
A mixed-signal spatio-temporal signal classifier for
on-sensor spike sorting.

Abstract—In this paper, we combine recent progress in neuro-
morphic computation and neuromorphic mixed-signal hardware
to present the first step towards an implementation of a neu-
romorphic spike sorting algorithm, that has been proven able
to extract and decode spikes, in real time. This implementation
is based on TSMC 180nm technology. Combined with a neu-
ral recording system, we anticipate this approach to leverage
efficient neuromorphic brain-machine interfaces for embedded
rehabilitation prosthetic control

I. INTRODUCTION

Real time neural activity decoding is essential for brain-
machine interfaces (e.g. for prosthetics), and to enable closed-
loop experiments in neuroscience. Prior work [1] has shown
that neural activity in the human brain can be decoded in
real-time from Multi Electrode Array (MEA), after a daily
recalibration of the system. These systems require a wired
connection, as it is a challenge for a wireless system to
deal with the amount of recorded data while keeping heat
dissipation to a required minimum. Spike sorting is a funda-
mental pre-processing task, providing discrimination between
signals generated by different neurons, but recorded by the
same electrode (or, as in this work, by a set of adjacent
electrodes). This is achieved through the classification of the
shapes of the recorded neural activation pulses (spikes). If
done near sensor, this has the potential to improve system
latency, and significantly reduce data rates, enabling wireless
systems. Several hardware approaches to spike sorting have
been presented [2] [3] [4].

Conventional signal processing systems use Nyquist-rate
sampled and quantised signals. Introducing a different data
representation can lead to significant gains in performance and
power efficiency. It has been shown that an event-based ap-
proach can offer advantages in spatio-temporal pattern recog-
nition tasks [5] [6] [7] [8] [9]. The availability of neuromorphic
sensors such as silicon retinas [10] [11] and silicon cochleas
[12] [13] will lead to further development of algorithms
handling these event-based signal representations. Instead of
the classic scheme of periodic sampling, these neuromorphic
sensors only transmit data whenever there is a significant
change in the signal, leading to a sparse representation and
providing high temporal precision at low data bandwidth. An
event-based neural recording platform has been recently intro-
duced [14], and will be used in this work as a source of neural
recording data. In this work, we present a 180nm CMOS
implementation of a spike sorting algorithm presented in [15].
Our ultimate goal is to integrate the presented circuitry into the
recording electrode array. Section II details the topology and

behavior of the proposed system, Section III provides circuit
descriptions, and Section IV shows simulations results that are
compared to the expected behavior of the original algorithm.

II. CONCEPT

A. Towards an event-based representation

Unlike its synchronous counterpart, the event-based ap-
proach, similar to Lebesgue sampling [16], asynchronously
transmits events for a pre-set change in the signal level (Figure
1). For a signal coming from a Multi-Electrode Array, we can
define an event ev as a tuple of a time of appearance t, a
spatial position in the array (x, y) and a polarity p, indicating
the direction of the change. p = 1 (ON event) indicates that
the signal increased, as p = 0 (OFF event) indicates that the
signal decreased:

evi = (ti, xi, yi, pi) (1)

where i stands for the i-th event.
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Fig. 1: Event generation. Each time the signal change, since
the time of the last event (arrow), reaches a certain level, a new
event is generated. The direction of this change, or polarity,
is represented in the orientation of the arrow (up/down). For
comparison, the grey dashed lines represent the standard,
synchronous samples, uniformly distributed in time.

B. Original algorithm

Using the precise timing of the event-based representation of
the input signal, we can introduce the spatio-temporal context
Si of the i-th event evi, representing the past activity on a
given surrounding, centered around the incoming event. This



context is based on the work presented in [8] and [7], and
build by sampling event traces generated through exponential
decays:

Siu,v = exp

(
− ti − tu,v

τ

)
for

{
u ∈ [[xi − r ; xi + r]]

v ∈ [[yi − r ; yi + r]]
(2)

where tu,v is the timestamp of the last event at the given
(u, v) position, r the surrounding size (here, r = 1), and τ the
time constant of the event trace decaying unit.

Then, this spatio-temporal context is compared to learned
templates, in order to find the closest one. Then, a classifi-
cation unit can be used, in order to assign the corresponding
class to the input spiking pattern.
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Fig. 2: Functionality of the proposed chip. (a) The hexag-
onal array records signals from neurons, generating events
on multiple channels [14]. Each time an event is triggered,
an event trace is generated. When the central event occurs
(light gray electrode), the value of the traces on neighbouring
channels is memorized (b), forming a spatio-temporal context.
For the sake of understanding, only ON events are represented
here. This context is then compared to 4 stored templates (c).
The currents resulting from these comparisons are passed to a
Winner-Takes-All block, in order to determine which template
is the closest to the current context.

