
Engineering Applications of Artificial Intelligence (2020) 1–16

Journal
Logo

STDnet: Exploiting high resolution feature maps for small object detection

Brais Bosquet∗, Manuel Mucientes, Vı́ctor M. Brea

Centro Singular de Investigación en Tecnolox́ıas Intelixentes (CiTIUS)

Universidade de Santiago de Compostela, Santiago de Compostela, Spain

Abstract

The accuracy of small object detection with convolutional neural networks (ConvNets) lags behind that of larger objects. This
can be observed in popular contests like MS COCO. This is in part caused by the lack of specific architectures and datasets with a
sufficiently large number of small objects. Our work aims at these two issues. First, this paper introduces STDnet, a convolutional
neural network focused on the detection of small objects that we defined as those under 16 × 16 pixels. The high performance of
STDnet is built on a novel early visual attention mechanism, called Region Context Network (RCN), to choose the most promising
regions, while discarding the rest of the input image. Processing only specific areas allows STDnet to keep high resolution feature
maps in deeper layers providing low memory overhead and higher frame rates. High resolution feature maps were proved to be key
to increasing localization accuracy in such small objects. Second, we also present USC-GRAD-STDdb, a video dataset with more
than 56,000 annotated small objects in challenging scenarios. Experimental results over USC-GRAD-STDdb show that STDnet
improves the AP@.5 of the best state-of-the-art object detectors for small target detection from 50.8% to 57.4%. Performance has
also been tested in MS COCO for objects under 16 × 16 pixels. In addition, a spatio-temporal baseline network, STDnet-bST, has
been proposed to make use of the information of successive frames, increasing the AP@.5 of STDnet in 2.3%. Finally, optimizations
have been carried out to be fit on embedded devices such as Jetson TX2.

Keywords: small object detection, convolution neural networks (ConvNets), deep learning

1. Introduction

In the last years, solutions to visual object detection
have experienced a fast evolution. This evolution goes
from primary approaches based on machine learning (Pa-
pageorgiou and Poggio, 2000; Felzenszwalb et al., 2010;
Viola and Jones, 2001) to deep learning techniques (Ren
et al., 2015; Liu et al., 2016; He et al., 2016; Redmon and
Farhadi, 2017), boosted by publicly available datasets with
millions of annotated images (Russakovsky et al., 2015; Lin
et al., 2014; Everingham et al., 2010).

Generic image and/or video datasets have become valu-
able benchmarks to assess the quality and advance of ob-
ject detectors. Nevertheless, datasets for more specific sce-
narios or applications are also a need. This situation might
lead to new state-of-the-art object detectors, sometimes

∗Corresponding author at: Centro Singular de Investigación
en Tecnolox́ıas Intelixentes (CiTIUS), Universidade de Santiago de
Compostela, 15782 Santiago de Compostela, Spain.

Email addresses: brais.bosquet@usc.es (Brais Bosquet),
manuel.mucientes@usc.es (Manuel Mucientes),
victor.brea@usc.es (Vı́ctor M. Brea)

cutting across different topics. As an example, a timely
trend is to apply ideas from the visual object tracking field
(Fernández-Sanjurjo et al., 2019; Pang et al., 2017) to ex-
ploit temporal features in video through spatio-temporal
networks (Carreira and Zisserman, 2017; Peng and Schmid,
2016).

In this line, applications like sense and avoid on board
of unmanned aerial vehicles (UAVs) or video surveillance
over wide areas demand early detections of objects to act
quickly. This means to detect as far —and therefore small—
an object as possible. Recent convolutional neural net-
works (ConvNets) object detectors, like the work in Lin
et al. (2017a), provide high accuracy over a wide range of
scales, from less than 32× 32 pixels up to the image size.
Qualitatively, we refer to small as those objects without
definitive visual cues to assign them to a category. Quan-
titatively, small refers to sizes under 16×16 pixels. Figure
1a shows examples of this kind of objects where it can be
seen that had it not been by the context around the fore-
ground object, it would not be possible for a person to
sort them out in a given category. Despite the existence
of solutions focused on small objects, the most remarkable

1

*Manuscript

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 2

(a) Small objects as defined in this paper, i.e., under 16 × 16 pixels. (b) Smallest objects available in public datasets.

Figure 1: Examples of 48 × 48 image patches from different databases with small objects.

ones have been validated in face detection datasets (Zeng
et al., 2018; Zhang et al., 2017; Bai et al., 2018; Hu and
Ramanan, 2017), but none of them have been tested in
generic datasets such as MS COCO small objects subset
(<32×32 area) (Lin et al., 2014).

When it refers to the scope of small targets, as those
below 16 × 16 pixels as defined in this paper, the avail-
able set of datasets presents several drawbacks as shown
in Figure 1b. The top row shows small objects extracted
from the FlickrLogos dataset presented in Kalantidis et al.
(2011). As apparent, this is a very specific image dataset.
Also, their size exceeds that of 16 × 16 pixels, and it is pos-
sible to assign them to a given category. The middle row
displays small objects from the image dataset introduced
in Yang et al. (2016c). Again, this dataset is very specific
and the small objects like faces are actually part of a whole
person —which although in the case of faces are of inter-
est by themselves, this is not the general case. Finally, the
last row shows samples from a video dataset addressed in
Rozantsev et al. (2017). These are monochrome and low
quality videos, which, although relevant, are not the trend
with the advent of ever better quality color image sensors.
Another dataset with very specific small objects is Kestur
et al. (2019).

As Liu et al. (2018) point out, detecting very small
objects stands out as one of the key challenges in object
detection. The main obstacle presented by state-of-the-
art ConvNets is found at the region proposal level, which
is inefficient when proposing valid regions for such small
objects. This is given by the fact that the proposal gen-
eration of regions is applied on a very low resolution fea-
ture map, where the characteristics of small objects get
too small to be detectable. One straightforward solution
could be to modify a state-of-the-art ConvNet, disabling
some backbone’s downsampling to keep larger feature map
resolutions. This, however, leads to large memory require-
ments, easily beyond the capacity of current high perfor-
mance GPUs, and possibly to slower solutions. Another
approach is to apply a region proposal generator directly
in early stages of the network. However, this leads to the

problem that the semantic information does not suffice to
locate and classify the small objects appropriately.

This paper introduces STDnet, a novel ConvNet ar-
chitecture for small object detection, along with a pub-
lic video dataset with small targets in real-life scenarios,
overcoming the drawbacks of current datasets aforemen-
tioned above. STDnet takes advantage of the following
hypothesis: being such small objects almost visually un-
recognizable, they have simple characteristics that can be
learned by the neural network at early stages, where the
semantic information is low but enough to select zones of
interest containing small objects. To implement this hy-
pothesis, an early high resolution feature map feeds a novel
promising regions extractor called Region Context Net-
work (RCN), which does not have to delimit the objects
perfectly, but larger regions —promising areas— which
contain them. This set of disordered regions is encapsu-
lated in a unique and reduced feature map by RoI Col-
lection Layer (RCL). Thanks to these two techniques, the
algorithm is able to remove overhead by not processing a
large part of the image from that point onwards, allow-
ing to work with high resolution feature maps. Finally,
a common region proposal method takes the feature map
of disordered regions as input to obtain the final bound-
ing boxes. The STDnet approach allows to consume less
memory than its counterparts for higher resolution of the
last feature map.

The main contributions of our proposal are:

1. STDnet, a new ConvNet for small object detection
able to work with high resolution feature maps in
deepest layers. STDnet relies on two novel compo-
nents, RCN and RCL, which work together to select
the most promising areas of the image, generating
a new single filtered feature map with them. There-
fore, the filtered feature maps can keep a high resolu-
tion but with a lower memory overhead and a higher
frame rate.

