
The Split-and-Merge Method in
General Purpose Computation on
GPUs

Francisco Argüello
Departamento de Electrónica e Computación, Universidade de Santiago
de Compostela
francisco.arguello@usc.es

Dora B. Heras
Centro Singular de Investigación en Tecnolox́ıas da Información
dora.blanco@usc.es

http://citius.usc.es

Montserrat Bóo
Departamento de Electrónica e Computación, Universidade de Santiago
de Compostela

Julián Lamas-Rodŕıguez
Centro Singular de Investigación en Tecnolox́ıas da Información
julian.lamas@usc.es

http://citius.usc.es

mailto:francisco.arguello@usc.es
mailto:dora.blanco@usc.es
http://citius.usc.es
mailto:julian.lamas@usc.es
http://citius.usc.es

This work was supported in part by Xunta de Galicia under contracts
08TIC001206PR and 2010/28, and by Ministry of Education and Science of
Spain and FEDER funds under contract TIN2007-67537-C03-01.

NOTICE: this is the author’s version of a work that was accepted for

publication in Parallel Computing. Changes resulting from the publishing

process, such as peer review, editing, corrections, structural formatting, and

other quality control mechanisms may not be reflected in this document.

Changes may have been made to this work since it was submitted for

publication. A definitive version was subsequently published in Parallel

Computing, vol. 38, issue 6, 2012, DOI 10.1016/j.parco.2012.03.003.

1

The Split-and-Merge Method in General Purpose Computation on GPUs

Abstract

The split-and-merge method is an algorithm design paradigm sometimes used in
the field of parallel computing. It is applied to multilevel algorithms such as the
wavelet transforms and some tridiagonal system solvers. In this paper we present
the application of the method in the context of general purpose computation on
GPUs. The split-and-merge method allows us to efficiently use the CUDA parallel
programming model, where a multithreaded program is partitioned into blocks of
threads that execute independently from each other. Thus we can solve the data
dependency problem at the block boundaries and efficiently take advantage of the
memory hierarchy of the GPU. The results obtained show a significant acceleration
compared with the direct implementation of the algorithms on the GPU.

1 Introduction

A modern GPU is a highly parallel architecture that can handle thousands of threads running
concurrently. Originally designed for graphics processing, nowadays GPUs can be used to
accelerate a wide range of applications. In the CUDA parallel programming model [1],
a multithreaded program is partitioned into blocks of threads that execute independently
from each other. This model guides the programmer to partition the problem into coarse
sub-problems that can be solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in parallel by all threads
within the block. Indeed, each block of threads can be scheduled on any of the available
processor cores, in any order. That is, blocks can be executed in parallel if there are available
units, otherwise, they will be executed sequentially. This is shown in Fig. 1.

CUDA threads may access data from multiple memory spaces during their execution [2].
From the programmer’s point of view, the most important ones are the global memory and
the shared memory. The global memory can be accessed by all threads, and data stored
here is available throughout the program execution. In contrast, each block has its own
shared memory which is visible only to the threads of the block and which has the same
lifetime as the block. Shared memory enables cooperation between threads in a block;
however, it is not accessible to the threads of the other blocks. As it is on-chip, shared
memory is much faster than global memory. When multiple threads in a block use the same
data, shared memory can be used to access the data from global memory only once.

In a computation model based on blocks, when data have to be processed one block
at a time in sequential systems or computed over multiple processors in parallel systems,
the major difficulty occurs in the computations near data boundaries. Some algorithms
have a multilevel computation scheme; i.e., they are structured into a set of stages in each
of which the partial results are computed from data located in nearby positions [3, 4, 5].
This is the case of wavelets and other orthogonal transforms, and of some tridiagonal
system solvers [6, 7]. Depending on the type of architecture, overlapping techniques, such
as data replication near data boundaries or non overlapping techniques based on extra
communications, can be efficient solutions [8].

