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Computing efficiently spectral-spatial
classification of hyperspectral images on
commodity GPUs

Pablo Quesada-Barriuso, Francisco Argüello and Dora B. Heras

Abstract The high computational cost of the techniques for segmentation and clas-
sification of hyperspectral images makes them good candidates for parallel pro-
cessing, in particular, for computing on Graphics Processing Units (GPUs). In this
paper an efficient projection on the GPU for the spectral–spatial classification of
hyperspectral images using the Compute Unified Device Architecture (CUDA) for
NVIDIA devices is presented. A watershed transform is applied after reducing the
hyperspectral image to one band through the calculation of a morphological gra-
dient, while the spectral classification is carried out by Support Vector Machines
(SVMs). The results are combined with an adaptive majority vote. The different
computational stages are concatenated in a pipeline that minimizes the data trans-
fer between the main memory of the host computer and the global memory of the
graphics device to maximize the computational throughput. The memory hierarchy
and the thousands of threads available in this architecture are efficiently exploited.
It is possible to study different data partitioning strategies and thread block arrange-
ments in order to promote concurrent execution of a large number of threads. The
objective is to efficiently exploit commodity hardware with the aim of achieving
real-time execution for on-board processing.
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231.1 Introduction

Recent advances in sensor technology have led to hyperspectral images being now
widely available [1, 2]. The special characteristics of hyperspectral images, which
provide a detailed spectrum for each pixel, allow distinguishing among physical
materials and objects even at pixel level, presenting new challenges to spectral anal-
ysis, target detection, image segmentation or classification. Nevertheless, the large
number of spectral channels of the hyperspectral images makes most of the com-
monly used methods designed for the processing of grey level or color images not
appropriate. To take full advantage of the rich information provided by the spectral
dimension new algorithms are required.

The supervised classification of hyperspectral images has been a very common
topic in the last decades. Pixel-wise classifiers, for instance, consider only the spec-
tral information of the pixel [1, 3–5]. In particular, pixel-wise classification by Sup-
port Vector Machine (SVM) classifiers has been introduced and shown good results
when a small number of training samples are available [3]. However, this pixel-wise
classification does not consider information about spatial structures. Therefore, the
classification can also take advantage of the spatial relationships among pixels, al-
lowing more elaborate spectral–spatial models for a more accurate segmentation
and classification of the image [6–8]. The spatial information can be included con-
sidering different approaches. The first approach consists in including information
from the closest neighborhood of a pixel through morphological filtering [9], mor-
phological leveling [6] or Markov random fields [10]. The second approach consists
in carrying out a segmentation of the image by methods that are usually based in
graphs [11]. Among these some unsupervised methods have been widely used: par-
titional clustering [7], hierarchical segmentation [12], MSF [13] and watershed [8].
The watershed transform is a widely used method for non-supervised image seg-
mentation, specially suitable for low contrast images [14]. It is usually applied to
the morphological gradient of a two dimensional image for extracting homogeneous
regions with respect to grey level values.

Recently, Tarabalka et al. [8] have presented a spectral–spatial classification
scheme for hyperspectral images that uses the watershed transform. It is based on
an SVM spectral classification, followed by a Majority Vote (MV) process among
the classified pixels within the same watershed region. Among the proposals pre-
sented by the authors to reduce the image to one band, such as multidimensional
or vectorial gradients. One of the most efficient approaches, in terms of classifica-
tion quality, is obtained through a Robust Color Morphological Gradient (RCMG)
calculation. The good classification results of this proposal in urban and open areas
had led us to adopt it in this work.

The computational cost of the techniques for segmentation and classification of
hyperspectral images is high, which makes them good candidates for parallel and, in
particular, for General-Purpose Computing on Graphics Processing Units (GPGPU).
The focus of this study is to provide a solution for a GPU platform, adapting the
hyperspectral processing to a low cost parallel computing architecture. With this
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approach the on-board processing of information is possible without the need for
bulky high performance computing infrastructures.

In most cases neither sequential nor existing parallel algorithms can be directly
implemented in the GPU and it is necessary to modify the flow of the computa-
tions in order to fully exploit the architecture. The use of Graphics Processing Units
to process hyperspectral images has been gaining popularity in recent years. For
instance, algorithms for spectral unmixing [15, 16], target detection [17, 18], clas-
sification [1] and segmentation [19, 20] have led to more complete tools [21, 22].
A spectral–spatial GPU classification tool was presented in [22]. In this tool the
spatial information is introduced by MV within a fixed window where each pixel
is assigned to the most predominant class, so the spatial structure of the image is
not fully considered. As a result, this MV implementation may generate different
classes within the same watershed region, unlike in [8].

The interest is on exploring GPU architectures for hyperspectral processing by
developing techniques that can be efficiently projected on GPU consumer platforms
with the objective of achieving real-time execution that makes on-board processing
possible. In this paper a spectral–spatial classification scheme for hyperspectral ima-
ges based on [8] is presented, specially adapted for GPU processing using CUDA.
The process consists in the calculation of a morphological gradient operator, that
reduces the dimensionality of the hyperspectral image, followed by the calculation
of a watershed transform based on Cellular Automata (CA) over the resulting 2D
image, and a spectral classification based on SVM. A MV process combines the
spectral and spatial results. The thousands of threads available in the GPU are effi-
ciently exploited. The different stages are concatenated in a pipeline processing that
minimizes the data transfers between the host and the device and maximizes the
computational throughput. Furthermore, data are reused within the GPU, taking ad-
vantage of the shared memory and cache hierarchy of the architecture. In addition,
different hyperspectral data partitioning strategies and thread block arrangements
are studied in order to effectively exploit the memory and computing capabilities of
the GPU architecture.