2. As STDnet has a final region proposal method that
works with anchor boxes, we propose to automati-
cally select the number and sizes of these anchors

2

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 3

through a novel algorithm based on k-means. Our
proposal differs from Redmon and Farhadi (2017) in
that our algorithm selects not only the sizes of the
anchors, but also their number, making the anchors
selection fully automatic.

3. A new video database, USC-GRAD-STDdb, for small
object detection to cover the indicated dataset gap.
USC-GRAD-STDdb presents more than 56,000 an-
notated objects of sizes between 4 × 4 and 16 ×
16 (e.g., Figure 2). USC-GRAD-STDdb comprises
115 video segments (>25,000 frames) over the three
principal landscapes: air, sea and land.

4. A spatio-temporal evolution/version of STDnet, called
STDnet-bST, to exploit video information of USC-
GRAD-STDdb.

5. To bring STDnet closer to real on-board systems we
have mapped both STDnet and STDnet-bST onto
the embedded GPU Jetson TX2 through a series of
computational optimizations.

2. Related Work

Modern object detectors are based on ConvNets (Huang
et al., 2017b; Gu et al., 2018). One-shot and two-stage
solutions are the two main configurations of ConvNets
adopted today. The former has two principal baselines,
namely, SSD (Liu et al., 2016) and YOLO (Redmon and
Farhadi, 2017), which feature an excellent performance in
computational cost and accuracy trade-off. As a draw-
back, both of them are outperformed by the two-stage ap-
proach when it refers to small objects (Liu et al., 2018;
Huang et al., 2017b). There are three main reasons for
this: (1) the generation of the bounding boxes takes place
in deep layers with low spatial resolution, which misses
the opportunity of locating small objects —e.g., SSD and
YOLO apply a downsampling of 8× and 32×, respectively,
to the original image to locate the smallest objects; (2)
the use of a fixed sampling grid that works worse when
objects are too close to each other or are too small and
(3) the lower accuracy, at all scales, mostly produced by
the great class imbalance between foreground objects and
background proposals as these detectors evaluate ≈ 104

candidate regions per image (Lin et al., 2017b). It is worth
noting that the last drawback can be partially addressed
by solutions such as hard negative mining (Liu et al., 2016)
or max-out background label (Zhang et al., 2017), and that
RetinaNet (Lin et al., 2017b) outperforms these solutions
with a novel cost function. All the above and our own ex-
periments have made our research focus on the two-stage
solution.

The two-stage approach was popularized by R-CNN
(Girshick et al., 2014). Its extension Faster-R-CNN (Ren
et al., 2015) has become a milestone with the introduction
of the Region Proposal Network (RPN). This approach,
also known as region based object detectors, uses the RPN
to generate a set of candidate object locations based on

anchor boxes, which are predefined regions of different
sizes and aspect ratios to cope with multiple scales. At
a second stage, the backbone’s upper layers are applied to
classify the candidate locations into object of interest or
background, besides refining the bounding box.

Sharing the same problem as one-shot detectors, the
off-the-shelf Faster-R-CNN is not adequate for small ob-
ject detection due to the fact that the global effective stride
(GES) —downscaling of the input image with respect to
the feature map that is the input to the region proposal
method— is 16, which means that a 16×16 object is repre-
sented by just one pixel in that feature map. In addition,
the anchor boxes are predefined manually and they were
not conceived to handle such small objects. To tackle small
objects, a finer GES is required. This leads to a very large
memory overhead, making the implementation impossible
for current GPUs1.

In Dai et al. (2016), authors propose an additional
functionality to Faster-RCNN called Region-based Fully
Convolutional Network (R-FCN). R-FCN exploits the dif-
ferent parts of a given object using position-sensitive maps.
R-FCN generates k×k×(C+1) feature maps —k×k object
parts for C object categories plus background— instead of
only one in the second stage detection. Additionally, R-
FCN is fully convolutional, so it avoids the fully connected
layers overhead. Still, this interesting improvement does
not fix the GES problem and cannot be used to detect
small objects, as their objects parts are very small, and as
such indistinguishable in the input images.

The capability of dealing with objects of different sizes,
and specially small ones, in Faster-R-CNN and R-FCN is
limited due to low resolution feature maps and the few
scales produced with the anchors as we outlined above.
Hence, more recent ConvNets for object detection tackle
scale invariance and small object detection with more elab-
orated solutions.

Yang et al. (2016b) propose a scale-dependent pooling
along with layer-wise cascade rejection classifiers in several
branches for the different object sizes. Then, if an object
proposal has a height lower than 64 pixels, the regions are
processed by a scale-dependent pooling with more resolu-
tion than if they were larger objects. Still, this proposal
does not meet our needs for objects under 16 × 16 pixels.

In Li et al. (2017), authors focus on learning to trans-
fer the information of small objects to similar large ob-
jects, what they call super-resolved objects. For this pur-
pose they introduce a Perceptual Generative Adversarial
Network for small object detection. The performance of
this approach has been tested on the Tsinghua-Tencent
100k dataset (Zhu et al., 2016), considering small objects
those smaller than 32 × 32, and on the Caltech benchmark
(Dollár et al., 2012), with pedestrians over 50 pixels tall,
so it does not suffice for objects under 16 × 16 pixels.

1For reference, we use the NVIDIA Tesla P40 which has 24GB
of memory.

3

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 4

Figure 2: USC-GRAD-STDdb examples. Ground truth objects are enclosed in red boxes (best seen in color).

Eggert et al. (2017) propose a Faster-R-CNN based
approach for small objects. Authors validate the proposal
in the FlickrLogos dataset (Romberg et al., 2011) similar
to the examples presented in Figure 1b (first row). The
solution presents three levels of RPN which make use of
feature maps with different resolution. To match different
levels, high-level feature maps are upscaled through bilin-
ear interpolation and then summed with the lower-level
maps. Finally, classification and bounding box regression
receive as inputs the combination of them. Similarly, in
Cai et al. (2016) several RPNs are proposed with the shal-
lowest RPN working with the smallest objects. In the ex-
perimental evaluation the smallest object size ranges from
25 to 50 pixels of height, which does not suffice our needs.

An effective solution to detect objects in different scales,
approached by Bell et al. (2016), Kong et al. (2016) or Har-
iharan et al. (2017), is to combine layers with different res-
olutions throughout the ConvNet by creating a single con-
volutional block that gathers the information from upper
layers into the bottom ones. A similar solution is adopted
in Zeng et al. (2018) for face detection. This way, highly se-
mantic information in wide receptive fields provided by the
upper layers is combined with the low semantic informa-
tion in narrow receptive fields. This combination is usually
generated by skip connections, which discard some layers
to connect more distanced ones. A single region proposal
method takes this convolutional block as input to detect
different scale objects.

Regarding the specific field of face detection, many ad-
vances have been made with outstanding results. In this
line, Zhang et al. (2017) propose a modified SSD archi-
tecture which anticipates the object proposal to GES =
4, among other improvements. Bai et al. (2018) employ a
generative adversarial network (GAN) to improve the res-
olution of blurry small faces. Finally, Hu and Ramanan
(2017) study the crucial influence of context in detecting
small objects while proposing a model that uses specific
scale templates to detect faces of different sizes —including
very small ones.

Joining information from several convolutional layers
and using several RPNs at different scales, Lin et al. (2017a)
introduce Feature Pyramid Network (FPN). FPN builds a
neural network that joins several levels of convolutional
blocks through lateral connections. In each level junction,
an RPN adapted naturally to a different object scale is

applied. The FPN architecture features several RPNs at
different GESs. The shallower convolution block —which
is fed by the shallower combined feature map, with a GES
= 4— is the RPN that detects the small objects, obtaining
outstanding results. Since its release, the proposal has be-
come a milestone, being currently adopted as baseline for
the researches that lead the top entries of the MS COCO
challenge (MS COCO Leaderboard, 2019).

