the preferred 
solution in the literature is trying to extract similar 
information to the one provided by the P wave from 
features derived from the distance between 
consecutive beats (de Chazal ITB 2004)[7] 
(Lagerholm ITB 2000)[22]. 
Before performing the Hermite characterization, the 
ECG recordings are filtered to remove baseline drift 
and high frequency noise. Then, for each beat, a 200-
ms window centered on the beat annotation is 
extracted. This window size permits the extraction of 
the complete QRS complex of normal beats, which 
have a length of 70-100-ms, and leaves out the P and 
T waves. The Hermite basis functions always 
converge to zero in ±∞. To ensure the convergence to 
zero at the edges of the signal window, the 200-ms 
window extracted from the ECG is extended to 400-
ms by adding two 100-ms sequences of zeros at each 
side of the window. Eventually, the extracted 400-ms 
QRS data is stored in a 144-sample vector x={x(t)}, 
and this vector can be approximated through a linear 
combination of N Hermite basis functions ),(tn  

using the coefficients )(nc , as follows 

        
1

0
),()()(

N

n
nn tctx      (1) 

The Hermite functions are defined as:  
 

)/(
!2

1),(
22 2/ tHe

n
t n

t

nn   (2) 

)/(tH n  are the Hermite polynomials.  
These polynomials can be computed recursively 
according to:  

1)(0 xH   

xxH 2)(1  

       )()1(2)(2)( 21 xHnxxHxH nnn .  
Note, that the parameter  varies the width of the 
polynomials. The maximum value of this parameter, 

MAX, for a given order n is computed in (Lagerholm 
ITB 2000)[22]  and it holds that the bigger n is, the 
smaller MAX  becomes. 
Given the orthogonality between the basis functions, it 
is possible to find the optimal coefficients that 
minimize the mean squared error (MSE) of the 
estimation for a given  . 

  
t

nn ttxc ),()()(  (3) 

Thus, for each beat, the combination of  and vector 
c={cn( )} ( ]1,0[ Nn ) that minimizes the MSE 
can be found and the values of these N+1 parameters 
can be used to reconstruct the QRS complex. The MSE 
is defined as in eqn. (4) 

2txtxMSE ii  (4) 
 
Fig. (1) shows how the Hermite polynomials model the 
heartbeat shape and how the accuracy of the 
representation can be improved by increasing the 
number of polynomials used. To quantify the 
improvement in accuracy, we have calculated the MSE 
(eqn. (4)) for all the beats of the MIT-BIH arrhythmia 
database. Table (1) shows the mean MSE values and 
their standard deviation when the beat is represented 
using 6, 10, 20 and 30 polynomials. It can be 
appreciated how when the degree of the polynomial 
increases the representation error decreases. 

 
Fig. (1). Hermite characterization of a beat with 3, 6, 9, 
12 and 15 polynomials.  

GPU-BASED ACCELERATION 
GPU devices are composed of hundreds of processor 

cores that work in parallel, executing the same task (i.e. 
kernel). Thus, GPUs enable the massive parallelization 
of algorithms, reaching speedups ranging from 10  to 
300   (Nicholls IM 2010)[15] while keeping a low-
power consumption  (Brodtkorb ATD 2010)[23] in 
comparison with supercomputers or computer clusters. 



Current devices are connected to the PC by means of 
a PCIe connection, thus, opening the door to high-
performance computing to low-cost systems. GPUs 
have been welcomed by the scientific community due 
to their low cost, their arguably programming 
simplicity and their suitability for floating-point 
computations, which is the standard adopted in 
scientific computation. In the last two decades, they 
have been applied to a wide range of disciplines, 
including many biomedical research projects (Kirk 
2010)[14] (Nicholls IM 2010)[15] (Garcia-Molla 
CBM 2014)[16] (Zhang IWB 2013)[17] (Gil IWB 
2014)[20].  
 

N MSE 

6 9.79 + 10.0 

10 5.32 + 6.97 

20 2.48 + 4.92 

30 1.97 + 3.95 

Table (1). Average mean squared error when 
representing beats with 6, 10, 20 and 30 polynomials. 