The reminder of this paper is organized as follows: in Section 231.2 some GPU
and CUDA fundamentals are introduced. Section 231.3.1 introduces the morpho-
logical gradient, Section 231.3.2, the watershed transform, and Section 231.3.3 the
majority vote approach for spectral–spatial classification. The implementations of
the algorithms and the results obtained are discussed in Sections. 231.4 and 231.5,
respectively. Finally, Section 231.6 presents the final remarks.

231.2 GPU Architecture

The most recent GPUs provide massively parallel processing capabilities based on
a data parallel architecture. The NVIDIA GPU architecture is organized into a set of
Streaming Multiprocessors (SMs), each one with many cores called streaming pro-
cessors [35], as shown in Fig. 231.1 (a). These cores can manage hundreds of threads
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Fig. 231.1 NVIDIA CUDA architecture. Streaming multiprocessors (a) and organizations of Grid,
blocks and threads (b)

in a Single Instruction Multiple Data (SIMD) programming model. The GPU cores
execute the same instruction simultaneously on different data unlike the multicore
processors that are Multiple Instruction Multiple Data (MIMD) (different cores ex-
ecute different threads operating on different data).

CUDA for NVIDIA devices, is an Application Programming Interface (API) for
writing programs that are executed in the GPU. A CUDA program, which is called
a kernel, is executed by thousands of threads grouped into blocks, as illustrated in
Fig. 231.1 (b). The Compute Unified Device Architecture (CUDA) architecture has
a global memory of Dynamic Random Access Memory (DRAM) that is available
for all the blocks. There is also an on-chip shared memory space only available per
block. This feature enables an extremely rapid read/write access to the data in this
memory but with the lifetime of the block. Furthermore, it is not possible to read or
write data to the shared memory allocated to another block. Finally, each thread has
its own local memory and registers. Examples include the NVIDIA G80 and GT200
graphics cards series.

The Fermi and Kepler architectures [36] have also a cache hierarchy consisting
of a configurable L1 and a unified L2 caches. The 64 KB of on-chip memory can
be configured as 48 KB of shared memory and 16 KB of L1 cache or vice versa.
There are 64 KB of this memory available for each SM. The L2 is a unified cache
up to 1536 KB shared by all the SMs. The accesses to the DRAM are cached in this
memory hierarchy. The NVIDIA Tesla GF100 and the GeForce 500 series are ex-
amples of the Fermi architecture. The Tesla K-series family of products includes the
Kepler K10, K20 and K20X GPU accelerators with different chipsets. In particular
the Tesla K20X based on the GK110 chipset incorporates 2688 CUDA cores and 6
GB of memory. These chipsets can be found in commodity GPUs like the GTX680
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graphics card, used in this work, which has a GK104 chipset (1536 CUDA cores
and 2 GB of memory).

The challenge of GPU programming is to increase the computational through-
put. To achieve this, important aspects that must be considered are [37]: minimizing
CPU–GPU data transfers, aligning accesses to consecutive memory locations, max-
imizing data reuse, balancing the workload among threads, and minimizing their
divergence.

231.3 Spectral–Spatial Classification of Hyperspectral Images

Hyperspectral images are basically digital pictures where each pixel is represented
by a set of n values. Each value corresponds to a spectral component across the vis-
ible and infrared light bands [18]. The number of captured bands depends on the
properties of the hyperspectral sensor. For example, the well known Reflective Op-
tics System Imaging Spectrometer (ROSIS) is able to record 103 spectral bands [24],
while the Airbone Visible-Infrared Imaging Spectrometer (AVIRIS) is able to record
224 spectral bands [25].

Most classification methods for hyperspectral images process each pixel indepen-
dently using pixel-wise classifiers, but do not take into account the spatial informa-
tion of the neighborhood [26]. Nevertheless, it has been proved that the classification
results significantly improve when spatial information is incorporated [6–8].

An efficient approach to integrate spectral and spatial information in a classifi-
cation system is defined by Tarabalka et al. [8]. The process consists of the stages

Fig. 231.2 Spectral-spatial classification scheme, which consists of a spectral stage (top), a spatial
stage (bottom), and a final stage to combine the results
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Fig. 231.3 Example of majority vote application for spectral–spatial classification

shown in Fig. 231.2. On one hand, the spectral processing is applied over the hyper-
spectral input image using a SVM that produces a classification map (shown at the
top of the figure). Each pixel of this map belongs to one class predicted by the SVM
(three classes in this example). On the other hand, the spatial processing, applied
to the one–band image generated after a RCMG calculation, creates a segmentation
map using a watershed transform (shown in the bottom of the figure). In this map,
all of the pixels are labelled according to the region they belongs to.

Finally, the spectral and spatial results are combined using a majority vote pro-
cess. Each pixel in a watershed region is assigned to the most predominant class
among the classes within the same region. The output of this scheme, as shown
in Fig. 231.2, is a more accurate hyperspectral classification of the image compared
to a standalone spectral classification. The procedure for combining the results is
illustrated in detail in Fig. 231.3 for the case of three spectral classes, represented
as three colors in Fig. 231.3 (a). The segmentation map, with regions A, B, C, and
the results of the MV are displayed in Figs. 231.3 (b) and 231.3 (c).

In the following sections we explain in detail the different steps of the spatial
processing. The Robust Color Morphological Gradient, Section 231.3.1, the water-
shed transform based on CA, Section 231.3.2, and how to combine the results with
the spectral ones, Section 231.3.3.