Applying the improvements provided by FPN, Reti-
naNet (Lin et al., 2017b) sheds light on how to improve
performance metrics in the single-shot approach, includ-
ing small objects. The work in Lin et al. (2017b) imple-
ments a simple FPN-based architecture that removes the
RPNs and adds two subnetworks —class subnet and bbox
subnet— to detect objects in one-stage. The main im-
provement is obtained through a novel loss function (Focal
Loss) to address the class imbalance problem in single-shot
detectors, leading to very promising results. The accuracy
that reaches the proposal is similar to those obtained by
the two-stage FPN, even in MS COCO small object scale
(<32×32 area).

This paper focuses on small targets as defined in this
paper, i.e., under 16×16 pixels. Such small object targets
make us different from the previous approaches: our sizes
are significantly smaller than those of the above solutions
and the categories we are dealing with are large objects
–car, person, boat, etc.— but they are located at such a
great distance that most of them do not feature definitive
visual cues to classify them into a category (Figure 1a),
making the object detection more difficult. Based on the
knowledge from the aforementioned research, our STDnet
architecture generates candidate object locations proceed-
ing over the deepest layers, which exploits their semantic
information, but keeping high feature map resolution —
GES = 4— which allows to deal with small targets suc-
cessfully with a reasonable memory overhead.

3. STDnet architecture

STDnet is an unified neural network approach pro-
posed to detect small objects under 16 × 16 pixels. To
address this, STDnet invests time in selecting promising
zones at shallower layers to discard the rest of the input
image and, thus, improving the overall computing perfor-
mance. This allows to keep high resolution feature maps

4

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 5

Figure 3: STDnet architecture. The RCN is placed after early convolutions to select only promising areas from the input image. Those zones
are concatenated by the RCL so that the late convolutions act on the new feature map in a conventional way.

in these layers, especially favorable to detect small objects.
Figure 3 shows an overview of STDnet. It comprises

five stages: early convolutions, Region Context Network
(RCN), late convolutions, Region Proposal Network (RPN),
and the classifier. Thereby, STDnet is presented as a
Faster-R-CNN-based approach which employs ResNet-50
as a backbone —a good trade-off between accuracy, speed
and GPU memory (He et al., 2016). ResNet is represented
as early convolutions that comprise the shallowest layers
and late covolutions that encompass the deepest ones. The
backbone can be any of the most widely state-of-the-art
solutions found in the literature —e.g., ResNet (He et al.,
2016), DenseNet (Huang et al., 2017a), VGG (Simonyan
and Zisserman, 2015), etc.

Like most state-of-the-art ConvNets methods, STDnet
begins to learn simple features from the objects of interest
in shallower convolutional layers, named here as early con-
volutions. Unlike other methods, just after the shallower
convolutions, STDnet applies a novel detector of promis-
ing areas over the shallower feature map, RCN, to select
regions that most likely contain small objects. Then, top
scored regions are gathered in a single feature map by RCL
for the deeper convolutional layers —late convolutions—
to act as usual on the disjoint areas. There is a caveat, so
that the convolutions between the different areas do not
affect each other, RCL introduces a null 1px size padding
—since ResNet applies convolution filters no greater than
3 × 3. This padding must be reset to 0-padding after each
convolution higher than 1 × 1. In the late convolutions
stage, the memory saved by ruling out not promising ar-
eas can be used to keep the feature map in high resolution
at the same time that the semantic information is increas-
ing. STDnet applies a single RPN that takes as input the
fourth convolutional block (C4), which contains the most
promising areas provided by the RCN but with richer se-
mantic information. The RPN proposes as output the lo-
cations of the objects more precisely, performing bounding

Figure 4: Region Context Network (RCN) architecture.

box regression and classification as object and background
inside those RCN promising areas. These regions are fur-
ther refined in a final classifier. This architecture differs
from cascaded region proposal approaches (Zhong et al.,
2019; Yang et al., 2016a) in that the entire image infor-
mation is not used during the whole computation, rather
a new synthetic feature map is constructed only with the
areas of the image that the RCN considers to be the most
important.

As a summary, the key methods of the designed ar-
chitecture, RCN and RCL, allow to focus all efforts on
promising areas, not having to pay attention to areas with-
out relevant information. This allows to increase the reso-
lution of the deeper layers and, even so, reduce the use of
memory and increase the frame rate. STDnet does not in-
crease the GES to more than 4 during the whole network,
while the semantic information grows. Both, high resolu-
tion and high semantic information are crucial to detect
small objects.

5

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 6

3.1. Region Context Network (RCN)

The Region Context Network (RCN) is a fully convo-
lutional network that scans a shallow convolution map in
order to detect fixed-size areas where there is most likely
an object. The RCN architecture is shown in Figure 4.
RCN selects the most likely candidate regions with one or
more small objects together with their context. As at this
stage the goal is not to get accurate object localization,
the output regions’ size will be the same for all of them
and neither a box regression approach, nor a set of anchors
with different scales and aspect ratios are needed.

RCN consists of a first 3 × 3 convolutional layer over
the input layer to map it into an intermediate 128-d layer
with ReLU (Nair and Hinton, 2010) following. This layer
feeds a 1× 1 convolutional 2-d layer to classify regions as
foreground (fg), i.e., region with small objects inside, or
background (bg), i.e., region without objects. RCN pro-
cesses the region as a sliding-window on the feature map.
The output are the scores associated with the different
zones of the input image.

During the training phase, the bounding box ground
truths must be grown proportionally in all directions until
they reach the defined size to verify easily that the region
under study represents a positive or a negative candidate.
Then, as ground truths and regions have the same size, the
overlap (measured by the intersection-over-union (IoU) ra-
tio) between them is representative and can be calculated
to assign each region a positive label, if IoU>0.8, or neg-
ative, if IoU<0.3. The objectness score of the candidate
regions in RCN is minimized through:

LRCN ({pi}) =
1

Ncls

∑
i

Lcls(pi, p
∗
i)︸ ︷︷ ︸

fg/bg classifier

, (1)

where pi is the predicted probability of the i-th region
being foreground in an RCN mini-batch, and p∗i is the
adapted ground-truth label. The term 1

Ncls
normalizes the

equation and it refers to the size of the RCN’s mini-batch.
Lcls is a cross-entropy loss over regions with or without
objects (fg/bg).

3.1.1. RoI Collection Layer (RCL)

The promising regions generated by RCN cannot be
processed separately due to the overhead that it entails and
the need to modify the remaining backbone stages –late
convolutions. Instead, a novel layer is implemented where
RCN ends up, the so-called RoI Collection Layer (RCL)
(Figure 4). RCL layer takes as input the feature map
generated by the last early convolution and the top scored
proposals from RCN to return a single filtered feature map
with the same information as that of the input feature
map, but only for the set of selected regions. These regions
will be concatenated in the new feature map in a disorderly
way. Successive convolutions with filters greater than 1×1
will affect the neighboring regions’ outputs. To solve this

Figure 5: An example of the feature maps involved in the RCN.

problem, RCL adds an inter region 0-padding —shown by
gaps between regions in Figure 4.

With this configuration, the dimensions of the feature
map output are obtained as follows:

RCLoutput size = (rwn+ pd(n− 1))︸ ︷︷ ︸
width

× rh︸︷︷︸
height

, (2)

where n is the number of regions from RCN, rw and rh
are the dimensions of the regions in the RCL input feature
map and pd is the size of the 0-padding between regions.
For example, a 1280×720 input image has an RCL input
feature map of 320×180, and the output RCL generates a
649×12 feature map: 50 regions of size 48×48 at the input
image —12×12 at the RCL input feature map for GES =
4— with 1px 0-padding in the example; i.e., a reduction
of 7.4× of GPU memory usage —86.5% saved memory.