The GPU is designed for executing the same task 
using a huge volume of data. Moving apart from this 
scenario (high data dependency, conditional flows, 
etc.), results in non-perceptible performance gains. C-
like programming languages, such as CUDA 
(Compute Unified Device Architecture) (Kirk 
2010)[14], can be used to program GPUs. These 
languages enable parallel programming and they 
provide fast compilation and an easy integration with 
traditional programs executed by the CPU (i.e. host 
side). It must be highlighted that CUDA was selected 
as the target programming language for this project, 
since it is tuned for the GPU devices used for this 
research (Nvidia GPUs). 
The programming model of CUDA is intended for 
encapsulating the inner hardware details of the GPU 
to the programmer, in order to ease the development 
process, as well as to facilitate portability to different 
GPU devices (from Nvidia). The GPU holds several 
streaming processors (SP) which are formed of 
several cores that can work in parallel. The GPU 
executes the same piece of code (kernel) in parallel 
using different data sets. A thread is a particular 
execution of the kernel. Each SP handles in parallel a 
set of threads grouped together in the so-called 
warps. The execution of the threads in a warp is 
parallel as long as there are no conditional branches. 
If there are different execution paths, the SP executes 
in parallel all threads that point at the same 
instruction. Thus, each SP falls into the Single-
Instruction Multiple-Data paradigm (SIMD), which, 
in this context, is renamed as Single-Threat Multiple-

Data (STMD) due to the link between instructions and 
threads. 
The SP must first cluster all threads in a warp that are in 
the same execution point, and then, it executes 
sequentially each cluster. Thus, the presence of 
conditional branches can deteriorate performance 
considerably. 
The programmer has some control on the way that 
threads work in parallel by means of bearing in mind 
the STMD subtleties while coding, and by grouping the 
threads. Threads can be grouped in blocks with a 1D, 
2D, or 3D configuration, and a big number of blocks 
can be instantiated. Thus, each thread has a 3-
dimension identifier (ID). During scheduling, each 
block is assigned to an SP, and the SP starts the 
execution of all of its threads (by means of warps). In a 
similar fashion, blocks are distributed in a 1D/2D mesh, 
called a grid. Thus, the block also has an identifier, and 
this identifier is visible to its threads. Each thread can 
use the block’s and thread’s IDs to generate the 
memory locations of the data sets that it has to access. 
Regarding memory, all threads can access global 
memory (DRAM), all threads within a block access 
shared memory (SRAM), and each individual thread 
accesses a set of local registers. The key point here is 
that global memory has a high capacity (i.e. 1-6 GB) 
but it is slow, while shared memory has a small 
capacity (i.e. 16-48 KB) but it is fast (a couple of orders 
of magnitude faster than global memory). Global 
memory must be accessed in a coalesced fashion, since 
the read and write operations work with several 
consecutive bytes (32, 64, 128, etc.). A 2-level cache 
system is present and, as expected, it optimizes DRAM 
usage, although it is recommended to do a thorough 
planning of the way that data is going to be accessed to 
avoid an inefficient use of global memory leading to 
prohibitive delays. Shared memory can be accessed 
randomly, leading to very fast data access if some 
constraints are considered. 
Considering all these remarks, an algorithm that is 
suitable for parallelization can be efficiently executed 
on a GPU if, a wise selection of the block and grid 
shapes and sizes is carried out, and memory access is 
carefully devised. 

BASELINE IMPLEMENTATION 
In this section, the algorithm used to characterize the 
QRS complex is presented. This algorithm is 
implemented on a PC and it is used as the baseline to 
compute the speedup obtained by a CUDA-based 
implementation.  
Algorithm (1) shows the computations involved in the 
characterization of the ECG beats. The inputs to the 
algorithm are the ECG data and the maximum 
polynomial order N to be used in the beat 
characterization. The output is the set of N+1 
parameters used to characterize each of the QRS. The 
algorithm shows three main parts: i) the extraction of 



the QRS complexes; ii) the generation of the Hermite 
functions (labeled as Loop1); and, iii) the Hermite 
characterization of the complexes (Loop2).  
The QRS complexes are extracted from the ECG 
recording, outputting a 144-sample signal xi(t) for 
each beat as explained in the second section of the 
paper.  
 
Input: ECG data, maximum polynomial order N 
Output: Best set of parameters for each beat  
             ( , c( )) 
1:  Extract QRS complexes from the ECG file (xi(t)) 
2:  # Loop 1 
3:  for all   and n do 
4:    Compute n(t, )  # eqn. (2) 
5:  end for 
6:  # Loop 2 
7:  errmin = ∞ 
8:  for all xi(t) do 
9:    for all  do 
10:   for all n do 
11:     Compute cn( )        # eqn. (3) 
12:   end for 
13:   Compute (t)xi          # eqn. (1) 
14:   Compute (t)x (t),xMSEerr ii   # eqn. (4) 
15:   if errmin > err then 
16:      BEST =   
            cBEST = {cn( )} 
            errmin = err 
17:   end if 
18:  end for 
19: end for 

Algorithm (1). QRS characterization 

In the first loop (Loop1, lines 2-5), the values of the 
n(t, ) functions are precomputed according to eqn. 