231.3.1 Robust Color Morphological Gradient

The basic morphological gradient operator for grey scale images is defined as
Eq. 231.1:

∇( f ) = δg( f )− εg( f ) , (231.1)

where δg and εg are the dilation and erosion morphological operators, and g the
structuring element which defines the neighborhood of a pixel in the image f . In an
alternative form, Eq. 231.1 can be expressed as follows in Eq. 231.2:
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∇( f ) = max
x∈g
{ f (x)}−min

y∈g
{ f (y)}

= max(| f (x)− f (y)|) ∀x,y ∈ g , (231.2)

giving the greatest intensity difference between any two pixels within the structuring
element. In this way Eq. 231.2 can easily be extended to color images [27], which
have a pixel vector of three components, i.e. the red, green and blue channels of
color.

Let x be a pixel vector of a color image and χ = [x1,x2, . . . ,xn] be a set of n pixel
vectors in the neighborhood of x, and the set χ contains x. The Color Morphological
Gradient (CMG), ∇(f), using the Euclidean distance, is defined as Eq. 231.3:

∇(f) = max
i, j∈χ
{||xi−x j||2} , (231.3)

whose response is the maximum of the distances between all pairs of vectors in the
set χ . As the CMG is very sensitive to noise and may produce edges that are not
representative of the gradient, a RCMG is proposed in [27], based on pairwise pixel
rejection of Eq. 231.3. The RCMG, ∇(f)Robust , is defined as Eq. 231.4:

∇(f)Robust = max
i, j∈χ−Rs

{||xi−x j||2} , (231.4)

where Rs is the set of s pairs of pixel vectors removed. The pairs removed are those
that are furthest apart. The RCMG is therefore a vectorial gradient operator based
on the Euclidean distances of pixel vectors.

A pixel vector also refers to a pixel of the hyperspectral image with all the n-
bands as components of a n-dimensional vector. Thus, using the RCMG, a hyper-
spectral image may be reduced to a single band and be used as input for the water-
shed transform.

Regarding GPU concerns, the calculation of Eq. 231.4 is split into partial op-
erations and then the partial results are combined to find the maximum distance.
There are two possible work distribution strategies among thread blocks which will
be explained in Section 231.4.1.1 and Section 231.4.1.2.

231.3.2 Watershed Transform Based on Cellular Automata

Regarding segmentation, a watershed transform based on CA is applied, because of
the simplicity of the computing model of the CA that can model complex problems
easily, and because the computations for pixels are highly independent, and thus
very adequate for streaming parallel processing architectures like the GPU.

The watershed algorithm is a widely used method for non-supervised image seg-
mentation, specially suitable for low-contrast images [14]. If a grey scale image is
represented as a topographic relief, where the height of each pixel is directly re-
lated to its grey level, the dividing lines of the basins of attraction of rain falling
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Fig. 231.4 Three-state automaton implementing the Hill-Climbing algorithm [31]

over the regions are called watershed lines [14]. Various definitions, algorithms and
implementations can be found in the literature [28]. In this paper the Hill-Climbing
algorithm based on the topographical distance by Meyer is adopted [29]. This algo-
rithm starts by detecting and labelling all minima in the image with unique labels.
Then, the labels are propagated upwards, climbing up the hill, following the path
defined by the lower slope of each pixel. At the end, all pixels have a label that
identifies the region to which they belong. No implicit lines are generated with this
algorithm, so the watershed lines are the limits between these regions.

CA are computing models composed of a set of cells arranged in a regular grid,
with each cell connected to its adjacent neighbors. The CA evolve in discrete time
steps, according to a collection of states and a set of transition rules. One of the main
characteristics of CA is that updates are made for each cell considering only local
information, so the concept of parallelism and, in particular, streaming processing,
is implicit in the automata. The updates of the cells can be carried out synchronously
or asynchronously [30]. In the latter case, the grid can be partitioned into different
regions which can be independently updated an unbounded number of times.

Galilée et al. proposed a three-state cellular automaton implementing the Hill-
Climbing algorithm [31] that is shown in Fig. 231.4 (MP stands for Minimum or
Plateau state and NM for non-minimum state). The main advantage of this Water-
shed Transform based on Cellular Automata (CA–Watershed) is that minima de-
tection, labeling, and climbing the steepest paths are simultaneously and locally
performed.

Each cell of the automaton computes a pixel of the image. First, the pixels are
sequentially labelled and the state of each pixel is initialized to one of two possible
states. Considering that a plateau is a region of constant grey value within the image,
these states are MP and NM. If a pixel is within a plateau, it switches to the MP state.
Otherwise, the state of the pixel switches to NM. Figure 231.5 (a) shows an example
of a 1D image represented as a terrain (lines) and the corresponding grey values of
each pixel (squares). The numbers within each square in this figure are initial label
values.

Once the pixels have been initialized, the following steps update the automaton.
This is an iterative task that processes the MP and NM states as follows: The pix-
els of a plateau, i.e. MP state, extend the label with the minimum value along the
pixels belonging to that plateau, in case of a plateau that is minimum as indicated
in Fig. 231.5 (b), and change their state if the plateau is non-minimum. If the state
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Fig. 231.5 1D image represented as a terrain (top lines) and the corresponding grey values of each
pixel (bottom squares). (a) Init state, (b) MP update, (c) NM update, (d) final segmentation

of the pixel is NM, the label is propagated through the lower slope as shown in Fig.
231.5 (c), where labels 3 and 9 are being propagated upwards, climbing up the hills.
This iterative task ends when no more changes occur as in Fig. 231.5 (d). The result
is a segmentation map where each region is represented by the label corresponding
to the seed pixel that generated the region. The watershed lines can be later defined
as the borders among regions.