C. Constraints
The array chip (32×32 electrodes) is 3.4×2.8mm. All the

circuitry for a single electrode needs to fit within 96× 79µm

[14]. The power consumption should be as low as possible
(the recording array consumes 145µW [14]), not only to
allow for efficient wireless systems but also to keep tissue
damage caused by heat dissipation to a minimum. Given the
characteristics of biological signals, the decay time constant
for the event trace should be tunable from a few µs up to ms.

III. CIRCUIT DESCRIPTION

Our chip needs three main computational blocks: an ex-
ponential decay unit to form the event traces composing the
spatio-temporal contexts; a comparison unit to compute a
distance between the presented context and learned templates;
a unit that selects the template that provides the closest match.
The circuits implementing these blocks are presented in this
section, followed by the overall architecture of our chip.

A. Exponential decay unit for the event trace

The time constant of the decaying unit has to range from
µs to ms. A straightforward implementation of an resistor-
capacitor (RC) circuit can implement exponential voltage
decay, but to provide a tuneable time constant and a small
circuit area, we implement this with a switched capacitor
circuit, controlled by an external clock source. Figure 3a
shows the basic circuit. Making the two switches (P1 and
P2) for this switched capacitance large enough, the intrinsic
drain/source capacitances are sufficiently large to avoid the
need of an external capacitance (Cds in Figure 3a). The non-
linearity is not a problem, as it simply modifies the overall
distance function of the comparison unit (see Section IV-B).
The incoming spike Vspk resets the capacitance C to V1 (via
N1), ensuring a quick discharge (∼ 40ns), that is negligible
given the considered time range. Then, the capacitance charges
towards V2, and the voltage Vtrace is fed to the next module,
for comparison to the template value. Here, the capacitance C
has a size of 10 × 10µm, for a value of 200fF , while Cds
is approximately 24x smaller. Variations of the control clock
lead to change in the time constant as shown in Table I.

Frequency τ
5 kHz 4.3 ms

500 kHz 76 µs
f 24/f

TABLE I: Exponential decay time constant τ for the event
trace, versus clock frequency, for the switched-capacitor cir-
cuitry. Extracted from post layout simulations.

B. Comparison Unit

When the central event occurs, the comparison of each
event trace value to an external template value is triggered.
The difference between the template value Va and the voltage
Vtrace is obtained by a bump-antibump circuit [17], shown in
Figure 4, outputting the bump-current Ibump defined as:

Ibump =
Ib

1 + 4
S cosh2 κ∆V

2

(3)

where Ib is the bias current controlled by the Vb, S is the
ratio between transistor sizes of (N4, N7) and (N5, N6), κ the



transconductance of the transistors and ∆V = Va−Vtrace the
voltage difference.
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Fig. 3: Basic cells schematics: (a) Event trace circuitry; (b)
Comparison circuitry [17]; (c) Basic WTA circuit [18], two
inputs are shown. See text for details.

C. Template matching

The currents representing the differences between event
traces and template values obtained as described above, are
summed over the entire template in a trivial manner, simply
adding currents. This provides the overall template match
current for each of the templates. A set of 4 templates is
considered sufficient to achieve desired recognition rates in
our application (according to [15]). For each neighboring pixel
(6 in the hexagonal case), we then need 4 comparison units,
giving 32 comparison units in total. Each one of these units
needs an analog reference value, which in the current design
is provided externally.

D. Winner take all

The summed currents of comparison circuits represent dis-
tances between the current spatio-temporal context and the
templates. The selection of the best matching template is done
by a Winner-Take-All (WTA) circuit. The inputs currents will
compete for activation, where only the largest one will be
chosen as a winner. A simple yet efficient implementation of
a current-mode WTA circuit was brought forward by Lazzaro
et al. [18], using only two transistors per input channel. This
design was chosen to minimize the delay of deciding for the
closest matching current, as well as space efficacy. However

this also makes the circuit more susceptible to mismatch. As
can be seen in Figure 3c, all 4 input cells are connected to a
global node that provides a bias current (N8). This bias current
is controlled by an externally provided voltage Vbias.

The output of the comparison units for the 4 templates
(I1 to I4) are fed into the WTA circuitry, in order to select
the one with the highest current. The WTA will set the
corresponding output Iout1 to Iout4 to ≈ Ibias, all other
outputs will be suppressed (unless the multiple inputs are
very closely matched). The output currents are binarised, to
provide an indicator of the winning template (in a multi-
layer version of the classifier, this would generate an event on
the template channel). We also include a circuit to compare
the winning current magnitude with a threshold current, to
provide a confidence bit indicating if the winner is valid (i.e.
sufficiently closely matched to a template, as opposed to a best
match out of four very poor matches).

E. Implementation

All the above described blocks are assembled in our core,
as shown in Figure 6. The aim of this first prototype being
to validate the principle and quantify the effects of noise and
variability, we replicate the core block many times, multiplex-
ing different intermediate signals to the bonding pads, in order
to be able to carry out comprehensive measurements.