(2). This precomputation is performed since the 
Hermite functions are used repeatedly during the 
second loop. The benefit of this precomputation was 
tested by comparing the computation time of Loop2 
under two scenarios: computing the Hermite 
functions inside the loop or using the precomputed 
values. The achieved speedup for the second option 
was 105  using an Intel i7 microprocessor.  
As for the second loop (Loop2, lines 6-19), it is 
devoted to finding the optimal set of parameters (  
and coefficient vector c) for each beat. It is composed 
of two nested loops: the outer one traverses all xi and 
the inner one looks for the optimal coefficients (eqn. 
(3)) for different values of .  
A total of S values of sigma are tried from the set  
={ 0 … MAX}. The value of MAX is a function of N 
(Lagerholm ITB 2000)[22]  and S is around 100. 
Thus, for each beat and for different values of , the 
optimal coefficients (c) are found and the 
combination of  and c that minimizes the MSE (eqn. 
(4)) between estimation ix  and the actual QRS 
complex xi is selected to characterize the beat. 

An analysis of Algorithm (1) draws that both Loop1 
and Loop2 are suitable for parallelization.  

PARALLEL    IMPLEMENTATION 
The parallelization approach taken is shown in 
Algorithm (2) where loops Loop1 and Loop2 from 
Algorithm (1) were parallelized by means of CUDA 
kernels kernel_  and kernel_Hermite.  
Algorithm (2) shows that the parallel version starts by 
extracting the QRS complexes xi (line 1) and by 
allocating memory in the GPU device (line 2). After 
that, the Hermite functions are generated (kernel_ ) and 
stored in the GPU global memory (line 3). While this 
kernel is being executed, the beats are sent to the GPU 
and stored in the GPU global memory (line 3). Once the 
first kernel has finished (line 4), the next kernel 
(kernel_Hermite) has access to all the required input 
data for the Hermite characterization in the GPU global 
memory. The characterization is then performed (line 5) 
and the results are sent from the GPU to the host 
memory (line 7). Before sending the results, it is 
necessary to synchronize with the GPU execution (line 
6) to avoid reading inconsistent data.  
Following, these kernels are explained as well as the 
way to optimize the data transfers for real-time 
processing, and for the processing of very long ECG 
recordings. 

Precomputation of Hermite functions 
The parallelization of Loop1 in algorithm (1) is 
straightforward. The Hermite functions n(t, ) are 
composed of 144 samples with disregard of the values 
of n and . Arranging blocks in an S N grid, and using 
144 threads per block, leads to full parallelization. The 
idea is that each block deals with the computation of all 
the samples of a function  for a concrete (n, ) couple. 
The 2-dimensional block ID has as a first component 
the index of  and as a second one the maximum 
weight of the Hermite polynomials, n. Each thread 
within a block is devoted to the evaluation of eqn. (2) at 
a different time step t, which is directly the thread ID. 
This scheme results in the simultaneous computation of 
as many  functions as SPs are in the GPU.  
Fig. (2) displays the distribution of threads and blocks. 
 
 

 
Fig. (2). Thread and block distribution for kernel_   

 



Hermite characterization 
The core of the Hermite characterization is carried 
out in Loop2 (Algorithm (1)) and its parallelization 
requires a thorough analysis in comparison to Loop1. 
Each block will handle a different QRS complex xi(t), 
so there are as many blocks as beats in the ECG 
recording (i.e. approximately 2000 for MIT-BIH 
files). Each block holds 144 threads, since most of 
the time all the threads are able to work in parallel. A 
thread can use the block ID to select the beat to work 
on and the thread ID to know the index of the sample 
of the beat that is using for the computations. 
Algorithm (3) shows the pseudocode for 
kernel_Hermite. It must be borne in mind that the 
kernel is executed by all the threads in a block. In 
lines 1-2, the block’s and thread’s IDs are used to 
obtain both the number of the beat (i) and the sample 
associated to the thread (t). Then, the beat data is 
copied onto shared memory (line 3) since it is going 
to be used many times during the kernel execution, so 
from now on, any reference to xi(t) implies a fast 
reading from shared memory. As in Algorithm 1, a 
loop traversing all values of  is included (lines 5-
20). The vector of coefficients c is computed for each 
value of  (lines 6-11). First, the multiplications 
between the original signal samples (xi(t)) and the 
Hermite functions ( n(t, )) are computed in parallel, 
so that each thread performs a multiplication on its 
own (lines 6-8). Then, a reduction technique is 
applied to carry out the summation (Kirk 2010)[14] 
(lines 9-11) to avoid a fully sequential execution. The 
computation of the MSE requires having available 
the estimation of the beat for the current coefficients. 
Lines 12-14 show how each thread iterates through 
the different polynomial orders, computing the 
summation of the multiplication of the coefficients by 
the original samples of the QRS complex for each 
sample of the estimation in parallel. The MSE is 
computed then in two steps. The squared error 
between xi(t) and (t)xi  is computed in parallel and 
then, the summation is performed by reduction (lines 
15-16). Finally, thread 0 updates the best solution if 
the new MSE computed is the minimum so far (lines 
17-19). 
 
