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Abstract—Background subtraction is one of the first steps in
many video processing algorithms. Thus, a real-time processing
with low power consumption is convenient for different appli-
cations where power hungry devices with high computational
capabilities can not be deployed. This work presents the design
of a 24×56 pixel proof-of-concept 0.18 µm standard CMOS vision
sensor chip implementing the foreground detection algorithm
Hardware Oriented Pixel Based Adaptive Segmenter (HO-PBAS)
on the focal plane. Simulation results show a maximum process-
ing speed of 2000 fps with a figure of merit of 1.3 µW/pixel at
60 fps and a pixel pitch of 47 µm in a four pixels per processing
element configuration.

Index Terms—CMOS vision sensor, focal plane, foreground
detection, HO-PBAS

I. INTRODUCTION

Computer vision algorithms like tracking by detection re-
quire to detect the foreground of the image, or equivalently to
remove the background [1]. Due to the importance of this step,
many different approaches and algorithms have been published
in the last decades [2].

Pixel-level foreground detectors are good candidates to be
used on embedded platforms as they feature a high level of
parallelism. These platforms might be general purpose devices,
as GPU-CPU boards or FPGAs, which provide a high level
of programmability [3], [4]. If the lowest possible power
consumption is pursued, mixed-signal ASICs are usually pre-
ferred. These can be general-purpose devices that provide
some level of programmability to run the desired algorithms
[5]–[7]. However, as they are designed for general appli-
cations, complex algorithms that require specific resources
can not be fitted in them without important simplifications,
which might lead to a loss of performance with respect to the
original computer vision algorithm under study. In those cases,
specific-purpose ASICs become a feasible option [8], [9]. In
that line, reference [10] shows the design of a mixed-signal
64×64 pixels vision chip for background subtraction with a
very low power consumption. The vision chip implements a
foreground detector based on the difference of the actual frame
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with respect to a background model formed by a running
average of the last frames, which in turn is compared with
an adaptive threshold. Even when no visual metrics are given,
more recent and elaborated background subtraction algorithms
with better performance have arisen. Pixel Based Adapted
Segmenter (PBAS) is one of such algorithms [11]. This paper
introduces a CMOS vision chip with a modified version of
the original PBAS for its mapping on the focal plane without
degradation of background performance metrics.

II. FOREGROUND DETECTOR

The algorithm implemented in this work is a hardware
oriented version of the PBAS. This simplification was de-
veloped in [12], showing that with linearized equations and
less samples of the background model the same performance
in grayscale images as with the original algorithm can be
achieved.

The segmentation mechanism described in (1) was first
introduced in [13]. The strategy consists of counting how
many samples of the background model Bk(xi), formed by
previous samples of the pixel, are inside a sphere centered at
the input pixel value I(xi) and with a certain radius R(xi).
If this number is smaller than the parameter #min the pixel
will be considered foreground and background otherwise.

S(xi) =

{
1, #{dist(I(xi), Bk(xi)) < R} < #min

0, else
(1)

The Hardware Oriented PBAS (HO-PBAS) uses a feedback
scheme similar to that of the original PBAS to tune the algo-
rithm parameters responsible for the background model update
probability p(xi) and the segmentation sphere radius R(xi).
Both parameters depend on how often a pixel is segmented
as background or foreground and also on the dynamics of its
background model. To measure the background dynamics the
HO-PAS takes the difference between the maximum and the
minimum samples weighted by a fixed constant β as:

d(xi) = β · [maxk(Bk(xi))−mink(Bk(xi))] (2)

The background dynamics estimator d(xi) is then used to
update the probability parameter:



p(xi) =

{
pmin, if S(xi) = 1

p(xi) + [1− d(xi)] · pinc, else
(3)

where pmin and pinc are fixed parameters. Also, d(xi) is
required to calculate the radius R(xi) of the sphere in the
segmentation process, multiplying it by the fixed parameter
Rscale:

R(xi) = d(xi) ·Rscale (4)

When the foreground detection is done, the background
model might be updated through two different mechanisms:

• Self-update: if the pixel is segmented as background, a
randomly chosen sample might be updated based on the
pixel dependant parameter p(xi).

• Diffusion: same as the previous method, if the pixel is
segmented as background it might induce a neighbor to
update its background model, even if it was segmented as
foreground. With that, the problem of static foreground
objects is attenuated.