Figure 5 shows some examples of input and output fea-
ture maps of the RCN: Figure 5(a) original input image
and the most promising regions proposed by the RCN; Fig-
ure 5(b) four of the input feature maps to the RCN and
the most promising regions; and Figure 5(c) some feature
maps composed by the RCL with the most promising re-
gions, where each row represents a different channel. Each
of the feature maps in Figure 5(b) generates a row in Fig-
ure 5(c). Each row in Figure 5(c) represents a feature map
with the promising regions separated by 0-padding.

3.2. Region Proposal Network (RPN)

The Region Proposal Network (RPN) used in this pa-
per is a modification from the one presented in Faster
R-CNN (Ren et al., 2015) to deal with the feature map
composed by RCL, i.e., the RPN input contains unsorted
regions. In the original RPN, the anchors were processed
linearly since the coordinates of its input feature map cor-
respond with those of the input image but scaled. With
the unpromising areas removed, this correspondence no
longer exists and the correlation is not straightforward.
RPN must take as input, besides the last feature map, the
top scored promising regions information from the RCN
to generate the anchors relative to those regions. Finally,
the output of the bounding box regression is transformed
to the input image coordinates.

6

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 7

3.2.1. Automatic anchors initialization by k-means

The approaches that rely on RPNs define the number
of anchors and their sizes heuristically. In our proposal,
both the number and the size of the anchors are learned
through k-means. The k-means anchor learning procedure
is implemented as a preprocessing stage of STDnet. k-
means is applied to the training set of ground truth boxes’
height and width. In order to obtain the number of kernels,
which will be the number of anchors, we perform an iter-
ative k-means with an increasing number of kernels until
the maximum inter-kernels IoU exceeds a certain thresh-
old. We have set this threshold to 0.5, which is the value
used in well-known repositories, as PASCAL VOC (Ever-
ingham et al., 2010) or MS COCO (Lin et al., 2014), to
check if a detection is positive or negative with respect to
a ground truth. This approach can be adopted by any
other object detection network with anchors, e.g., Faster-
R-CNN, regardless the target size of the objects.

A similar contribution was defined in Redmon and Farhadi
(2017) where a k-means algorithm selects the anchors’ size
according to the dataset, but where the selection of the
number of anchors is done manually, visualizing the best
trade-off between the number of anchors and the average
intersection of these with the dataset objects. Our ap-
proach makes the anchors selection completely automatic.

3.3. Implementation Details

In this paper, we adopt the approximate joint training
(Ren et al., 2015) to train STDnet. To implement this end-
to-end training, the ResNet-50 layers are shared with the
two modules, RCN and RPN, so that all learnable layers
can be trained by backpropagation and stochastic gradient
descent (LeCun et al., 1989).

To train the RCN module, a mini-batch is obtained
from a single input image by randomly selecting foreground
and background regions. The mini-batch used within the
RCN is 64 examples trying to maintain whenever possi-
ble a ratio of 1:1 of positive and negative labels. In or-
der to eliminate overlapping regions from those proposed
by the RCN, we apply an aggressive non-maximum sup-
pression with a low threshold (0.3) over the 2,000 best
proposals before the RCL, resulting in a low number of
scattered regions —around 200 on average. At test, we
let pass through the RCN those regions with confidence
higher than 0.3, up to a maximum of 50 regions. The
RCN promising regions’ fixed-size was obtained estimat-
ing the effective receptive field (ERF) which, in practice,
follows a Gaussian distribution (Luo et al., 2016), so half
of the theoretical receptive field of the convolutions be-
tween RCN and RPN was selected as ERF. The fact that
RCN and RCL modules do not alter the global batch size,
makes the rest of the training identical to other two-stage
networks like Faster-R-CNN. The initialization of anchors
by k-means does not affect training either, since it is per-
formed once for each new dataset and previously to STD-
net training.

RCN and RCL can be theoretically integrated in any
object detection framework based on ConvNets, either one-
stage or two-stage approach. The main modification in ad-
dition to the new modules is to adapt the corresponding
region proposal method to work with unsorted regions. In
this paper, we have implemented STDnet over Faster-R-
CNN. The hyper-parameters for training and testing STD-
net are the same as those used in Faster-R-CNN. The RPN
module in STDnet is placed between convolutional layers
C4 and C5 as it is done in He et al. (2016) for Faster-
R-CNN. Finally, at test, we apply a box-voting scheme
after non-maximum suppression (Gidaris and Komodakis,
2015). Our implementation uses the framework Caffe (Jia
et al., 2014).

4. STDnet with spatio-temporal features (STDnet-
bST)

STDnet detects objects using only the information com-
ing from the current frame. Nevertheless, exploiting the
information of a set of consecutive frames might help to
improve detection, specially in those cases where the con-
fidence of a detection is low. ConvNets that make detec-
tions based on a set of frames are called spatio-temporal
networks (Carreira and Zisserman, 2017), in contrast to
conventional ConvNets —also referred to as spatial Con-
vNets.

STDnet with spatio-temporal features for small target
detection, namely, STDnet-bST, consists of two modules:
(i) STDnet as a spatial detector, which provides a set of
detections for the current frame; and (ii) the temporal
module, which combines the detections of a set of frames
and generates the final set of detections for the current
frame.

The spatial module of the STDnet-bST, i.e., STDnet,
feeds the temporal module with the set of detections of
the current frame. The temporal module generates the
data association among detections across the last T frames
through the Viterbi algorithm (Gkioxari and Malik, 2015)
based on the scores for all the spatio-temporal detections
at the current frame, and building up what is known as
tubelet. Figure 6 shows the composition of a single tubelet
over T different frames given a set of detections in each
one. The final spatio-temporal score in STDnet-bST is
estimated with an approach similar to Peng and Schmid
(2016), but computing the Viterbi algorithm at a tubelet-
level object detection instead of at a video-level action
detection.

The temporary score stp or temporal confidence be-

tween two detections dit and djt−1 in two consecutive frames
t and t− 1 is given by:

stp(d
i
t, d

j
t−1) = s(dit) + s(djt−1) + IoU(dit, d

j
t−1), (3)

where s(d) is the confidence returned by STDnet from de-
tection d and IoU is the overlap, measured as the intersec-
tion over union, between both detections.

7

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 8

Figure 6: Tubelet, in yellow, generated by STDnet-bST through the Viterbi algorithm applied to the spatial detections from STDnet.

After calculating the score stp for all the combinations
of detections throughout the T frames, the Viterbi algo-
rithm is applied to obtain the most probable sequences
of detections, i.e., tubelets, with size T . The Viterbi algo-
rithm maximizes the conditional probability of the tubelets
—each one represents an object seen at different time instants—
given a set of detections over time. This process is exe-
cuted recursively adding at each iteration the new set of
all detections belonging to t+ 1 (dt+1) and estimating the
new set of tubelets (Xt+1) through the following equation:

max
x1...xt

P(x1, . . . ,xt,Xt+1|d1:t+1) = αP(dt+1|Xt+1)

max
xt

(
P(Xt+1|xt) max

x1...xt−1

P(x1, . . . ,xt−1,xt|d1:t)
)

(4)
where α is a normalization factor.

The final confidence (final score, sf) for a detection
ditt will be given by the set of detections that formed the

sequence dV it. = [d
it−T+1

t−T+1, d
it−T+2

t−T+2, . . . , d
it
t], if ditt belongs

to a tubelet, or s(ditt), otherwise. We have experimented
with several options as the mean, maximum or median of
the detections’ score to compute sf , being the mean the
most accurate one:

sf (ditt) =
1

T

t∑
j=t−T+1

s(d
ij
j) (5)

5. Experiments

In this section, we release our Small Target Detection
database (USC-GRAD-STDdb), and we conduct extensive
experiments for our approach and previous state-of-the-art
works. We also assess STDnet on the 80 category Mi-
crosoft COCO 2017 detection dataset (Lin et al., 2014).
Finally, a series of computational optimizations are made
over STDnet and STDnet-bST to map them into an em-
bedded GPU.