In some cases, the direct application of these techniques on multilevel algorithms can
be very costly in terms of memory and/or inter-processor communication operations. This
problem has been studied extensively in [9] for the computation of the wavelet transform.
Either the blocks are given sufficient overlapped data to carry on the whole computation

2

The Split-and-Merge Method in General Purpose Computation on GPUs

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

time

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

time

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Multithreaded CUDA Program

Core 0 Core 1 Core 0 Core 1 Core 2 Core 3

GPU with 4 CoresGPU with 2 Cores

Execution Execution

Figure 1: A CUDA program is partitioned in blocks of threads that execute independently
from each other.

without communicating with each other, or alternatively, they have to communicate data
after each level has been computed. The first approach, overlapping, requires that input
data near the block boundaries be given to both blocks. Since each block has to compute its
own partial results for multiple levels, this overlap can be quite substantial. For example, in
the case of a wavelet transform or of some tridiagonal system solvers, the overlap increases
exponentially with the increase of the level. In the second approach, non-overlapping, input
data is not overlapped so the memory requirement is relaxed, but boundary samples need
to be exchanged at each decomposition level.

Jiang and Ortega [9] present a boundary postprocessing technique named split-and-
merge (SM) in the context of architecture design for computing wavelet transforms. The
key observation is that the partially computed results can also be stored back to their orig-
inal locations and the transform can be continued anytime later as long as these partially
computed results are preserved. The idea is motivated by the standard overlap-add tech-
nique which initially performs the operations that can be carried out with the data contained
in each block and subsequently completes the computation by performing the remaining
operations. This idea is extended to the case of multilevel wavelet decompositions.

Some algorithms for solving tridiagonal systems of equations have a dependency graph
similar to that of the wavelet transform. [10] has a comparison of the different tridiagonal
system solvers from the point of view of their implementation on the GPU. The aforemen-
tioned study takes into account the use of the shared memory of the GPU; however, it
focuses more on the projection of tridiagonal systems than on the study of the SM method.

In this paper we study the application of the SM method in the context of General
Purpose Computation on GPUs. The architecture of computation in blocks considered

3

The Split-and-Merge Method in General Purpose Computation on GPUs

is CUDA, which allows us to execute the same code on different GPU models. In each
execution of a kernel (function of CUDA code called from the main program), blocks are
executed in parallel if there are enough processors available, or otherwise sequentially. Hence
data communication between blocks is not possible. Additionally there is a synchronization
problem: during the execution of a kernel only those threads that run within of the same
block can be synchronized. Finally, an efficient use of the memory hierarchy implies the
use of shared memory, which is faster than the global one. All these limitations of the
architecture will be taken into consideration in the application of the SM method to GPU
programs.

The rest of this paper is organized as follows: Section 2 presents the class of algorithms
considered and the application of the SM method; in Section 3 we implement these al-
gorithms in CUDA studying the parameters leading to the best performance: size of the
sections of split and merge, memory space used in each case, reduction of the number of
threads, etc; Section 4 describes the extension of the method to two dimensions; in Section
5 we perform the evaluation; and finally, in Section 6 we present the conclusions.

2 The split-and-merge method

In this section we present the application of the SM method to the GPU, taking some widely
used algorithms as models. The selection of algorithms was conducted with the objective
of having a wide range of data-flow diagrams.

In many useful algorithms that operate on arrays or matrices, data are read from mem-
ory, processed, and partial results are stored back to their original positions. The results are
usually computed, using not only the data point whose position is rewritten, but also from
data located in nearby positions [11]. Some of these algorithms have a multilevel compu-
tation scheme; i.e., they are structured in a set of stages in each of which the operation
described above is performed. In these algorithms the computation of the successive levels
frequently needs input data from increasingly distant positions, and/or that downsampled
data sequences from the previous level are used. This is true for of wavelets and other
orthogonal transforms, and for some tridiagonal system solvers [6, 7].