The CA–Watershed can be synchronously or asynchronously implemented. The
asynchronous implementation is non-deterministic and may lead to different seg-
mentation results. A formal proof of correctness and convergence towards a water-
shed segmentation using a mathematical model of data propagation in a graph is
presented in [31].

The asynchronous algorithm is particularly suitable for the CUDA computing
model as it was shown by P. Quesada-Barriuso et al. [32]. Different regions of the
image can be simultaneously and independently updated during certain number of
steps, thus reducing the number of points of synchronization, so the exploitation of
parallelism is maximized.

231.3.3 Majority Vote

The MV is a process for determining which out of an arbitrary number of candidates
has received most votes, considering a vote as a particular property or attribute. One
possible implementation of MV takes as input an array with the votes for each can-
didate, and returns the element with most votes after one pass over the whole vec-
tor [33]. In the hyperspectral classification context, the MV within a fixed window,
i.e. fixed neighborhood, is a standard spatial regularization procedure when it is ap-
plied after a pixel-wise classification [8]. However, using the regions created by the
segmentation process as in this work, i.e. using an adaptive neighborhood, the spatial
structures that may be present in the image are taken into account in a more realis-
tic way. So, using an adaptive neighborhood, the MV process integrates the spectral



10 P. Quesada-Barriuso, F. Argüello and D. B. Heras

and the spatial information that are available per pixel within each watershed region,
summing up the votes that identify the spectral class for each pixel [34].

From an implementation perspective, in order to combine the results, it is neces-
sary to identify with the same label all the pixels belonging to a region. This may
become a challenge when the algorithm is executed on a GPU, because each wa-
tershed region can be computed by independent blocks of threads. So, it could be
necessary to connect the labels identifying the watershed regions among different
blocks.

231.4 Spectral–Spatial Processing in GPU

In this section the GPU projection of the classification process described in Sec-
tion 231.3 is detailed. The hyperspectral image must be divided into regions that are
distributed among the thread blocks. The regions will be one, two or three dimen-
sional depending on the executed stage, enabling all the threads to perform useful
work, and therefore exploiting the thousands of threads available in the GPU.

For the RCMG and the CA–Watershed stages, each data region must be extended
with a border of size one because the processing of each pixel requires data of its
neighbors. As an example, Fig. 231.6 (a) shows an image divided into 4× 4 pixel
regions assigned to blocks of 4× 4 threads, and Fig. 231.6 (b) the extended region
for one of the blocks. Threads on the edge of the block must perform extra work
loading the data corresponding to the border. In practice, rectangular regions are
considered. Using a rectangular block, with the longest dimension being the one
along which data is stored in global memory, the data of the border is packed in
the minimum number of cache lines. This way the overhead associated to global
memory accesses is minimized [38].

Thanks to the pipeline processing, the number of computations and the required
bandwidth are reduced in the majority vote stage, because all the pixels in the same

Fig. 231.6 An image divided into 4× 4 pixel regions (a) and the extended region for one of the
blocks (b)
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watershed region are already identified by the same watershed label. So, there is no
need to create new data structures and copy them to the GPU memory.

Regarding the spectral processing, different implementations in GPU of SVM
are available in the literature [39–43]. Among those that provide the source code
performing training and classification, and producing a final classification map, the
selected library is the GPUSVM by Catanzaro et al. [39]. This implementation con-
siders the standard two-class soft-margin SVM classification problem. With the use
of the CUDA Basic Linear Algebra Subroutines (CUBLAS)1 to perform the classi-
fication, the library takes maximum profit from the latest CUDA releases.

231.4.1 Robust Color Morphological Gradient

The workflow of the RCMG algorithm, summarized in Fig. 231.7 is divided into
three steps. First, for all the pixel vectors, threads within a block cooperate to obtain
the distances of the set χ , for calculating Eq. 231.3, and computing the CMG. Sec-
ond, the pair of pixels Rs that are furthest apart, required for Eq. 231.4, are found and
the RCMG is calculated with the remaining distances in the third step. So, finally
a one-band gradient is obtained. In this work Rs = 1, i.e. only one pair of pixels is
removed.

The hyperspectral image can be partitioned in the spatial or the spectral domains.
From a processing point of view, two different algorithms have been implemented.
One based on spatial partitioning within a block, as shown in Fig. 231.8 (a) and de-
scribed in Section 231.4.1.1. Another based on spectral partitioning within a block,
described in Section 231.4.1.2 and shown in Fig. 231.8 (b). In both cases, the input
image is stored in global memory so that consecutive threads access consecutive
global memory locations. The intermediate results that are necessary in order to
calculate the distances are stored in shared memory.

231.4.1.1 Spatial Partitioning RCMG

In this implementation, each thread processes one spectral component, as shown
in Fig. 231.8 (a), and a group of threads cooperate in a reduction operation, where
the largest dimension of a thread block indexes the different spectral components.
For each region of the image, all the spectral components of each pixel vector are
consecutively stored in global memory. The kernel is configured to work in blocks

Fig. 231.7 RCMG algorithm work-flow

1 See CUBLAS at https://developer.nvidia.com/cublas
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Fig. 231.8 Kernel configuration for spatial (a) and spectral (b) partitioning

of x×y threads, corresponding to the X and Y dimensions of Fig. 231.8 (a). For each
block, all the threads load different components of each pixel vector simultaneously
and compute a partial result (xi)

2− (x j)
2 of Eq. 231.3. Then, the threads in the X

dimension cooperate in a reduction operation [45] for computing the CMG (step 1).
Half of the threads work in the reduction, and the number of active threads is halved
at each iteration as the reduction proceeds.