5.1. The Small Target Detection database (USC-GRAD-
STDdb)

The Small Target Detection database (USC-GRAD-
STDdb)2 is a set of annotated video segments retrieved

2USC-GRAD-STDdb is publicly available under request.

from YouTube. USC-GRAD-STDdb comprises 115 video
segments with more than 25,000 annotated frames of HD
720p resolution (≈ 1280 × 720) with small objects of in-
terest from 16 (≈ 4× 4) to 256 (≈ 16× 16) as pixel area.
Figure 1a and Figure 2 show some samples of USC-GRAD-
STDdb. The length of the videos changes from 150 up to
500 frames. The total number of labeled small objects is
over 56,000.

Figure 7 shows a histogram of the number of objects in
each category and their pixel area (see Table 1 for more de-
tails). Although USC-GRAD-STDdb has been generated
by identifying the different categories of objects through
human intervention, for the experiments carried out below,
a single category of object will be used, so that the output
of the STDnet is either object or background. As there
are many potential small object candidates, we restrict to
those targets that can potentially move, even though they
can be still in a given frame or set of frames. The videos in
USC-GRAD-STDdb comprise the three main landscapes
with five object categories, namely: air (drone, bird), 57
videos with 12,139 frames; sea (boat), 28 videos with 7,099
frames; and land (vehicle, person), 30 videos with 6,619
frames.

In the following experiments, 80% of the videos of USC-
GRAD-STDdb were used for training (92 videos), while
the remaining 20% were used for testing (23 videos), keep-
ing as much a similar ratio as possible for the three differ-
ent landscapes, object sizes and categories.

5.2. Evaluation Metrics

USC-GRAD-STDdb has been evaluated with four dif-
ferent metrics for all networks under study:

• The Average Precision (AP@.5) gives the percent-
age of objects correctly detected, i.e., the objects
for which there is at least 50% of IoU between the
detected and the ground-truth bounding boxes, av-
eraged over categories (Everingham et al., 2010).

• AP@[.5,.95], which is the average AP when the per-
centage of IoU goes from 50% to 95% in 5% steps,
as reported in MS COCO (Lin et al., 2014).

• The average number of false positives per image (FPPI)
when recall = 0.5, and the Recall for FPPI = 1
(Rozantsev et al., 2017). The Recall measures the

8

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 9

Figure 7: Statistics by object category and size in the USC-GRAD-STDdb database.

Area [16,36] (36,64] (64,100] (100,144] (144,196] (196,256] [16,256]

objs 6,074 12,513 12,759 10,056 8,497 6,303 56,202

% db 10,8% 22,3% 22,7% 17,9% 15,1% 11,2% 100%

Table 1: Statistics of the number of objects in the USC-GRAD-STDdb database according to their size.

ratio of true object detections to the total number of
objects in the dataset for a given confidence thresh-
old. In this case, for the confidence threshold that
obtains exactly FPPI = 1.

Additionally, in the case of MS COCO, we report the
COCO-style metrics, i.e., AP@.5, AP@[.5,.95], AR@.5 and
AR@[.5,.95].

All the above metrics are calculated on the basis of
precision (P) and recall (R), whose definitions are:

P =
TP

TP + FP

R =
TP

TP + FN
,

(6)

where TP stands for true positives, FP for false posi-
tives and FN for false negatives for a given IoU threshold.
Then, with the output detections ranked by confidence,
each one is assigned to a label (TP, FP or FN), gener-
ating a set of precision-recall points —they can be rep-
resented in a precision-recall curve as Figure 8(left).The
Average Precision (AP) is given by finding the area under
the precision-recall curve for each category and averaged
over all categories. The Average Recall (AR) is the maxi-
mum recall value obtained for each category and averaged
over all categories.

5.3. Results on USC-GRAD-STDdb

Table 2 through Table 5 show the experimental re-
sults on USC-GRAD-STDdb with the spatial network, i.e.,
STDnet. Our approach is compared to the state-of-the-
art Faster-R-CNN (Ren et al., 2015), FPN (Lin et al.,
2017a) and RetinaNet (Lin et al., 2017b) networks. FPN
is the base of the top 3 entries of 2018 COCO object detec-
tion challenge (MS COCO Leaderboard, 2019). We report
all metrics described above as well as the GPU memory
and frame rate during testing. The global effective stride
(GES) refers to the downscaling of the input image with

respect to the feature map in the convolutional layer be-
fore the shallower RPN —C4 for Faster-R-CNN and C2

for FPN. Regarding RetinaNet, the original paper indi-
cates that they do not use the high resolution feature map
C2 to locate objects for computational reasons, but the ex-
periments on the USC-GRAD-STDdb report that starting
at C3, where GES = 8, the performance is very poor since
the objects are too small. Therefore, a configuration more
similar to that of FPN to locate objects has been selected.

Table 2 compares the performance of Faster-R-CNN
with its original GES (16) for different values of the an-
chors of the RPN. The first row corresponds with the con-
figuration for the Pascal VOC (Ren et al., 2015); the an-
chors of the second and third rows have been adapted man-
ually to the new database, USC-GRAD-STDdb; finally,
the last row uses the anchors selected by our proposal
based on k-means. The k-means learning for USC-GRAD-
STDdb results in just 4 defined anchors. All the evaluation
metrics with heuristic anchors are below those met with
our proposal based on k-means. From these results, in the
experiments that follow, the baseline Faster-R-CNN will
take as anchors those defined through our k-means pro-
posal.

Table 3 studies the sizes of the regions in the RCN to
assess that the estimation of the ERF is half of the theo-
retical receptive field. For STDnet-C2, as from C2 to C4

there are ten 3×3 convolutions with nonlinear activations
in addition to the 3× 3 RPN convolution, the theoretical
receptive field is 23 × 23 between these blocks of convo-
lutions. For STDnet-C3, the theoretical receptive field is
15 × 15 between C3 and C4. Thus, regions of 48 × 48 —
≈ 12×12 with GES 4— and 32×32 —≈ 8×8 with GES 4—
will be used, respectively. Results support this hypothe-
sis. Larger regions pass more true objects, increasing the
recall of RCN (RecallRCN), but with a lower AP because
also more background is passed through. The key idea is
that these regions should be as small as possible to pre-
serve memory but, also, they have to contain the largest

9

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 10

Method
Anchors

AP@.5 AP@[.5,.95]Scales Aspect ratios # anchors

Faster-R-CNN(Ren et al., 2015) 1282, 2562, 5122 1:1, 2:1, 1:2 9 19.3 5.2
Faster-R-CNN(Ren et al., 2015) 82, 162, 322 1:1, 2:1, 1:2 9 21.7 5.4
Faster-R-CNN(Ren et al., 2015) 42, 82, 162 1:1, 2:1, 1:2 9 20.3 5.4

Faster-R-CNN(Ren et al., 2015)+k 8×7, 14×10, 10×16, 21×9 4 25.5 6.4

Table 2: Performance of different RPN anchor scales compared to k-means on USC-GRAD-STDdb.

Figure 8: Precision-recall (left) and recall-FPPI (right) curves. The numbers inside the brackets indicate the global effective stride (GES).

RCNregion size
STDnet-C2 STDnet-C3

RecallRCN AP@.5 RecallRCN AP@.5

32× 32 91.8 54.5 93.9 57.4
48× 48 95.2 56.5 96.6 57.0
64× 64 95.4 55.8 96.6 56.2

Table 3: STDnet performance obtained by varying the size of the
RCN output regions.

objects defined as small targets, and exploit the ERF of
late convolutions between RCN and RPN.

Table 4 and Figure 8 compare the performance of Faster-
R-CNN, FPN, RetinaNet and STDnet on USC-GRAD-
STDdb. It also shows the effect of placing the RCN in
STDnet after the second or third convolutional blocks,
namely, STDnet-C2 and STDnet-C3, respectively. The
deeper the RCN, the better the evaluation metrics, but at
the cost of more memory usage and less frame rate.