In the class of the multilevel algorithms considered, the i-th partial result of a certain
level (x′i) is obtained from the input data of the previous level (xi) as

x′i = f (...,xi−2a,xi−a,xi,xi+a,xi+2a, ...). (1)

We consider that the distance at which the data is located, that is, the parameter a,
increases with the level. In practice, this parameter usually increases as a power of two;
i.e., the first stages of the algorithm take the form:

x′i = f (...,xi−2,xi−1,xi,xi+1,xi+2, ...) (2)

x′′i = f (...,x′i−4,x
′
i−2,x

′
i,x
′
i+2,x

′
i+4, ...) (3)

x′′′i = f (...,x′′i−8,x
′′
i−4,x

′′
i ,x
′′
i+4,x

′′
i+8, ...). (4)

When this type of algorithm is to be computed by blocks of threads on the GPU, the
major difficulty is found in the computations near block boundaries. The SM method allows

4

The Split-and-Merge Method in General Purpose Computation on GPUs

Block 1 Block 2

Level 1

Level 2

Level 3

Figure 2: Application of the SM method to a multilevel algorithm. Solid lines mark the
data that can be processed independently within each block, while dashed lines mark the
data to be processed later.

each block to process data at different levels of the algorithm. The number of data that
can be processed within each block decreases with increasing level, as illustrated in Fig.
2 (in this and in the following figures, levels are arranged from bottom to top and the
butterfly diagrams, interconnecting inputs and outputs, represent the data dependencies at
each level). The partially computed results are sent back to the global memory and the
remaining computations can be carried out later by other thread blocks.

We can classify these algorithms using two different criteria: whether or not they can be
computed in-place and whether or not they require decimation as the level increases. In an
in-place algorithm, the partial results, as soon as they are computed, can be immediately
written on the positions of the input data used in their calculation. In the not-in-place
algorithms, the original data cannot be overwritten until the calculation of all partial results
has been completed. Therefore, a not-in-place algorithm requires double the amount of
memory than an in-place one. Often, an algorithm is in-place or not depending not on the
nature of the algorithm, but on how the computations are organized. We consider that an
algorithm is in-place if it is in accordance with the CUDA model; i.e., whether the algorithm
can be computed in-place using the thousands of threads that run in parallel on the GPU.
For example, according to this criteria, an algorithm that computes

x′i = f (xi−1,xi,xi+1), i = 0,1,2,3, . . . , (5)

is not-in-place because the input data xi is needed to obtain the results x′i−1, x′i and x′i+1,
which are computed by different threads. However, an algorithm that computes

x′i = f (xi−1,xi,xi+1), i = 0,2,4,6, . . . , (6)

is in-place as in this case the input data xi is only needed by the thread that computes x′i.
In algorithms without decimation, the number of data and computations is kept constant

over all levels. In algorithms with decimation, the data sequence is downsampled at each
level. Usually, a downsample factor of two is used; i.e., only half of the data from a certain
level progresses to the next one. If there is a sufficient number of levels, the decimation will
progress to achieve a single data point; i.e., the algorithm will have a pyramid-like structure.

In algorithms where the number of levels is high, it may be more efficient to apply the
SM method more than once. In this case, each split and merge stage will cover some levels
of the algorithm. This is shown in Fig. 3 for a pyramid-like algorithm. In this figure, the
levels are arranged from bottom to top, each trapezoid or triangle represents a section of

5

The Split-and-Merge Method in General Purpose Computation on GPUs

Last levels

Split 2

Split 1 Merge 1

Merge 2

5

3

2
1

4

6

7

8Levels:
9

Figure 3: Successive application of the SM method to a pyramid-like multilevel algorithm.

split or merge, respectively, each one of these sections contains a set of computations that
can be executed independently, and the width of the trapezoid or triangle at each level is
proportional to the number of computations that are performed at that level. The number
of levels which are covered by each stage is a parameter that can be adjusted to achieve
lower execution times and, in general, will depend on the number of computations and
memory accesses that are performed at each level of the algorithm. For each stage of split
and merge the data blocks should be selected to maximize the number of partial results
which can be computed with the data contained within these blocks. For example, in the
algorithms with decimation, blocks do not include data that are not required as input to
the computations of the levels.

Examples of multilevel algorithms to which the method is applicable are the wavelet
transforms and some tridiagonal system solvers. In the case of wavelet transformations
the method is applicable to both lifting and filter bank algorithms. It is also applicable to
1D and 2D transformations. For solving tridiagonal systems of equations, there is a wide
variety of resolution procedures, including the cyclic reduction and the recursive doubling
algorithms, to which the SM method is applicable. The algorithms that will be used in this
paper as models of application of the SM method are described briefly below.