Input: ECG data, polynomial order N 
Output: Best set of parameters for each beat  ( , 
c( )) 
1: Allocate GPU memory 
2: Extract QRS complexes from the ECG file (xi(t)) 
3: Call kernel_  
    Send all xi(t) to GPU #Write onto GPU Global memory 
4: Wait for GPU to finish processing 
5: Call kernel_Hermite 
6: Wait for GPU to finish processing 
7: Read {( i, ci( ))} 

# (Write onto Host memory 

Algorithm (2). Host-side code 

Input: ECG data, polynomial order N 
Output: Best set of parameters for each beat  

( , c( )) 
1: i = block.ID # beat index 
2: t = thread.ID # sample index 
3: Copy xi(t) to shared memory  # fully parallel 
4: err = ∞ 
5: for all  do 
6:    for all n do 
7:     Compute sumt = xi(t) n(t, )  # eqn. (3) 

#  fully parallel 
8:    end for 
9:    for all n do 
10:    Compute 

t
tn sum)(c  # eqn. (3) 

         # reduction technique 
11:  end for  
12:  0(t)x̂i  
12:   for all n do 
13:    Compute σ)(t,)(c(t)x̂ nni  # eqn. (1) 

# fully parallel 
14:   end for 
15:  Compute 2

iitmp (t)x̂-(t)err x  # eqn. (4) 

# fully parallel 
16:   Compute 

t
tmperrMSE  # eqn. (4) 

# reduction technique 
17: # This code is only for thread 0 
         if  t = 0 and err > MSE then { 
18:       BEST =   
            cBEST = {cn( )} 
            err = MSE  
19:  } end  
20: end for 

Algorithm (3). Pseudocode for kernel_Hermite 

Data transfer optimization 
The dataflow presented in Algorithm (2) can be 
modified and optimized in order to take into account 
the capabilities of GPUs to perform the simultaneous 
execution of a kernel and a data transfer (e.g. host to 
GPU, or GPU to host). This is of special interest, since 
we are dealing with the analysis of very long ECG 
records (i.e. Holter device) with an amount of data that 
will not fit the GPU memory, thus it will be necessary 
to process the data in subsets. Also, if real-time 
processing is targeted, it is mandatory that data is 
processed in small subsets to avoid long delays in the 
presentation of the results. Fig. (3) shows how it is 
possible to maximize performance by overlapping data 
transfer with GPU computation. The first task is the 
execution of kernel_  and then, the first subset of beats 
(subset 0) is sent to the GPU. While kernel_Hermite is 
characterizing subset 0, subset 1 is being transferred. 
After the execution of this first call to kernel_Hermite 
the results can be transferred to the host memory. 
During the second call to kernel_Hermite, subset 1 is 
being characterized and subset 2 is being transferred to 



the GPU, and again, the results corresponding to 
subset 1 are transferred to the host when the kernel 
computation is over. The process continues for the 
rest of subsets. Thus, it is possible to compute in a 
pipeline fashion (i.e. streaming processing) and 
performance is optimized. Note that the durations of 
the tasks (data transfer and kernel execution) are not 
the real ones. They have been set to easily show the 
behavior of the streaming processing. For instance, 
the execution time of kernel_Hermite is actually 
longer than the data transfer to the GPU, but the ratio 
between the displayed durations is not the real one.  
 

 
Fig. (3). Optimization of execution time via 
streaming processing 
 

RESULTS 
In this section we present the comparison between 
several parallel implementations based on CUDA and 
a single-thread reference programmed using C 
language. The baseline implementation was coded 
following Algorithm (1), while the parallel 
implementations considered Algorithms (2) and (3) 
and the optimizations for streaming processing. The 
test platform was a PC with an Intel-i7 (1,6 GHz and 
4 GB of RAM) and a graphics processor Nvidia 
TESLA C2050 (448 cores, 4 GB of RAM). Three 
different tests were performed 
A. Off-line processing of short recordings. 