For Faster-R-CNN, as expected, finer effective strides
lead to better metrics. GES = 4 in the baseline Faster-
R-CNN exceeds the size of our GPU memory at train-
ing. The STDnet allows to work with lower GES, outper-
forming Faster-R-CNN in AP@.5 —57.4% vs. 44.0%— and
AP@[.5,.95] —20.0% vs. 14.4%. STDnet also improves the
FPPI 4.3× and the speed rate 1.4×.

When it comes to the FPN, the performance of two dif-
ferent implementations have been reported on USC-GRAD-
STDdb. FPN (Lin et al., 2017a) runs on Caffe2, in the

same repository as RetinaNet3, and they take advantage of
its speed performance and memory optimization improve-
ments. FPN (Caffe) is programmed in Caffe framework,
starting from the Faster-R-CNN official code4 —just like
STDnet. FPN in Caffe and Caffe2 provide similar results
in AP, as seen in Table 4.

The architecture of FPN presents RPNs at different
scales —with the first one at the C2 level with GES = 4—
, which leads to higher performance than Faster-R-CNN,
reaching 50.8%@.5 and 16.3%@[.5,.95]. Nonetheless, the up-
sampling performed from the deepest convolutions causes
a lower performance compared to STDnet, which reaches
57.4%@.5 and 20.0%@[.5,.95]. Moreover, the FPPI is 1.3×
better for STDnet, which is also 1.2× faster. During the
experimentation, we tested two configurations for the com-
bination of FPN and k-means: (i) the same anchors at
each RPN; and (ii) the set of anchors distributed among
the different RPNs. The best results for FPN+k (shown
in Table 4) were obtained with the second option. Com-
paring FPN and FPN+k, the performance of FPN+k for
AP@.5 is slightly worse than FPN, because the first RPN
in FPN already has a set of anchors suitable for small ob-
jects. Nevertheless, for AP@[.5,.95], FPN+k improves FPN
by a 0.5%, which indicates that the k-means algorithm
helps to generate better bounding boxes.

RetinaNet works with GES = 4 as FPN, and it obtains

3https://github.com/facebookresearch/Detectron
4https://github.com/rbgirshick/py-faster-rcnn

10

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 11

Method GES AP@.5 AP@[.5,.95] Recall FPPI fps Mem.(GB)
Faster-R-CNN(Ren et al., 2015)+k 16 25.5 6.4 35.78 3.35 2.9 7.9
Faster-R-CNN(Ren et al., 2015)+k 8 44.0 14.4 50.73 0.95 2.6 10.8
Faster-R-CNN(Ren et al., 2015)+k 4 — — — — — >24.0train

FPN(Lin et al., 2017a) 4 49.2 16.6 57.28 0.48 7.6* 2.8*
FPN 4 50.8 16.3 63.02 0.29 3.0 6.9

FPN+k 4 50.7 16.8 59.14 0.31 3.5 6.9
RetinaNet(Lin et al., 2017b) 4 47.6 16.2 57.87 0.47 6.5* 3.1*

STDnet-C2 4 56.5 17.9 64.03 0.32 4.8 7.2
STDnet-C3 4 57.4 20.0 65.49 0.22 3.7 10.6

Table 4: Evaluation metrics of Faster-R-CNN, FPN, RetinaNet and STDnet on USC-GRAD-STDdb. +k indicates that the anchors were
defined by the k-means algorithm. The computational entries denoted by “*” run on Caffe2 framework, so the comparison with Caffe
implementations is not fair in terms of fps and memory consumption.

competitive results using a one-stage approach. Neverthe-
less, the need to place the shallowest set of anchors in C2

lowers both the accuracy and the computational perfor-
mance (Lin et al., 2017b).

Finally, Table 5 shows the results for different object
sizes of small targets as defined in Section 5.1. As ex-
pected, the smaller the size of the objects, the lower the
performance. STDnet outperforms FPN in 5 out of the 6
object sizes for both AP@.5 and AP@[.5,.95] metrics. We
highlight that STDnet is over 20% in AP@[.5,.95] for most
of the object segments. AP@[.5,.95] is a very meaningful
metric as it encompasses AP as IoU reaches perfection.

As addressed in Section 4, STDnet-bST includes tem-
poral features through tubelets built up with the Viterbi
algorithm. To determine the STDnet-bST hyperparame-
ters, we used the USC-GRAD-STDdb training set. The
impact of the number of frames (T) is analyzed in Fig-
ure 9 which shows a comparison between the time needed
to process the temporal stage for each frame and the AP
for different number of frames. T = 4 presents a good
trade-off between computation time and accuracy.

To sum up the achieved performance, Table 6 shows
a comparison between STDnet and STDnet-bST. As seen,
STDnet-bST outperforms STDnet in all metrics. The pro-
cessing time is practically identical, reaching 3.7 fps, since
the overhead added by the temporal module to the STD-
net is negligible.

5.4. Results on MS COCO 2017

MS COCO (Lin et al., 2014) is a popular image dataset
for object detection with 108,556 small objects defined as
those objects with an area of less than 32 × 32 pixels. We
have defined a new scale subset —extrasmall (APxs)—
within the category small objects of COCO to include
small targets as defined in this paper, i.e., those enclosed in
bounding boxes with less or equal than 256 pixels of area
—not the segmentation area as in the original annotations.
As we have defined our own subset, we cannot evaluate the
results with the official COCO test-dev 2017. Instead, we
train with COCO train 2017 and evaluate with the pop-
ularly extended COCO val 2017 (5k) (Bell et al., 2016).
Considering this, the total amount data used is: 62,658 of

236,574 objects from COCO train 2017 and 2,562 of 10,000
objects from COCO val 2017.

There are a few minor changes that should be made
in STDnet for this dataset. The images are re-scaled such
that their shortest side is 600 as in the baseline Faster R-
CNN (Ren et al., 2015). Also, the RCN output regions
have a size of 64×64 due to both the re-scaling and the
extremely elongated nature of some categories —such as
book, or skateboard. To conclude, we work with a mini-
batch size of 128 regions to train RCN.

Table 7 shows the performance comparison between
our approach, its baseline Faster-R-CNN, FPN and Reti-
naNet. Here, we report the MS COCO evaluation metrics
APxs and ARxs for the extrasmall subset. In the same way
as in the USC-GRAD-STDdb, the STDnet obtains much
better results than its baseline Faster-R-CNN, improv-
ing AP@.5 by more than 2× and AP@[.5,.95] by 3×, while
surpassing by 14.0% and 9.0% in AR@.5 and AR@[.5,.95],
respectively. Comparing STDnet with the state-of-the-
art FPN, it is observed how the detections provided by
STDnet suit better to the ground truth, yielding 0.7%
(AP@[.5,.95]) and 1.4% (AR@[.5,.95]) higher than FPN de-
tections. This metric is considered the most important
—primary challenge metric— by MS COCO (Lin et al.,
2014) because it encompasses AP adding information on
how it behaves as the IoU reaches perfection. Finally, as
expected, RetinaNet obtains lower performance than FPN
and STDnet due to the same reasons mentioned for the
dataset USC-GRAD-STDdb. In addition, the MS COCO
presents objects very close to each other, which causes a
disadvantage for the one-stage approaches.

It should be noted that the object detection MS COCO
dataset, despite being the most complete and used repos-
itory in the field, features some issues when we refer to
very small objects, which affects performance metrics.

The first issue is the lack of annotations when a large
number of objects of the same class are grouped. Some of
these occurrences are solved with the iscrowd label in the
annotation, but in some others this label does not exist or,
if it does, it is incorrect. Some examples are displayed on
Figure 10a, where COCO annotations are shown.