One thread in the X dimension finds the pair of pixels that generated the max-
imum distance (step 2) and computes the RCMG (step 3) with the remaining dis-
tances. Finally, the RCMG is written in global memory.

231.4.1.2 Spectral Partitioning RCMG

In the spectral partitioning RCMG, each thread processes all the spectral compo-
nents of a pixel, as shown in Fig. 231.8 (b). For each region, data are stored in
row-major order for each band. The kernel is configured to work in blocks of 32×4
threads corresponding to the X and Y dimensions in Fig. 231.8 (b). Threads within
a block process a region of each spectral band in a loop through all the bands (se-
quential processing). At each iteration, data corresponding to a new band are loaded
in shared memory, and the partial results (xi)

2− (x j)
2 of Eq. 231.3 are computed

and stored. At the end of the loop, all the distances for each pixel are available in
shared memory.

To compute the CMG (step 1 in Fig. 231.7), each thread finds the maximum of
the distances of its set χ and the corresponding pair of pixels which generated that
maximum. Having identified the two pixel vectors that are furthest apart (step 2),
each thread computes Eq. (231.4) with the remaining distances (step 3) and writes
the result back to global memory. This implementation is expected to use less shared
memory that the previous one owing to the sequential scanning in the spectral do-
main. So, more concurrent blocks per SM are also expected.
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231.4.2 Watershed Based on CA

The input data to the CA–Watershed algorithm is the 2D gradient image obtained
from the RCMG algorithm. The CA–Watershed can be asynchronously imple-
mented as it was mentioned in Section 231.3.2, which is up to four times faster
than the CUDA synchronous implementation [32]. In this section the asynchronous
algorithm is described, which has the advantage of reusing information within a
block, efficiently exploiting the shared and cache memories of the GPU.

The algorithm has two kernels implementing the initialization and updating
stages of the CA–Watershed. These kernels are configured to work in blocks of
32× 4 threads operating over 32× 4 pixel regions of the image. Data structures
have been compressed in order to reduce the storage requirements to 8 bytes per
pixel as in [32]. With the first kernel, the automaton is initialized. Once all the data
have been initialized, they are packed into 8 bytes per pixel before transferring them
to global memory.

The updating stage is a hybrid iterative process that includes intra-block updates
and inter-block updates. Each region is synchronously updated, i.e. all cells within
a region are updated at each time step, while the regions themselves are asyn-
chronously updated (an update of all the blocks is performed at each inter-block
step).

During the intra-block updating the values used from outside the block (a border
of size one) are kept constant and equal to their values at the beginning of the stage.
In the inter-block updating process, data are read at the block borders, which allows
the data propagation across the entire grid.

On each call to the CUDA kernel, an inter-block update takes place, where each
step is a set of intra-block updates. For each block, once data are loaded in shared
memory from an input buffer, the pixels are modified in registers according to their
state, and stored back to shared memory in an iterative intra-block process within
each region.

The intra-block updating ends when no new modifications are made with the
available data within the region. Then the data in shared memory are packed and
stored in global memory in an output buffer. This operation is repeated several times
in an iterative inter-block process. The algorithm ends when all regions have been
flooded and each pixel is labelled with a value indicating the region it belongs to.

The CA–Watershed implementation not only exploits efficiently the resources of
the GPU, as the shared memory, but also generates a segmentation map where the
pixels are connected. Figure 231.9 (a) shows an example of an image segmented
into three regions, represented as “A”, “B”, “C”. The grey lines in each region in-
dicate that after the segmentation process every pixel of each region has the same
label, that of the pixel from which the region was created. So, the pixels are con-
nected as shown in Fig. 231.9 (b) without the need of performing any component
labelling process [46]. Thus, the output of this algorithm can be used directly in the
final stage of the spectral–spatial classification scheme.



14 P. Quesada-Barriuso, F. Argüello and D. B. Heras

Fig. 231.9 An example of an image segmented into three regions, represented as “A”, “B”, “C”
(a), and the connected components created from the labels (b)

231.4.3 Majority Vote

The MV, when applied to this hyperspectral classification, processes the pixels
within each segmented region. In this implementation, a region can be assigned
to different thread blocks, therefore all the pixels belonging to the same region must
be connected, as shown in Fig. 231.9 (b).

By using the segmentation map, such as the one in Fig. 231.9 (a), the pixels of
each watershed region are already connected, so the MV can be projected in the
GPU following the steps: voting, winner and updating. The voting step counts the
number of SVM classes for each region. The winner step finds the class with the
maximum number of votes per region, and finally, the updating step assigns the
winner class to the pixels within the region. Each step is performed by a separate
kernel that is configured to work in one dimensional blocks of threads. In the first
and third kernel each thread operates on one pixel of the image, while in the sec-
ond kernel each pixel operates on the information collected for one region of the
segmentation map. So, for the second kernel less blocks need to be executed.

One majority vote per watershed region is performed. As the number of these
regions is unknown a priori, the first approach would be to allocate in global memory
data structures of a large enough size to compute as many regions as pixels in the
image. With the aim of saving memory resources, the number of regions generated
by the CA–Watershed algorithm are calculated prior to the voting step. Once the
number of regions is known, a two dimensional data structure is defined in global
memory being the number of watershed regions and the number of spectral classes
the dimensions of the structure.