The Cohen-Daubechies-Feauveau (9,7) wavelet is a transformation widely used in signal
and image processing [12]. This transformation can be computed in-place, using the known
lifting scheme, so that the partial results overwrite the input data used in their calculation
[13]. Each level in this transformation includes four lifting steps, in each of which each
partial result is computed from three data points as (scale factors are omitted):

xi+1 = xi+1 +α(xi + xi+2), i = 0,2,4, . . . , (7)

xi = xi +β (xi+1 + xi−1), i = 0,2,4, . . . , (8)

xi+1 = xi+1 + γ(xi + xi+2), i = 0,2,4, . . . , (9)

xi = xi +δ (xi+1 + xi−1), i = 0,2,4, (10)

Depending on the application, the transformation may comprise one or more levels. At
the lowest level all data are processed, but in the following levels the data processed is
half of that processed in the previous level (a quarter if the sequence is two-dimensional),

6

The Split-and-Merge Method in General Purpose Computation on GPUs

Level 2

1

Merge

Split

Block 1 Block 2
(b)

(a)

Figure 4: A two-level (9,7) wavelet (with lifting). (a) Dependency graph. (b) Application
of the SM method using two blocks.

which is called decimation. The low-frequency coefficients are passed on to the next level
for further analysis and the high-frequency coefficients are stored as a result. Moreover,
the computation of the lifting steps of the successive levels needs data from increasingly
distant positions (in Eqs. (7)-(10), i = 4k at level 2, i = 8k at level 3, etc).

The dependency graph of a two-level (9,7) wavelet is shown in Fig. 4.a, which shows
illustrating that each level consists of four lifting steps. The application of the SM method
to this transformation in the context of architecture design is presented in [9]. We shall
adapt the method so that the wavelet can be computed efficiently on GPUs using CUDA.
Fig. 4.b shows the application of the SM method to this wavelet using two blocks. The
split section obtains the partial results that can be computed independently from the data
contained within each block, while the remain operations are carried out in the merge
section.

The Daubechies D4 wavelet is a transformation that uses two filters of length 4, so that,
at each filter step, it takes four inputs and generates two partial results [14]. Then the filters
are moved two positions and two more partial results are generated. This transformation
can be computed using lifting steps as in the previous wavelet, but the following equations
represent the filter bank version:

7

The Split-and-Merge Method in General Purpose Computation on GPUs

Level 3

2

1

Split

Merge

Block 1 Block 2
(b)

(a)

...

Figure 5: A three-level D4 wavelet (filter bank). (a) Dependency graph. (b) Application
of the SM method using a not-in-place scheme.

xi = h0xi +h1xi+1 +h2xi+2 +h3xi+3, i = 0,2,4, . . . , (11)

xi+1 = h3xi−h2xi+1 +h1xi+2−h0xi+3, i = 0,2,4, (12)

In Fig. 5.a we show a dependency graph for a three-level transformation. The disad-
vantage of using a scheme without lifting is that, when the transformation is computed in
parallel using CUDA, partial results cannot overwrite the input data used in their calcu-
lation, hence it requires twice the memory than the lifting scheme. Figure 5.b shows the
application of the SM method to a two-block section of this wavelet. Since this algorithm is
not-in-place, special care must be taken during the computation of the split section to avoid
do overwriting the partial results that will subsequently be needed in the merge section.
These results must also be transferred from shared memory to global memory when the
computation of the split section is completed.

The cyclic reduction is a method for the resolution of tridiagonal systems which is widely
used on parallel computers [7]. It consists of two phases: forward reduction and backward
substitution. Each level of the forward reduction phase has a dependency graph similar
to a lifting step of the (9,7) wavelet. Each partial result is computed from three data
points located in positions with a separation power of two which increases with the level.
Moreover, all calculations can be performed in-place. In contrast to the (9,7) wavelet, the
pyramid must be computed complete; i.e., it requires log2 N levels for systems of equations
of size N.