The second issue is the existence of parts of large ob-

11

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 12

APIoU Method [16,36] (36,64] (64,100] (100,144] (144,196] (196,256]

@.5

FPN 22,74 48,70 65,48 71,24 61,22 65,12

STDnet-C3 27,14 53,50 61,33 76,88 69,83 76,06

@[.5,.95]

FPN 6,48 11,89 21,69 23,75 22,19 20,60

STDnet-C3 7,79 14,17 20,93 26,37 29,41 31,06

Table 5: STDnet and FPN performances for different object sizes (area in pixels) of the USC-GRAD-STDdb database.

Figure 9: Viterbi algorithm runtimes and the average precision obtained for different values of T in the USC-GRAD-STDdb training set.

Method AP@.5 AP@[.5,.95] Recall FPPI
STDnet 57.4 20.0 65.49 0.22

STDnet-bST 59.7 20.6 66.81 0.20

Table 6: Performance of STDnet-bST compared to STDnet over
USC-GRAD-STDdb database.

Method APxs@.5 APxs@[.5,.95] ARxs
@.5 ARxs

@[.5,.95]

Faster-R-CNN 5.0 1.5 22.0 7.6
FPN 11.8 4.8 36.7 15.9

RetinaNet 9.1 4.5 33.0 16.2
STDnet-C3 11.4 5.5 36.0 17.3

Table 7: Evaluation metrics of Faster-R-CNN, FPN, RetinaNet and
STDnet on the extrasmall objects of MS COCO val 2017 subset, i.e.,
objects under 256 pixels of area.

jects labeled as small objects with an extrasmall size for
being largely occluded. Some of these examples are shown
in Figure 10b. This poses a challenge for any detection
algorithm. Nevertheless, our approach suffers more from
this issue than FPN since STDnet features a receptive field
considerably smaller than that of the FPN, as the size of
the feature maps do not change in STDnet after passing
through the RCN.

5.5. Execution on Embedded GPUs

Embedded GPUs are oriented to on-board platforms
and, as such, they feature a limited computing capac-
ity when compared to their GPU desktop counterpart.
Therefore, it is necessary to reduce memory consumption
and to improve computation time to migrate STDnet and
STDnet-bST to embedded GPUs. The optimization car-
ried out in this work is based on the unification of the
contiguous blocks of convolution and batch normalization
methods at test stage (Hong et al., 2016).

The description of this merger method uses the Caffe’s
notation (Jia et al., 2014). The batch normalization step
from Ioffe and Szegedy (2015) also included a per-channel
learned bias and scaling factor so, in Caffe’s implementa-
tion, it is splitted into two layers named batch normaliza-
tion and scale layers with the following parameters.

• Convolution layer: convolutional weights (cw) and
convolutional bias (cb).

• Batch Normalization layer: global mean (bnmean),
global variance (bnvar) and moving average factor
(bnnorm).

• Scale layer: scaling factor (sw) and per-channel bias
(sb).

Considering the above notation, the three layers —
convolution, batch normalization and scale— can be uni-
fied at test stage without altering the final result as follows:

1. A β vector is computed as a multiplier factor for the
convolutional data:

β =
sw√
bnvar

bnnorm+ε

(7)

where ε is a small value added to the variance esti-
mate to avoid division by zero.

2. The convolutional weights cw and bias cb trained can
be updated as:

cw(i) = β(i)cw(i)

cb = βcb +

(
sb − β

bnmean
bnnorm

)
(8)

3. The batch normalization and scale layers can be by-
passed by resetting their parameters as default, which
is the same as removing those layers.

12

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 13

(a) Images with non-labeled objects or incorrect labels where only the category of interest is marked.

(b) Images with objects parts with extrasmall size where only the category of interest with extrasmall size is marked.

Figure 10: Some examples of controversial small labels on MS COCO val 2017. Normal objects are colored green and iscrowd objects are
colored red (best seen in color).

13

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 14

Method
STDnet-C2 STDnet-C3

mem. (GB) fps mem. (GB) fps
STDnet 7.22 4.80 10.61 3.73

STDnet opt. 4.29 5.75 5.95 4.59

Table 8: Comparison of STDnet and the optimized version of STD-
net in memory consumption and computation time (fps).

Method
VGA HD 720p

mem. (GB) fps mem. (GB) fps
STDnet-C2 4.76 1.41 5.19 0.77
STDnet-C3 4.84 1.23 5.98 0.59

Table 9: Performance in memory consumption and computation
time, shown in frames per second (fps), over the Jetson TX2 archi-
tecture for VGA and HD 720p images.

Table 8 shows the performance of the optimizations on
HD 720p images for the two versions of STDnet imple-
mented, with the RCN layer after the two and three con-
volution blocks of the network (STDnet-C2 and STDnet-
C3, respectively). These metrics have been measured on
a high-performance cluster GPU. The memory is reduced
by 61.4% for the STDnet-C2 version and by 65.5% for
STDnet-C3, in addition to improving the computation time
by 52.2% for STDnet-C2 and 40.9% for STDnet-C3.

The NVIDIA Jetson TX2 (Franklin, 2017) has been
selected as an embedded and portable device to perform
the tests. This architecture has a middle-low graphic card
(NVIDIA Pascal with 256 cores) and a limited memory
of 8GB shared between the CPU and the GPU. The per-
formance on this device has been evaluated both for HD
720p images —the originals of the USC-GRAD-STDdb
database— and VGA images. In the case of VGA im-
ages, to perform the tests, segments of size 640×480 were
selected from videos in the database that contained some
small objects. The computational performance results on
Jetson TX2 are shown in Table 9. As seen, the memory
used differs slightly from that of a cluster GPU due to
their different memory management procedures.

6. Conclusions

We have introduced STDnet, a region-proposal-based
ConvNet to detect small targets under 16×16 pixels. The
key of STDnet is an additional visual attention mechanism
that we call RCN that chooses the most likely candidate
regions with one or more small objects and their context.
RCN allows for finer effective strides that lead to greater
precision while saving memory usage and increasing frame
rate. We have also included an automatic definition of the
anchors with k-means that improves the classical heuristic
approach.

In addition, we have released a new video dataset,
USC-GRAD-STDdb, with more than 56,000 annotated
small objects in complex backgrounds with clutter. STD-
net obtains the best results on USC-GRAD-STDdb with

a 57.4% AP@.5 and 20.0% AP@[.5,.95], clearly outperform-
ing its counterparts. STDnet-bST even improves these re-
sults without adding overhead, from 57.4% AP@.5 to 59.7%
AP@.5. Furthermore, we have tested our approach with
the extrasmall objects that exist in MS COCO, where the
overall performance of STDnet is very competitive.

Finally, we have deployed STDnet and STDnet-bST
on an embedded GPU, the Jetson TX2. For that, we have
implemented a number of optimizations that allow to run
both ConvNets on Jetson TX2 by reducing the consumed
memory by 59% and increasing the fps by 20%.

Acknowledgments

This research was funded by Gradiant, and also par-
tially funded by the Spanish Ministry of Economy and
Competitiveness under grants TIN2017-84796-C2-1-R and
RTI2018-097088-B-C32 (MICINN), and the Galician Min-
istry of Education, Culture and Universities under grant
ED431G/08. Brais Bosquet is supported by the Galician
Ministry of Education, Culture and Universities. These
grants are co-funded by the European Regional Develop-
ment Fund (ERDF/FEDER program). We thank Raquel
Dosil Lago, David de la Iglesia Castro and Daniel González
Jiménez from Gradiant for their collaboration. We thank
NVIDIA for donating GPUs.

References

Bai, Y., Zhang, Y., Ding, M., Ghanem, B., 2018. Finding tiny faces in
the wild with generative adversarial network. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 21–30.

Bell, S., Lawrence Zitnick, C., Bala, K., Girshick, R., 2016. Inside-
outside net: Detecting objects in context with skip pooling and
recurrent neural networks. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2874–2883.

Cai, Z., Fan, Q., Feris, R., Vasconcelos, N., 2016. A unified multi-
scale deep convolutional neural network for fast object detection.
In: European Conference on Computer Vision (ECCV). pp. 354–
370.