For the voting kernel, each thread adds one vote to the corresponding class, using
the label as an index to reference its region. As two or more threads can vote in
the same region to the same class with no predictable order, the voting is done by
atomic operations. In the winner step, each thread finds the class with the maximum
number of votes (winning class) and saves its class identifier in global memory.
The last kernel updates the pixels of the classification map with the winning class,
producing a new spectral–spatial classification map.
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231.5 Results

The algorithms have been evaluated on a PC based in the Nehalem microarchitecture
with an Intel quad-core i7-860 microprocessor (8MB Cache, 2.80 GHz) and 8 GB
of Double Data Rate type three (DDR3) Synchronous DRAM. The code has been
compiled using gcc version 4.4.3 with OpenMP 3.0 support under Linux. For the
CUDA implementation we run the algorithms on a NVIDIA Kepler architecture
with the GK104 chipset (1536 CUDA cores and 2 GB of Graphics Double Data
Rate type five (GDDR5) Synchronous DRAM). The GPU is a GeForce GTX680
with 64 KB of on-chip memory that can be distributed among L1 cache and shared
memory and 8 SMs which can execute up to 16 concurrent blocks giving a total
maximum of 2048 threads per SM. The CUDA code has been compiled using nvcc
and the 4.2 toolkit, also under Linux.

The results are expressed in terms of execution times and speedups. For the SVM
spectral classification the speedups are calculated with respect to the LIBSVM [47]
that is a sequential library. For the remaining steps of the spectral–spatial classifi-
cation scheme of Fig. 231.2, the reference codes in CPU are optimized OpenMP
parallel implementations considering 4 threads because four cores are available in
the Intel Core i7. The tests were run on two hyperspectral airborne images that were
obtained from the Basque University (UPV/EHU)2: A 103-band ROSIS image from
the University of Pavia (Pavia) with a spatial dimension of 610×340 pixels, and a
204-band AVIRIS image of 512× 217 pixels taken over the Salinas Valley, Cali-
fornia (Salinas). Although both images are of approximately the same global size,
Pavia is larger in the spatial domain while Salinas is larger in the spectral domain.

The final results were compared to the available ground truth of each image.
these results are validated using the Overall Accuracy (OA), which is the percentage
of correctly classified pixels in the whole image, the Class Accuracy (CS), which
is the percentage of correctly classified pixels for a given class, and the Average
Accuracy (AA), which is the mean of the CS for all the classes [13]. Tables 231.1
and 231.2 shows the OA, AA, and CS percentages for the SVM and the spectral–
spatial classification scheme in CPU and GPU for the images of Pavia and Salinas.
RO stands for the ratio between the number of training samples and the number of
testing samples for each class. These results are similar to those published in [6–8]
when combining spectral and spatial information. Overall, the image of Pavia gives
the best results in terms of spectral–spatial classification with an OA improvement
of 4.85 points over the SVM. Similar results are obtained in CPU and GPU. The
image of Salinas has a very high OA score with the SVM classification and thus,
less room for improvement with the spectral–spatial scheme. The improvement for
this image is 0.92.

Figures 231.10 and 231.11 show from left to right the SVM classification map,
the RCMG results, the segmentation map represented as watershed lines, and the
majority vote for the University of Pavia and the Salinas Valley, respectively. The

2 Hyperspectral Remote Sensing Scenes available at http://www.ehu.es/ccwintco/
index.php/Hyperspectral_Remote_Sensing_Scenes
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Table 231.1 Classification accuracy as percentages for the SVM and the whole spectral–spatial
scheme in CPU and GPU for the hyperspectral image of Pavia in terms of OA, AA and CS

SVM SVM Spect–Spat. Spect–Spat.
CPU GPU CPU GPU

OA 89.77 89.78 94.55 94.63
AA 91.49 91.50 95.00 94.97
CS RO
Asphalt 0.083 84.80 84.83 94.74 94.59
Meadows 0.029 90.37 90.39 94.89 95.12
Gravel 0.187 78.75 78.85 86.37 85.66
Trees 0.171 96.57 96.57 93.93 93.90
Metal sheets 0.197 99.55 99.55 99.63 99.63
Bare Soil 0.106 88.51 88.53 92.86 93.30
Bitumen 0.282 95.04 95.04 96.69 96.84
Bricks 0.140 89.90 89.90 95.98 95.79
Shadows 0.244 99.89 99.89 99.89 99.89

number of watershed regions are 22,678 for the first image and 8,423 for latter
one. An over-segmented result is observed in Pavia, while the number of regions in
Salinas is smaller due to the larger plateaus present in that image

Table 231.2 Classification accuracy as percentages for the SVM and spectral–spatial scheme in
CPU and GPU for the hyperspectral image of Salinas in terms of OA, AA and CS

SVM SVM Spect–Spat. Spect–Spat.
CPU GPU CPU GPU

OA 93.55 93.45 94.43 94.37
AA 96.82 96.76 96.90 96.89
CS RO
Brocoli green weeds 1 0.100 99.75 99.75 99.75 99.80
Brocoli green weeds 2 0.100 99.79 99.76 100.00 100.00
Fallow 0.100 99.85 99.85 100.00 100.00
Fallow rough plow 0.100 99.71 99.71 99.78 99.78
Fallow smooth 0.100 98.77 98.77 99.14 99.14
Stubble 0.100 99.65 99.65 99.85 99.85
Celery 0.100 99.62 99.92 99.80 99.80
Grapes untrained 0.100 89.64 89.57 93.42 93.12
Soil vinyard develop 0.100 99.95 99.81 99.98 99.98
Corn senesced green weeds 0.100 98.05 97.53 98.78 98.72
Lettuce romaine 4wk 0.100 98.97 98.97 98.97 98.97
Lettuce romaine 5wk 0.100 99.79 99.79 99.58 99.79
Lettuce romaine 6wk 0.100 99.67 99.67 95.96 95.74
Lettuce romaine 7wk 0.100 95.51 95.42 94.77 94.77
Vinyard untrained 0.100 71.05 70.82 71.68 71.66
Vinyard vertical trellis 0.100 99.11 99.11 98.95 99.17
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Fig. 231.10 From left to right, the GPUSVM classification map, the RCMG, the CA–Watershed
lines imposed over a false color composition to assist in visualizing the segmentation map, and the
final classification by majority vote, of the hyperspectral image of Pavia