III. IN-PIXEL CIRCUITS

This work implements a proof-of-concept chip with an array
of 24×56 pixels. The complexity of the algorithm leads to a
distribution of in-pixel circuitry and circuits shared by a group
of pixels, making up the so-called Processing Element (PE).
Also, some operations are performed many times across the
pipeline of the algorithm. Thus, it is convenient to reuse analog
primitives common to many functions along the datapath such
as the arithmetic unit shown in Fig. 1. This circuit is a
switched-capacitor differential amplifier based on a high gain
inverting cascode amplifier. After a full cycle of the non-
overlapped inverted clock signals phi1 and phi2 the output
voltage will be:

Vout = V3 +
C1

C2
(V1 − V2) (5)

Where C1 and C2 are the capacitance of the Metal-
Insulator-Metal (MIM) capacitors and V1, V2 and V3 the input
voltages. Fig. 2 shows a simulation for this circuit where a
high linearity and robustness against Monte Carlo simulation
can be seen.

Image capturing is carried out by a standard 3 transistors
active pixel sensor (3T-APS) with a correlated double sampling
(CDS) implemented with the arithmetic unit in Fig. 1. After
the integration time, the output of the CDS will be a voltage in
a range suitable for the subsequent processing circuits. Also,
to reduce the integration time, the CDS block adds a voltage
gain naturally implemented through the relationship between
capacitors C1 and C2 in (5).

A low-pass filter is applied to the image to reduce the noise,
improving the algorithm performance [12]. This is done by
sharing the charge stored in capacitor C, corresponding to the
output voltage of the CDS, through the exchange capacitor
CE in the 4-neighborhood single Euler network shown in Fig.
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Fig. 1. Schematic of the arithmetic unit circuit used as the analog primitive
function in our design.
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Fig. 2. Arithmetic unit simulation. Vertical bars indicate variation under
Monte Carlo simulations, scaled up 100 times.

3 [9]. With this architecture, the parameter σ of the Gaussian
distribution can be controlled by the number of clock cycles,
n, of the two non-overlapping signals phi1 and phi2 as:

σ =

√
2nCE

C
(6)

Once the image is captured and low-pass filtered, it will
need to be compared with the background model that is stored
per-pixel. To ensure adequate retention times for these values
an in-depth analysis of the Analog Random Access Memories
(ARAM) architecture was developed in [12], assessing how the
performance of HO-PBAS is affected by circuit non-idealities.
The main conclusion extracted from this work is that every
memory cell needs its own output buffer, which we implement
with source followers as in Fig. 4.

The next step in the algorithm datapath is to calculate d(xi)
as in (2) with the circuit in Fig. 5. This circuit extracts the
maximum and minimum values from the background model
and performs the difference weighted by the fixed parameter
β. Once this value is obtained it can be used in (3) and (4)
implemented also with arithmetic units as that in Fig. 1.
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Fig. 3. 4 neighborhood single Euler network for Gaussian filtering.
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Fig. 4. Analog memories of the chip, with an input buffer implemented with
an OA, and as many source followers as units of memory; N in this example.

The last circuit required is the one responsible for the seg-
mentation decision. This circuit needs to get each background
model sample, take the absolute difference with respect to the
input value I(xi), compare it with the radius of the sphere and
count how many of them are inside. This is implemented in the
circuit of Fig. 6. The reason why the counter is only two bits is
because the algorithm was optimized through computer vision
simulations against the benchmark changedetection resulting
in a #min parameter of 2 [14]. Thus, when the counter reaches
this value the pixel can be considered background, regardless
of whether the number of samples inside the sphere is bigger
than or equal to #min. Thus, when the counter reaches a value
of two, b1 is set to high and that triggers the SR latch, which
will hold the segmentation result until the next iteration, when
it will be reset to a value of S(xi)=1.

Fig. 7 shows results for a segmenter simulation, where two
different input values, I(xi), are simulated with the same
background model. In the first part of the simulation, during
the first 100 µs, a value of I(xi) whose difference with respect
to the background model samples is bigger than R(xi) is
tested. As the comparator output is always zero, the counter
does not trigger the latch and the output remains high (between
80 µs and 100 µs), indicating that the pixel is segmented as
foreground. In the second part of the test the input value
I(xi) is modified to a value similar to that of 4 samples
of the background model. Thus, when it is compared with
them, as the difference is smaller than R(xi) the comparator
produces 4 pulses, and it can be seen that at the second one
the counter reaches #min, triggering the SR latch and giving a

−

+

−

+

cmp

cmp

ArithUnit
Output

phi_min

phi_min

phi_max

phi_max

A
R

A
M

 V
A

L
S

  S/H

circuit

Fig. 5. Background dynamic estimator. The background model values are
introduced into the ARAM VALS node one by one and depending on which
one of signals phi max or phi min is set to high, the maximum or the
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Fig. 6. Segmenter circuit to decide whether or not a pixel is foreground on
our chip.

low output voltage (between 180 µs and 200 µs), meaning that
the segmentation process has finished with the pixel classified
as background.