The dependency graph for solving a system of 16 equations is shown in Fig. 6.a (in
this figure, the computations are arranged from left to right). During the forward reduction
phase, each data point represents a set of four coefficients in the system (one coefficient

8

The Split-and-Merge Method in General Purpose Computation on GPUs

copy

Split

Merge

levels
Last

Forward
reduction

Backward
substitution

B
lo

ck
 1

B
lo

ck
 2

(a) (b)

Figure 6: Cyclic reduction. (a) Dependency graph. (b) Application of the SM method
using 2 blocks.

from each diagonal and one right-hand coefficient). Fig. 6.b shows the application of
the SM method to the forward reduction phase. Since it is a complete pyramid, once
the SM method has been applied, some remaining levels must be computed additionally.
The backward substitution phase is of no interest to us since each block can be computed
independently with the additional copy of a single data point.

In the previous algorithms the data are decimated at each level. Some packet wavelet
transforms, in contrast, do not apply decimation, that is, the number of computations
remains constant throughout all levels of the algorithm. The wavelet packet transforms are
used, for example, in the calculation of the “best basis”, which is a minimal representation
of the data relative to a particular function in applications that include noise reduction and
data compression [15, 16]. In these multilevel transformations, as in the previous cases,
the distance to the locations of the input data increases exponentially (as powers of two)
with the increase of the level. In Fig. 7 we show the dependency graph of a 3-level wavelet
packet based on the D4 wavelet (filter bank). The application of the SM method to a
two-block section of this transform is shown in Fig. 7.b. Since this computation scheme
is not in-place, care must be taken in transferring the partial results computed in the split
section that will be needed after in the merge section from the shared memory to the global
memory.

3 Implementation of the SM method on the GPU

In this section we present the implementation details of the SM method on the graphics
card, taking into account the parameters that influence the performance of the algorithms
on the GPU: number of levels in each section, use of the memory spaces, reduction of the
number of threads, and size of the split and merge sections. In a direct implementation of

9

The Split-and-Merge Method in General Purpose Computation on GPUs

1

Level 3

2

Merge

Split

Block 1 Block 2
(b)

(a)

Figure 7: A 3-level packet D4 wavelet (filter bank). For clarity, only half of each butterfly
is shown. (a) Dependency graph. (b) Application of the SM method.

the multilevel algorithms on GPUs, each level of the algorithm can be computed by calling a
kernel (there will be the same number of calls as there are levels). This is possible because
there is a global synchronization of all threads between calls to kernels. The drawback of
the direct implementation is that in each level that comprise the algorithm all input data
is read and all partial results are written in the global memory, slower.

The SM method allows an efficient use of the memory spaces of the GPU. Specifically, we
can compute several levels of the algorithm with the data contained in the shared memory,
faster. The data transfer between global memory and shared memory is performed only at
the beginning and end of the split section. All intermediate operations can be performed
with the data stored in the shared memory of the blocks. The merge section, although it
often requires fewer operations than the split section, also can be computed in this way.

In Fig. 8 we show the execution times and speedups for the algorithms described in the
previous section on the GPU, comparing the direct implementation in global memory with
the one based on the SM method, for different problem sizes. We show the results obtained
for the (9,7) wavelet (with lifting), the cyclic reduction method of resolution of tridiagonal
systems, the D4 wavelet (filter bank), and the packet D4 wavelet (filter bank). The speedup
shown is calculated by dividing the execution time of the direct implementation in global
memory by that of the SM version. The graphics card used is an Nvidia GTX 480 with
1538 MB of memory and the block size is set to 256 threads. For a problem size of 220 the
speedups obtained are 4.01x, 2.12x, 1.92x, and 1.40x, respectively. As an example, taking
as base the sequential implementations in CPU (on one core of an Intel Q9450 at 2.66 GHz
in Linux, compiled with gcc with the O3 optimization) the speedups of the SM versions are
35.7x, 57.2x, 25.6x, and 55.6x, respectively.