The core comprises 64 blocks with digital outputs (4 binary
WTA output + 1 valid bit, 64 blocks with an analog output
(current output of the distance to each template), 64 blocks
with access to the decaying unit voltage, and 1 full digital
block. All the blocks, excepted the last one, are multiplexed
to the pads, via three different 64:1 multiplexers.

The system uses 4 templates, of 6 values each. Each one
of these is an analog reference value. For now, to limit the
chip’s complexity (at the cost or an increased number of pads),
these 32 analog values are fed from an external source. In
the final implementation we will use SRAM memory and
32 DACs on-chip such as the one presented in [19]. An
alternative that we are exploring in this project, is to use non-
volatile analog memory devices (memristors) integrated with
the CMOS process. Memristors could be then also used to
provide programmable decay in a modified event trace unit
circuit.

IV. SIMULATIONS

A. Benchmark for performance evaluation

In order to quantify the performances of our implementa-
tion, we used artificially generated Multi-Electro-Array (MEA)
recordings [20]. This generated signals where filtered accord-
ingly to the amplification stages of the recording unit [14] and
then converted to events, as shown in Figure 5.

B. Event trace and distance

Figure 4 presents the simulation of the realized event trace,
with its associated template value, and the the output of the
distance circuit. The exponential time constant is here set to
τ = 1 ms, and the template value is 1.1 V, which corresponds



to a peak response at around 1.2 ms. The implemented distance
function is much sharper than traditional L1 and L2 norms
used in the original algorithm [15], but is proven to perform
well in our target application (see next section).
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Fig. 4: Circuit simulation results: (top) event trace generated
by the decay unit; (bottom) distance between the trace and
the fixed template value. Blue line is the simulated distance,
the blue shadowed area shows the impact of the fabrication
mismatch (Monte Carlo simulation, for the bump circuit only)
on the obtained distance. Dashed blue is the analytic curve
that follows equation (3) and matches well the simulation
(maximal error of 0.2nA; less than 1% to the average value).
Distances calculated using L1 and L2 norms is shown in red
for comparison.
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Fig. 5: a) Simulated recordings [20] for the probe topology.
Here, an hexagonal probe is used. We only show 7 electrodes,
in the same configuration as for our chip [21] [22]. Ground
truth is available for classification performance estimation. b)
and c) 2 different spike shapes extracted from the dataset.

C. Classification rate

The dataset was split in 2 sets ; one training set, containing
1370 spikes and a testing set, containing 930 spikes. Training
and testing is done using the distance behavior as extracted
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Fig. 6: Layout of the hereby described chip. The core is
composed of 3×64 basic blocks (6 decaying units, 4 template
matching and a WTA. The outputs are multiplexed to spare
output pads. The core occupies a space of 640×940µm, each
individual block being 14.5× 210µm).

from post-layout simulations, including variability. Classifica-
tion scores are given in Table II. We can expect this chip to
behave almost as well as the method introduced in the original
paper, with a computational time highly reduced, specifically
for hierarchical structures, where the algorithmic complexity
explodes, due to the increasing number of templates [8], oppo-
site as in our chip where the computation time grows lineary
with the number of layers. Our simulations achieve a score
of 75/88% on a 1/2-layers architecture, with a computation
time of 80/160ns, which is the propagation time in the digital
circuitry and that has not been optimized. Regardless the
complexity of a hierarchical structure, the propagation time
evolve in O(n). Computation time for the original algorithm
was around 5µs for a single layer architecture,using Python
code running on a Core i7-8700K @ 3.7 GHz computer.

Distance Recognition rate
1 layer 2 layers

L1 60% 68%
L2 73% 82%

Bhattacharyya [23] 78% 89%
This work 75% 88%

TABLE II: Recognition rate for different distance metrics, and
our implemented model. We can notice that the bump distance
performs almost as good as the Bhattacharyya [23], which is
significantly more complex to implement on a chip.

V. CONCLUSION

The presented system is a first step towards a full neuro-
morphic signal processing pipeline for neural decoding appli-
cations. It implements the essential primitive computational
blocks that will be embedded below each pixel of our record-
ing array. Due to their event output, these computational blocks
can be chained to form a hierarchical processing pipeline in
more complex processing scenarios than considered in this
paper. All the results were obtained via simulations (including
post-layout and Monte Carlo), further work will be to fully
characterize the fabricated chip, specifically to quantify the
parameter variations due to fabrication mismatch and analyze
the impact of those on the classification result. Our aim is
to design a fully functional integrated Micro-Electrode Array



system, with on-chip spike sorting. We are also working on
embedding memristive memories for parameter configuration.
We anticipate this work to ultimately enable low-power em-
beddable brain-machine interfaces.
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