It intends to assess the processing of short ECG 
recordings. The number of beats per channel 
used for the test was 

)}(,10,10 ,10{ max
32 NMM , where 

Mmax(N) is the maximum number allowed by the 
GPU for a given maximum polynomial order N, 
which is close to 5000 beats. Also, the range of 
polynomial order was }30,20,10,6{N . A 
total of 16 experiments were performed. 

B. Off-line processing, long recordings. 
 It intends to simulate the off-line processing of 
long ECG recordings, such as Holter recordings. 
A total number of beats per channel of around 
105 was used. The data was processed in chunks 
close to 5000 beats, always trying to process the 
maximum number of beats that the GPU can 
handle for a given value of N.  The range of 
polynomial order was {6,10,20,30}. A total of 4 
experiments were performed. 

C. On-line processing.  
It intends to simulate the online processing of 
ECG recordings, such as the real-time processing 
of the ECG of a patient admitted to a critical care 

unit. It uses streaming with blocks of short duration 
(i.e. 1, 5, 10 and 100 beats per channel). The 
number of blocks for each experiment was selected 
in such a way that the total number of beats per 
channel was 105. The range of polynomial order 
was {6,10,20,30}. A total of 16 experiments were 
performed. 

 

N M CPU 
(ms) 

GPU 
(ms) Speedup 

6 

10 26 66 0.39  
100 173 65 2.65  

1000 1,637 79 20.66  
5000 10,626 128 83.02  

10 

10 59 67 0.87  
100 282 71 3.95  

1000 2,569 82 31.32  
4800 15,534 155 100.15  

20 

10 177 75 2.38  
100 604 80 7.52  

1000 4,868 122 39.86  
4600 27,287 288 94.90  

30 

10 372 75 4.93  
100 995 89 11.24  

1000 7,216 180 39.99  
4400 37,454 521.12 71.87  

Table (2). Performance results for Test A 

Test A: Off-line, short recordings 
Table (2) shows the computation time and speedup for 
Test A. The first column indicates the number of 
Hermite polynomials used and the second column the 
number of beats per channel processed, M. The third 
and fourth columns hold the computation time in ms of 
the baseline (CPU) and the parallel implementation 
(GPU), respectively. The last column shows the 
speedup. Note that the number of beats (second 
column) is constrained by the maximum data size that 
the GPU can handle due to memory restrictions.  
Figure (4) displays the computation time for both the 
CPU and GPU implementations, and might help the 
reader to get an overall idea of the impact of the 
polynomial order N and the number of beats processed 
on the performance.  
The results yield that the performance of the GPU 
improves as long as the maximum order of the Hermite 
polynomials increases, the number of beats increases, 
or both simultaneously. Note that for very short 
recordings, the performance of the GPU could be even 
worse than that of the CPU ( }9,6{N  and 10 beats). 
The rest of the combinations present acceleration, 
although they are not significant for recording with less 
than 1000 beats. The maximum speedups happen for a 
number of beats around 5000 and they are in the range 
[72 , 100 ]. 



We have performed a detailed analysis of the 
distribution of the computation time devoted to the 
different tasks performed in the parallel 
implementation (see Algorithm (2)). Fig. (5) displays 
this distribution, showing the percentage of the total 
time due to: 

1. The memory allocation of variables in the 
PC memory (Malloc CPU) 

2. The memory allocation of variables in the 
GPU memory (Malloc GPU) 

3. The execution of kernel_  
4. The transfer of the beats to the GPU (First 

transfer) 
5. The execution of kernel_Hermite 
6. The transfer of the results to the host (Read) 

Fig. (5).a. shows the distribution for 6 Hermite 
polynomials according to different recording sizes. 
The black areas correspond to “Malloc GPU” and the 
light grey areas to “kernel_Hermite”. This shows that 
for small numbers of beats the time it takes to set the 
GPU up before processing data is longer that the 
GPU processing time. Since the baseline requires a 
much faster setup before starting processing, the 
GPU does not provide any advantage. When the 
number of beats increases the GPU processing time 
takes over the memory allocation time and, since the 
CPU requires notably more time to compute the 
Hermite coefficients, a significant gain is obtained 
from using a GPU. 
Fig. (5).b. holds similar results for 30 polynomials. In 
this case the GPU computation time percentage 
dominates for long ECG recordings, hence the high 
speedups obtained. Note also that in this case data 
transfer to the GPU is not negligible for short 
recordings.  
 