10

The Split-and-Merge Method in General Purpose Computation on GPUs

(9,7) wavelet
(8 levels, lifting)

Cyclic reduction

D4 wavelet
(8 levels, filter bank)

Packet D4 wavelet
(4 levels, filter bank)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 10 12 14 16 18 20
Size (2^n)

"global"
"SM"

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 12 14 16 18 20
Size (2^n)

"global"
"SM"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 12 14 16 18 20
Size (2^n)

"global"
"SM"

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 12 14 16 18 20
Size (2^n)

"global"
"SM"

T
im

e
(m

s)

speedup

1

2

3

4
T

im
e

(m
s)

2

1

0

3

T
im

e
(m

s)

speedup
T

im
e

(m
s) 2

S
p

eed
u

p

5

S
p

eed
u

p

0

3

1

speedup

S
p

eed
u

p

0

1

2speedup

S
p

eed
u

p

Figure 8: Execution times (left scale) and speedup (right scale) of several algorithms with
direct implementation (in global memory) and using the SM method on a GPU Nvidia 480
GTX.

Next, we turn to study in detail the parameters that can be adjusted in the SM method
to render the implementation more efficient. Table 1 shows, for different values of the
parameters, the execution times of a 8-level (9,7) wavelet of size 220, and Table 2 shows
the same for the algorithm cyclic reduction of a system of 220 equations. The first two
rows of the tables show the execution times of direct implementations that use only global
memory, while the remaining rows show the execution times obtained using the SM method
with different parameters. The speedup values are calculated taking as reference the direct
implementation on GPU (global memory and T = 1, first row in the table). The adjustable
parameters are explained below.

The measurements were performed on three different Nvidia cards: 9800 GT (1 GB of
RAM), 295 GTX (900 MB), and 470 GTX (1538 MB). The 9800 GT has 14 multiprocessors
and 112 CUDA cores, 16 kB of shared memory per multiprocessor, 1.5 GHz processor clock,
and 57 GB/s memory bandwidth. The GTX 295 has 30 multiprocessors, 240 CUDA cores,
16 kB of shared memory per multiprocessor, 1.2 GHz processor clock, and 112 GB/s memory
bandwidth (per GPU). Finally, the GTX 480 has 15 multiprocessors and 480 CUDA cores,
48 kB of shared memory and 16 kB of L1 cache (or vice versa) per multiprocessor, 1.4
GHz processor clock, and 177 GB/s memory bandwidth. The maximum number of resident
blocks per multiprocessor is 8, while the maximum number of threads per block is 512 for
the two first GPUs and 1024 for the GTX 480. Codes were written in C using the version
3.2 of Nvidia CUDA and executed under Linux.

Performance measures were obtained as an average of one thousand executions of each
algorithm. The time associated with the data transfer between CPU and GPU memory,
which is the same for all algorithms, is not included in the execution times. This time
can be ignored if the wavelet is used as one step in a large computational algorithm fully
executed on the GPU.

11

The Split-and-Merge Method in General Purpose Computation on GPUs

Type L Split Merge T 9800 GT 295 GTX 470 GTX
Global 1 - - 1 12.63 (1.00x) 4.26 (1.00x) 1.94 (1.00x)
Global 1 - - 1/2 16.06 (0.79x) 3.95 (1.08x) 1.10 (0.97x)
SM 1 Shared Shared 1 2.75 (4.59x) 0.95 (4.49x) 0.63 (3.11x)
SM 1 Shared Shared 1/2 2.41 (5.25x) 0.81 (5.29x) 0.53 (3.66x)
SM 1 Shared Global 1 3.48 (3.63x) 1.37 (3.16x) 0.85 (2.30x)
SM 1 Shared Global 1/2 2.86 (4.42x) 1.08 (3.94x) 0.64 (3.03x)
SM 2 Shared Shared 1 2.39 (5.29x) 0.92 (4.62x) 0.53 (3.70x)
SM 2 Shared Shared 1/2 1.70 (7.46x) 0.72 (5.93x) 0.42 (4.60x)
SM 2 Shared Global 1 3.55 (3.56x) 1.44 (2.95x) 0.87 (2.24x)
SM 2 Shared Global 1/2 2.36 (5.35x) 1.05 (4.04x) 0.58 (3.36x)
SM 4 Shared Shared 1 4.46 (2.83x) 1.61 (2.64x) 0.72 (2.72x)
SM 4 Shared Shared 1/2 2.75 (4.60x) 1.05 (4.07x) 0.49 (3.94x)
SM 4 Shared Global 1 5.56 (2.27x) 2.10 (2.03x) 1.27 (1.53x)
SM 4 Shared Global 1/2 3.37 (3.75x) 1.46 (2.92x) 0.74 (2.61x)