The performance results are summarized in Table 231.3 for Pavia and Table 231.4
for Salinas. The time to transfer the hyperspectral image from CPU to the GPU
global memory at the beginning is included in the spectral stage. The data transfer
time for copying the final results back to the CPU is 0.6 milliseconds for Pavia and
0.3 milliseconds for Salinas, resulting in less than 0,003% of the total time. The
total times indicate that, even with the high speedups obtained, the times required in
GPU are around 17 seconds for Pavia and 59 seconds for Salinas. These values are
far from real-time, mainly due to the cost of the spectral classification, that accounts
for the 81.2% of this GPU time. So the real-time objective can only be achieved
if a less costly spectral technique is applied. Overall, the best results for the whole
classification scheme are obtained for Pavia with a speedup of 5.9x. In the next
sections we will explain in detail the results for each stage.

231.5.1 SVM Spectral Classification

The standard two-class SVM spectral classification has two phases: training and
classification. The training phase builds a model which is used to predict if new

Table 231.3 Performance results for the University of Pavia hyperspectral image (execution times
in seconds)

SVM SVM Spect. Part. Async. CA Majority Total
Training Classification RCMG Watershed Vote

CPU 0.5760s 101.4484s 0.1517s 0.0186s 0.0022s 102.1969
GPU 3.2466s 14.0497s 0.0085s 0.0010s 0.0003s 17.3067
Speedup 0.2x 7.2x 17.8x 18.6x 7.3x 5.9x
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Fig. 231.11 From left to right, the GPUSVM classification map, the RCMG, the CA–Watershed
lines and the final classification by majority vote, of the hyperspectral image of Salinas.

samples belong to one category or another in the second phase of classification,
which is the most time consuming one as it can be observed in Tables 231.3 and
231.4. The percentage of time corresponding to classification is the same for both
images, 81,2% of the time in GPU required for the whole classification process.

When more than two classes are present the classification must be multiclass
and different strategies can be applied in order to solve it. Hsu [44] found that the
One-Against-One (OAO) method is more suitable for practical use than the One-
Against-All (OAA), mainly because the total training time is shorter. In this work
GPUSVM with the OAO method is used to classify the hyperspectral images. The
kernel function for the SVM is a Gaussian Radial Basis Function (RBF) [26]. The
number of classes considered for the classification was taken from the ground truth,
with nine classes for the first image and sixteen for the second one.

First, the SVM was trained with the same values of C, γ , and number of training
samples for the Pavia image as in [8]: C = 128,γ = 0.125 and 3192 samples. In
the case of the Salinas image, the values C = 256 and γ = 0.125 were determined
by 5–fold cross validation, and the number of training samples for each class was
selected as 10% of the total samples for the class.

Table 231.4 Performance results for the Salinas Valley hyperspectral image (execution times in
seconds)

SVM SVM Spect. Part. Async. CA Majority Total
Training Classification RCMG Watershed Vote

CPU 1.5559s 112.2305s 0.1959s 0.0963s 0.0023s 114.0809s
GPU 11.0552s 47.7323s 0.0092s 0.0035s 0.0001s 58.8006s
Speedup 0.1x 2.3x 21.3x 27.5x 23.0x 1.9x
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As shown in Tables 231.3 and 231.4, the speedup results are worse for the GPU
in the training phase. The SVM requires a small number of training samples in this
phase [3] and, therefore, the GPU performance is low because the number of sam-
ples is not enough to exploit the big number of threads that can be simultaneously
available in the GPU, up to 2048 threads per SM in the GTX680. This is not a
problem, as the training phase only needs to be performed once for each type of
hyperspectral image and it is responsible for only 18.8% of the total time.

The second phase in the spectral classification, which consumes 81.2% of the
time for the Pavia and Salinas images, obtained speedups of 7.2x and 2.3x respec-
tively. The tests are carried out as in [39], excluding the file I/O time for both, the
LIBSVM and GPUSVM, but including CPU–GPU data transfer in the GPU imple-
mentation times.

231.5.2 Robust Color Morphological Gradient

The RCMG is the vectorial gradient, described in Section 231.3.1, that is applied
to the hyperspectral image in order to reduce it to one-band. The approaches de-
scribed in Section. 231.4.1, called spatial partitioning RCMG and spectral partition-
ing RCMG have been developed. Different block configurations were tested and
finally the spectral partitioning RCMG implementation was configured with blocks
of 32× 4 threads. For the spatial partitioning RCMG, 128× 4 threads per block
for the Pavia image and 256×2 threads per block for the Salinas image were con-
sidered. Each block in the spatial partitioning RCMG processes a region of 4× 4
pixel vectors for the first image and a region of 2× 2 pixel vectors for the sec-
ond one. Table 231.5 shows a summary of performance for the images. The best
results are for the spectral partitioning RCMG with speedups of 17.8x and 21.3x.
The shared memory requirements for the spectral partitioning RCMG are 5.7 KB
per block, while the spatial partitioning RCMG requires up to 20.6 KB, depending
on the block size. Thus, more blocks per SM are concurrently executed in the first
approach which leads to a better speedup as shown in Table 231.5.

Table 231.5 Performance results for the spatial and spectral partitioning RCMG with the Pavia
and the Salinas hyperspectral images.