 
Fig. (4). Execution time of CPU and GPU 
implementations of Test A for different polynomial 
orders. 

 

 
a) 

 
b) 

Fig. (5) Computation time distribution of the different 
tasks involved in the GPU implementation of Test A 
for: a) 6 Hermite polynomials, and, b) 30 polynomials.  

It must be highlighted that the performance does not 
increase monotonically. This is due to the fact that at 
some point, for values of N≥20, the number of local 
variables in the kernel exceeds the number of registers 
in the SP. Therefore, it is necessary to resort to global 
memory, hindering acceleration – the so-called register 
spilling.  
Test A does not correspond to a realistic real world 
scenario, but it provides useful insights on the behavior 
of the GPU. The information related to long recordings 
(M≈5000) will be used in Test B to optimize the 
processing of long recordings. Likewise, the analysis of 
the processing of short recordings will provide clues to 
implement Test C. 

 



Test B: Off-line, long recordings 
Table (3) shows the computation time and speedup 
for Test B. The first column indicates the number of 
Hermite polynomials used. The second column 
contains the number of blocks processed (M1) and the 
number of beats per block (M2). The total number of 
beats processed (M=M1M2) is approximately 105. The 
third and fourth columns hold the computation time 
in ms of the baseline (CPU) and the parallel 
implementation (GPU), respectively. The last column 
shows the speedup.  
 

N M1 
M2 

CPU 
(ms) 

GPU 
(ms) Speedup 

6 20 
5000 211,559 1,230 172  

10 21 
4762 322,829 1,735 186  

20 22 
4546 599,249 4,612 130  

30 23 
4348 845,513 9,882 86  

Table (3). Performance results for Test B 

 
Fig. (6) Computation time distribution of the 
different tasks involved in the GPU implementation 
of Test B for }30,20,10,6{N . 

The results show that the performance of the GPU is 
significantly boosted with respect to Test A. This is 
due to the fact that the execution time of 
kernel_Hermite now dominates more than 90% of the 
total computation time, as it can be seen in Fig. (6), 
where the time distribution for different polynomial 
orders is displayed. Again, for N=30 there is a lower 
speedup, but still significant, due to GPU register 
spilling. Note that the time required to transfer the 
beats to the GPU is not considered in the graph, since 

it happens simultaneously with the computation of 
kernel_Hermite and it requires a shorter time. 
The speedups range from 86  to 172 , thus, proving 
the benefits of using a GPU for long recording 
processing. The processing time has been reduced from 
minutes (CPU) to seconds (GPU), leaving plenty of 
room to include complex classification techniques for 
the detection of arrhythmia.  
 We can extrapolate the results to a real world scenario 
where a Holter device with 12 channels is used to 
monitor a patient during three days. In this case, the 
time that a CPU requires to characterize the beats using 
30th order polynomials is estimated as more than 3 
hours and a half, while a GPU would require 
approximately 2 minutes a half.  

Test C: On-line processing 
Table (4) holds the computation time and speedup for 
Test C. The first column indicates the number of 
Hermite polynomials used. The second column contains 
the number of beats per block (M2). The higher M2, the 
longer the latency. Assuming a heart frequency of 1 Hz, 
the processing latency is equal to M2 in seconds. The 
value of M1 is set so the total number of beats is 
M=M1M2=105. The third and fourth columns hold the 
computation time in ms of the baseline (CPU) and the 
parallel implementation (GPU), respectively. The 
computation time of the CPU is constant for a given 
value of N since it does not depend on M2. The last 
column shows the speedup.  
 

N M2 
CPU 
(ms) 

GPU 
(ms) Speedup 

6 

1 
5 

10 
100 

160,652 

46,882 
9,315 
5,404 
1,494 

3.43  
 17.25  

   29.73  
 107.53  

10 

1 
5 

10 
100 

250,691 

61,864   
12,815 
6,613 
2,267 

4.05    
19.56  

  37.90  
 110.56    

20 

1 
5 

10 
100 

472,305 

101,674   
20,626   
10,402 
4,965 

4.65  
  22.90  

   45.40  
   95.12    

30 

1 
5 

10 
100 

689,779 

157,276   
29,978   
15,653   
11,359 

4.39    
23.01  

  44.07  
60.72    

Table (4). Performance results for Test C 

The results show that performance gains are obtained 
even when results are provided in a single beat basis. In 
fact, the GPU always outperforms the CPU 
implementation (see Fig. (7)). However, the speedups 
obtained for M2=1 are not high enough to justify the 
cost of a GPU, since a multithreaded implementation 