IV. CHIP ARCHITECTURE

All circuits described in Section III are meant to be placed
near the sensor. Nevertheless, the complexity of the HO-PBAS
leads to an architecture where all the circuits that can be shared
by a group of pixels are placed in a common processing unit.
Sharing these circuits reduces parallelism while a complete
in-pixel datapath would lead to a very large pixel pitch. A
compromise value of a shared processing unit for every group
of four pixels has been found, forming all of them the PE. In
our solution, the circuits that compute (1),(2),(3), and (4) are
those shared by four pixels, as shown in the central block of
Fig. 8. Sharing these circuits leads to a careful layout design
in order to achieve a homogeneous photodiode array pattern to
reduce image distortion. The pixel on the other hand, includes
the circuits that can not be shared, such as the ARAM, the local
logic needed to implement the background update tasks, the
Gaussian blurring circuit, the output to ADC selector (imaged
read, image after Gaussian filtering, contents of the analog
memory or the p(xi) value of each pixel) or the frame buffer
to hold the captured image until it is read.

Fig. 9 shows the full layout of the 24×56 pixels proof-
of-concept 0.18 µm standard CMOS 1.6×3.2 mm2 chip. The
readout of the chip is as follows: first, after the integration
time, a row is selected and their captured voltages are con-
nected to a column-level 8 bit single slope analog-to-digital
converter (ADC). The result of the conversion is stored in
an 8×56 bit row buffer that is accessed through the column
decoder. This result is read out while the next row is being
converted. When this process is finished, the same row and
column decoders repeat the array scan, connecting the result
of the segmentation, stored in a latch at each pixel, to the
outside.
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Fig. 8. Chip architecture. From left to right: pixel, shared processing unit
and four PEs (formed by four pixels and a shared processing unit each one)
that make part of the chip core.

The HO-PBAS needs a random source of analog and digital
values, which are obtained from a Random Number Generator
based on chaotic maps [15]. The control signals generation is
carried out by a global module, in a single instruction multiple
data (SIMD) architecture. This block was designed with a
hardware description language and generated with digital
synthesis tools. This control block is provided with a two
bit clocked input bus that reads instructions from the outside.
These instructions are intended to manage the integration time,
the number of cycles of the Gaussian filtering and the signal
that is connected to the ADC. Among the global control, each
pixel features some local logic circuits for individual decision
making (such as updating or not the background model based
on their p(xi) value or due to the diffusion process). The
combination of the local and global logic circuits generates
the control signals in a synchronized manner to implement the
flowchart shown in Fig. 10, where the sequential processing
of each one of the four pixels per PE can be seen.

V. PERFORMANCE ANALYSIS

As part of the processing circuits is shared by a group of
four pixels, in order to make a fair comparison with other
works we will consider the metrics of the pixel as the fourth
part of the total from the PE. Thus, from simulation results we

Fig. 9. 24×56 pixel array proof-of-concept chip.
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Fig. 10. Algorithm implementation flowchart (BMU: Background model
update, Proc: Image processing).

extract a power consumption of 1.3 µW/pixel, or equivalently
21.7 nJ/pixel/frame at a framerate of 60 fps. This power
consumption can be considered low power if compared with
digital-based systems and in the order of other state-of-the-
art vision chips [16]. However, it is considerable bigger than
[10], where a total power consumption of 33 µW for a 64×64
pixels vision sensor running at 13 fps is reported. In that case
a background subtraction algorithm with worse vision metrics
than HO-PBAS is implemented with only 45 transistors per
pixel. In our case a more complex algorithm is implemented
that requires an equivalent number of 280 transistors and 17
MIM capacitors per pixel. Another consequence of the high
pixel complexity is that the pixel pitch is 47 µm, with an 8×8
µm2 photodiode. However, chip simulations show that frame
rates up to 2000 fps can be executed in our design, with the
full performance of the HO-PBAS with just an increase in the
power consumption by a factor of five.

VI. CONCLUSIONS

This paper describes a CMOS vision sensor that integrates
both the acquisition and processing stages of a foreground
detector on the focal plane. First, a simplification of a state-of-
the-art background subtraction algorithm was presented, reach-
ing the same performance as that of the original algorithm
with less computational resources. Then, analog circuits to
implement the algorithm were developed. Finally, a custom
made SIMD architecture was developed for the integration
of that circuitry, designing a per-group of pixels approach
to reduce the required area. This design was implemented
in a 24×56 pixel proof-of-concept chip with a maximum
processing speed of 2000 fps, a figure of merit of 1.3 µW/pixel
at 60 fps and a pixel pitch of 47 µm in a four pixel per
processing element configuration.
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