Spatial partitioning Spectral partitioning
Pavia Salinas Pavia Salinas

CPU (OpenMP) 0.1517s 0.1959s 0.1517s 0.1959s

GPU (CUDA) 0.0537s 0.0638s 0.0085s 0.0092s

Speedup 2.8x 3.1x 17.8x 21.3x
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231.5.3 Asynchronous CA–Watershed

As explained in Section 231.4.2, the asynchronous CA–Watershed takes as input
the 2D gradient image obtained from the RCMG calculation. This implementation
presents the advantage of reusing information within each thread block, efficiently
exploiting the shared and cache memories of the GPU. In addition, it achieves better
results when the image has large plateaus because in this situation the labels must
be propagated through large regions. In the asynchronous implementation the labels
are propagated faster within a block, unlike the synchronous implementation which
performs more steps to propagate them within a plateau. Thus, less inter-block syn-
chronizations are needed [32].

The kernels were configured to work with blocks of 32×4 threads and the shared
memory was maximized to 48 KB, because only 21.4 KB are required for the 16
blocks that are simultaneously active per SM.

This proposal achieves speedups of 18.6x and 27.5x, that can be observed in Ta-
bles 231.3 and 231.4. The speedup is better for the Salinas image, as a consequence
of presenting larger plateaus.

231.5.4 Majority Vote

The Majority Vote was projected on the GPU taking advantage of the pipeline pro-
cessing explained in Section 231.4, and reducing the requirements of global mem-
ory, which also means less data transfer. The times shown in Tables 231.3 and 231.4
include, as it was described in Section 231.4.3, the step for counting the watershed
regions, as well as the global memory allocation time.

The MV obtained speedups of 7.3x and 23.0x for the images of Pavia and Sali-
nas. The difference in the speedups are related mainly to the number of regions
because the number of blocks executed in the winner step is directly related to the
number of watershed regions in the image. The segmentation map of Pavia has
22,678 regions which is approximately three times more than Salinas, which has
8,423 regions, that is approximately the speedup factor observed in the performance
tables.

The kernels were configured to work in one dimensional blocks. Different block
sizes have been tested and it was found that the best performance is achieved for
blocks of 128 threads. With this configuration each SM is fully exploited with 16
blocks simultaneously active.

231.6 Conclusions

In this work a GPU projection scheme for a spectral–spatial classification of hyper-
spectral images was presented. The scheme efficiently exploits the memory hierar-
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chy and the thousands of threads available in the GPU architecture. The different
stages of the scheme have been concatenated with a pipeline processing that mini-
mizes the data transfers between the CPU and the GPU and maximizes the compu-
tational throughput. Different hyperspectral data partitioning strategies and thread
block arrangements were studied in order to have a larger number of blocks being
concurrently executed. The spectral classification stage was carried out with SVM
using the GPUSVM, a third party library. The spatial processing stages consists in
the calculation of a RCMG, that reduces the dimensionality of the hyperspectral
image to a two dimensional image, followed by the asynchronous calculation of a
watershed transform based on cellular automata. The spectral and the spatial results
are combined by a MV technique commonly used in classification of hyperspectral
images.

The projection of the classification process in the GPU requires working with
data blocks of different dimensionality depending on the stage of the process: 3D
for RCMG, 2D for watershed and 1D for MV. For the RCMG, two different approx-
imations of data distribution among blocks were studied: spectral and spatial parti-
tioning. The spectral partitioning takes better advantage of the memory hierarchy of
the GPU maximizing the number of active blocks per SM. For the watershed trans-
form an asynchronous strategy based on a cellular automaton was proposed. This
asynchronous approach has the advantage that it can efficiently exploit the shared
memory of the GPU being up to four times faster than a synchronous implemen-
tation. Finally, the MV was designed to save global memory space and to directly
operate on the output of the other two stages using pipeline processing. This way,
there is no need to move new data structures to the GPU.

The speedup values for the whole classification process were 5.9x for Pavia and
1.9x for Salinas showing the efficiency of the GPU projections while maintaining
the same classification quality as when it is computed on CPU. The best perfor-
mance values for the RCMG, 17.8x and 21.3x, were obtained for the spectral parti-
tioning approach, with the images of Pavia and Salinas, respectively. The asynchro-
nous CA–Watershed reached speedups of 18.6x and 27.5x, and the MV speedups
of 7.3x and 23.0x, respectively. These results show that the GPU is an adequate
computing platform for on-board processing of hyperspectral information.

As the most costly part of the spectral–spatial classification process, and there-
fore the critical part in terms of real-time execution, was the classification stage
by SVM, other spectral classification algorithms more adequate for their efficient
projection on GPU should be investigated.
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[22] Bernabé, S., Plaza, A., Reddy Marpu, P. and Benediktsson, J.A.: A new par-
allel tool for classification of remotely sensed imagery, Computers & Geo-
sciences, 46, pp. 208–218 (2012)

[23] Christophe, E. and Inglada, J., Open source remote sensing: Increasing the
usability of cutting-edge algorithms, IEEE Geosci. Remote Sens. Newsletter,
pp. 9–15 (2009)

[24] Gege, P., Beran, D., Mooshuber, W., Schulz, J. and Van Der Piepen, H.:
System analysis and performance of the new version of the imaging spec-
trometer rosis, in Proceedings of the First EARSeL Workshop on Imaging
Spectroscopy. University of Zurich Remote Sensing Laboratories, pp. 29–35
(1998)

[25] Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M.,
Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, M. S.,
Olah, M. R. and Williams, O.: Imaging spectroscopy and the Airborne Visi-



24 P. Quesada-Barriuso, F. Argüello and D. B. Heras
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