using a standard CPU could match the GPU 
performance. Moreover, the CPU is able to process in 
real-time since the execution time in column 2 (Table 
(4)) is smaller than the time it takes for the heart to 
beat M2 times. The benefit of using a GPU for real-
time processing comes from the fact that being faster 
than the CPU it saves time to apply more powerful 
on-line classification algorithms.  
The speedups range from approximately 4  to 110 . 
This time, an increase in N or M2, always leads to an 
improvement in the speedup, since the sizes of M2 are 
small enough to avoid register spilling. Fig. (8) 
shows the time distribution for Test C when the 
polynomial order is 6. Most of the time now is 
devoted to the execution of kernel_Hermite. The 
distributions for higher values of N are similar.  
 

Fig. (7). Execution time of CPU and GPU 
implementations of Test C for different polynomial 
orders. 

There is a clear tradeoff between latency and 
performance gain, since, the higher the performance, 
the higher the latency. For instance, it seems 
reasonable to wait 10 seconds (M2=10) to obtain the 
results, and the speedup in this scenario is 
significantly faster than a multithreaded CPU-based 
implementation (around 20 ). However, it is not so 
clear that waiting 100 seconds (M2=100) to get the 
results complies with the definition of real-time, 
regardless of the performance gain (around 100  for 
some cases). 
In summary, these results show the interest of using 
GPUs to perform real-time beat characterization, 
provided that we can group them in sets of at least 5. 
Regarding the previous implementations from (Gil 
IWB 2014)[20], the implementations used in this 
work take them as a starting point, though some 
major improvements have been applied. The idea of 
precomputing the Hermite functions (eqn. (2)) to 
avoid redundancy in the computation process, was 
also applied to the implementation of eqn. (2) itself. 
The continuous computation of common 

mathematical operations, such as the factorial function, 
was optimized. This led to improving the results of Test 
A, so now both the CPU and GPU implementations run 
faster and, still, there is a significant gain in the 
obtained speedups, which are doubled with respect to 
the former results. Also, eqn. (2) was reformulated to 
avoid numerical issues. The straightforward 
implementation in (Gil IWB 2014)[20] could not reach 
polynomial orders beyond 9 due to numerical problems. 
A numerical-stable implementation of the Hermite 
function has been applied to this work, so now it is 
possible to reach the high polynomial order required for 
the three tests presented. 
 

 
Fig. (8) Computation time distribution of the different 
tasks involved in the GPU implementation of Test C 
for N=6.  

CONCLUSIONS 
In this paper, an algorithm for the parallel 
characterization of beats by means of Hermite functions 
using GPUs was presented. Hermite polynomials of 
orders ranging from 6 to 30 were considered. The 
CUDA-based parallel code was explained in detail and 
performance results were presented. A detail timing 
analysis was performed for the different 
implementations presented. 
Speedups up to 186  were obtained for off-line 
processing and up to 110  for on-line processing. The 
GPU off-line processing of long ECG recordings 
enables reducing computation time of a Holter 
recording from several hours to a couple of minutes. As 
for on-line processing, both the CPU and GPU are able 
to work in real-time, although the GPU outperforms the 
former. The benefits of using a much faster GPU-based 
implementation in the real-time characterization of 
beats is that this leaves plenty of time to implement a 
sophisticated real time arrhythmia classification 
algorithm and, thus, to improve the accuracy of 
arrhythmia detection.   
The authors propose as future research lines the 
addition of a classification stage  for both off-line and 



on-line processing (Lagerholm ITB 2000)[22]  
(Barbakh IJN 2008)[24]. 
 
ACKNOWLEDGEMENTS 
 
This work was supported by the University San Pablo 
CEU under the grant PPC12/2014. D. G. Márquez is 
funded by an FPU grant from the Spanish Ministry of 
Education (MEC) (Ref. AP2012-5053). 
 
DISCLOSURE 
Part of this article has been previously published in 
International Work-Conference on Bioinformatics 
and Biomedical Engineering, Granada (Spain), pp. 
527-538, 2014. 

REFERENCES  
[1] World Health Organization: Global Status Report on 

Noncommunicable Diseases 2010. 
http://whqlibdoc.who.int/publications/2011/9789240686458_
eng.pdf?ua=1 (Accessed September 27, 2014) 

[2] Reddy KS, Yusuf S. Emerging epidemic of cardiovascular 
disease in developing countries. Circulation 1998; 97(6): 596-
601. 