Carreira, J., Zisserman, A., July 2017. Quo vadis, action recognition?
A new model and the kinetics dataset. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 4724–
4733.

Dai, J., Li, Y., He, K., Sun, J., 2016. R-FCN: Object detection via
region-based fully convolutional networks. In: Advances in Neural
Information Processing Systems (NIPS). pp. 379–387.

Dollár, P., Wojek, C., Schiele, B., Perona, P., 2012. Pedestrian de-
tection: An evaluation of the state of the art. IEEE Transactions
on Pattern Analysis and Machine Intelligence 34 (4), 743–761.

Eggert, C., Zecha, D., Brehm, S., Lienhart, R., 2017. Improving small
object proposals for company logo detection. In: ACM Interna-
tional Conference on Multimedia Retrieval (ICMR). pp. 167–174.

Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman,
A., 2010. The PASCAL Visual Object Classes (VOC) Challenge.
International Journal of Computer Vision 88 (2), 303–338.

Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D., 2010.
Object detection with discriminatively trained part-based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence
32 (9), 1627–1645.

Fernández-Sanjurjo, M., Bosquet, B., Mucientes, M., Brea, V. M.,
2019. Real-time visual detection and tracking system for traffic
monitoring. Engineering Applications of Artificial Intelligence 85,
410–420.

14

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 15

Franklin, D., 2017. NVIDIA Jetson TX2 delivers twice the intel-
ligence to the edge. NVIDIA Accelerated Computing Parallel
Forall, (2017).

Gidaris, S., Komodakis, N., 2015. Object detection via a multi-region
and semantic segmentation-aware cnn model. In: IEEE Interna-
tional Conference on Computer Vision (ICCV). pp. 1134–1142.

Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature
hierarchies for accurate object detection and semantic segmen-
tation. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 580–587.

Gkioxari, G., Malik, J., 2015. Finding action tubes. In: IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).
pp. 759–768.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu,
T., Wang, X., Wang, G., Cai, J., et al., 2018. Recent advances in
convolutional neural networks. Pattern Recognition 77, 354–377.

Hariharan, B., Arbelaez, P., Girshick, R., Malik, J., 2017. Object
instance segmentation and fine-grained localization using hyper-
columns. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (4), 627–639.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for
image recognition. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 770–778.

Hong, S., Roh, B., Kim, K.-H., Cheon, Y., Park, M., 2016. PVANET:
Deep but lightweight neural networks for real-time object detec-
tion. arXiv preprint arXiv:1611.08588, (2016).

Hu, P., Ramanan, D., 2017. Finding tiny faces. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 951–
959.

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K., 2017a.
Densely connected convolutional networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 4700–
4708.

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A.,
Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., et al., 2017b.
Speed/accuracy trade-offs for modern convolutional object de-
tectors. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, (2015).

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick,
R., Guadarrama, S., Darrell, T., 2014. Caffe: Convolutional archi-
tecture for fast feature embedding. In: ACM International Con-
ference on Multimedia. pp. 675–678.

Kalantidis, Y., Pueyo, L., Trevisiol, M., van Zwol, R., Avrithis, Y.,
2011. Scalable triangulation-based logo recognition. In: ACM In-
ternational Conference on Multimedia Retrieval (ICMR). p. 20.

Kestur, R., Meduri, A., Narasipura, O., 2019. Mangonet: A deep
semantic segmentation architecture for a method to detect and
count mangoes in an open orchard. Engineering Applications of
Artificial Intelligence 77, 59–69.

Kong, T., Yao, A., Chen, Y., Sun, F., 2016. Hypernet: Towards
accurate region proposal generation and joint object detection. In:
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 845–853.

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hub-
bard, W., Jackel, L., 1989. Backpropagation applied to handwrit-
ten zip code recognition. Neural Computation 1 (4), 541–551.

Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S., 2017. Percep-
tual generative adversarial networks for small object detection.
In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Be-
longie, S., 2017a. Feature pyramid networks for object detection.
In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Vol. 1. p. 4.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017b. Focal
loss for dense object detection. In: IEEE International Conference
on Computer Vision (ICCV). pp. 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,

D., Dollár, P., Zitnick, C. L., 2014. Microsoft coco: Common
objects in context. In: European Conference on Computer Vision
(ECCV). pp. 740–755.

Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X.,
Pietikäinen, M., 2018. Deep learning for generic object detection:
A survey. arXiv preprint arXiv:1809.02165 (2018).

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
Berg, A., 2016. SSD: Single shot multibox detector. In: European
Conference on Computer Vision (ECCV).

Luo, W., Li, Y., Urtasun, R., Zemel, R., 2016. Understanding the
effective receptive field in deep convolutional neural networks. In:
Advances in Neural Information Processing Systems (NIPS). pp.
4898–4906.

MS COCO Leaderboard, 2019. Microsoft COCO detection leader-
board. http://cocodataset.org/#detection-leaderboard, ac-
cessed: 2019-02-08.

Nair, V., Hinton, G., 2010. Rectified linear units improve restricted
boltzmann machines. In: International Conference on Machine
Learning (ICML). pp. 807–814.

Pang, S., del Coz, J. J., Yu, Z., Luaces, O., Dı́ez, J., 2017. Deep
learning to frame objects for visual target tracking. Engineering
Applications of Artificial Intelligence 65, 406–420.

Papageorgiou, C., Poggio, T., 2000. A trainable system for object
detection. International Journal of Computer Vision 38 (1), 15–
33.

Peng, X., Schmid, C., 2016. Multi-region two-stream r-cnn for action
detection. In: European Conference on Computer Vision (ECCV).
pp. 744–759.

Redmon, J., Farhadi, A., 2017. YOLO9000: Better, faster, stronger.
In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 6517–6525.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: To-
wards real-time object detection with region proposal networks.
In: Advances in Neural Information Processing Systems (NIPS).
pp. 91–99.

Romberg, S., Pueyo, L., Lienhart, R., van Zwol, R., 2011. Scalable
logo recognition in real-world images. In: ACM International Con-
ference on Multimedia Retrieval (ICMR). pp. 25:1–25:8.

Rozantsev, A., Lepetit, V., Fua, P., 2017. Detecting flying objects us-
ing a single moving camera. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 39 (5), 879–892.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S.,
Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al., 2015.
Imagenet large scale visual recognition challenge. International
Journal of Computer Vision 115 (3), 211–252.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional net-
works for large-scale image recognition. In: International Confer-
ence on Learning Representations (ICLR).

Viola, P., Jones, M., 2001. Rapid object detection using a boosted
cascade of simple features. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Yang, B., Yan, J., Lei, Z., Li, S. Z., 2016a. Craft objects from images.
In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 6043–6051.

Yang, F., Choi, W., Lin, Y., 2016b. Exploit all the layers: Fast and
accurate cnn object detector with scale dependent pooling and
cascaded rejection classifiers. In: IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 2129–2137.

Yang, S., Luo, P., Loy, C., Tang, X., 2016c. Wider face: A face
detection benchmark. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Zeng, D., Zhao, F., Ge, S., Shen, W., 2018. Fast cascade face de-
tection with pyramid network. Pattern Recognition Letters 119,
180–186.

Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S. Z., 2017. S3fd:
Single shot scale-invariant face detector. In: IEEE International
Conference on Computer Vision (ICCV). pp. 192–201.

Zhong, Q., Li, C., Zhang, Y., Xie, D., Yang, S., Pu, S., 2019. Cas-
cade region proposal and global context for deep object detection.
Neurocomputing.

Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B., Hu, S., 2016. Traffic-

15

http://cocodataset.org/#detection-leaderboard

Brais Bosquet et al. / Engineering Applications of Artificial Intelligence (2020) 1–16 16

sign detection and classification in the wild. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2110–

2118.

16