[3] Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S,  Murphy 
A. Growing epidemic of coronary heart disease in low-and 
middle-income countries. Curr Probl Cardiol 2010; 35(2): 72-
115. 

[4] Swan M. Sensor mania! the internet of things, wearable 
computing, objective metrics, and the quantified self 2.0. J 
Sensor Act Net 2012; 1(3): 217-253. 

[5] Min C, Gonzalez S, Vasilakos A, Cao H, Leung V C. Body 
area networks: A survey. J Mob Net Applic 2011; 2: 171-193 

[6] Willems J L et al. The diagnostic performance of computer 
programs for the interpretation of electrocardiograms. New 
Eng. J. Med 1991; 325: 1767–1773. 

 
[7] de Chazal P, O'Dwyer M, Reilly RB. Automatic classification 

of heartbeats using ECG morphology and heartbeat interval 
features. IEEE Trans Biomed Eng 2004; 51(7): 1196-1206. 

[8] Kiranyaz S, Ince T, Pulkkinen J, Gabbouj M. Personalized 
long-term ECG classification: A systematic approach. Exp 
Syst App 2011; 38: 3220-3226. 

[9] Hamilton PS, Tompkins WJ. Quantitative Investigation of QRS 
Detection Rules Using the MIT/BIH Arrhythmia Database. 
IEEE Trans Biomed. Eng 1986; 33(12): 1157-1165. 

 
[10] Sörnmo L, Laguna P. Bioelectrical signal processing in 

cardiac and neurological applications. Elsevier, 2005. 
[11] Young TY, Huggins WH. On the representation of 

electrocardiograms. IEEE Trans on Biomed Eng 1963; 10:86-
95. 

[12] Osowski S, Linh TH, Markiewicz T. Support vector machine-
based expert system for reliable heartbeat recognition, IEEE 
Trans Biomed. Eng 2004; 51(4): 582-589. 

[13] Haraldsson H, Edenbrandt L, Ohlsson M. Detecting acute 
myocardial infarction in the 12-lead ECG using Hermite 
expansions and neural networks. Artificial Intelligence in 
Medicine 2004; 32(2): 127-136. 

[14] Kirk DB, Hwu WmW. Programming Massively Parallel 
Processors: A Hands on Approach. 1st ed. Morgan Kaufmann 
Publishers Inc: San Francisco 2010. 

[15] Nickolls J, Dally W. The GPU Computing Era. IEEE Micro 
2010; 30(2): 56-69. 

[16]  Garcia-Molla V et al. Adaptive step ODE algorithms for the 
3D simulation of electric heart activity with graphics 
processing units.  Comp in Biology and Med 2014; 44: 15-26. 

[17]  Zhang Q, García JM, Wang J, Hou T, Sánchez HEP. A GPU 
based Conformational Entropy Calculation Method. Proc. of 
1st Int Work-Conference on Bioinformatics and Biomed Eng; 
2013 March 18-20; Granada: Copicentro Editorial 2013. 

[18]  Moody GB, Mark RG. The impact of the MIT-BIH 
arrhythmia database. IEEE Eng. in Medicine and Biology 
Mag. 2001; 20(3): 45-50. 

[19] Márquez DG, Otero A, Félix P, García CA. On the Accuracy 
of Representing Heartbeats with Hermite Basis Functions, 

Proc. of BIOSIGNALS; 2013 Feb. 11-14; SciTePress 2013; pp. 
338-341. 

[20]  Gil A., Caffarena G., Márquez DG, Otero A. Hermite 
Polynomial Characterization of Heartbeats with Graphics 
Processing Units. Proc. of 2nd Int Work-Conference on 
Bioinformatics and Biomed Eng; 2014 April 11-14; Granada: 
Copicentro Editorial 2014. 

[21]  Márquez DG, Otero A, Félix P, García CA, Presedo J. A study 
on the representation of QRS complexes with the optimum 
number of Hermite functions. Biomed Signal Proces. 2015. In 
Press. 

[22]  Lagerholm M, Peterson C, Braccini G, Edenbr L, Sörnmo L. 
Clustering ECG complexes using Hermite functions and self-
organizing maps. IEEE Trans. Biomed. Eng 2000; 47: 838-848. 

[23] Brodtkorb A, Dyken C, Hagen T, Hjelmervik J, Storaasli O.  
State-of-the-Art in heterogeneous computing. ACM Trans. Des. 
Autom. Electron. Syst. 2010; 18(1): 1-33. 

[24] Barbakh W, Fyfe C. Online Clustering Algorithms. Int. J. Neural 
Syst. 2008; 18(3): 185-194.  