Table 1: Execution times (in milliseconds) and speedups of different implementations of
the (9,7) wavelet of size 220, 8 levels, with lifting, computed on GPU using blocks of 256
threads.

Type L Split Merge T 9800 GT 295 GTX 480 GTX
Global 1 - - 1 15.15 (1.00x) 5.47 (1.00x) 3.32 (1.00x)
Global 1 - - 1/2 19.62 (0.77x) 4.91 (1.11x) 3.40 (0.98x)
SM 4 Shared Shared 1 5.07 (2.99x) 2.58 (2.12x) 1.40 (2.37x)
SM 4 Shared Shared 1/2 4.88 (3.10x) 2.36 (2.32x) 1.33 (2.50x)
SM 4 Shared Global 1 4.94 (3.07x) 2.78 (1.97x) 1.55 (2.14x)
SM 4 Shared Global 1/2 5.59 (2.71x) 2.54 (2.15x) 1.44 (2.31x)

Table 2: Execution times (in milliseconds) and speedups of different implementations of
the cyclic reduction algorithm of a system of 220 equations computed on GPU using blocks
of 256 threads.

12

The Split-and-Merge Method in General Purpose Computation on GPUs

Number of levels in the split and merge sections

As explained in section 2, when the number of levels of the algorithm is high, it may be
more efficient to apply the SM method several times in succession. In the case of the (9,7)
wavelet, this can be seen in the second column of Table 1, where L specifies the number
of levels that includes each stage SM. When L = 1 each stage SM covers one level (eight
stages SM are performed in total since the wavelet of the example has eight levels), when
L = 2 there are four stages SM of two levels each, and when L = 4 there are two stages
of four levels each. For this wavelet, the lowest execution time was achieved for L = 2.
In other algorithms it will depend on the number of computations that each level includes
and on the number of data having to be accessed from memory. In the cyclic reduction
algorithm, the most efficient case is L = 4.

Use of global or shared memory in the merge section

The merge section covers the computations that cannot be performed in the split section
with the data contained within a block. Therefore, in principle, the merge section performs
a smaller number of computations than the split section does. In some cases it may be
advantageous to compute the merge section in global memory. In column 4 of Tables 1 and
2 we compare the performance of the implementations with the merge section computed in
global memory and in shared memory. In almost all these cases, lower computation times
are achieved by also computing the merge section in shared memory.

Reduction of the number of threads

In some multilevel algorithms each stage of computation generates a number of partial
results which is half the number of data used for their calculation. This can be seen
in each lifting step of the (9,7) wavelet (shown in Fig. 4.a) and in each level of the
cyclic reduction (Fig. 6.a). In a direct implementation of such algorithms on the GPU,
while all threads cooperate in accessing data from global memory, only half of the threads
carry out computations. In some cases performance may be increased by halving the
number of threads. Each thread will perform twice the number of memory accesses than
in the previous case but the same number of arithmetic operations. The sequencing of the
accesses to global memory (which is otherwise limited by the bandwidth of the bus) can
be compensated by the absence of idle threads. The advantages of this strategy can be
seen in column 5 of Tables 1 and 2, where T=1 indicates that the number of threads is the
same as in the original implementation and T=1/2 that the number of threads is halved.

Size of the split and merge sections

Until now we have considered that the split section performs the maximum number of
computations that can be done with the data contained within each block and that the
merge section performs the remaining computations. This is not the only alternative, as
there is also the possibility of moving part of the computations from the split section to
the merge section. This is shown in Fig. 9, where the parameter W adjusts the respective
widths of the split and merge sections. The execution times obtained for different values
of W are shown in Table 3. It can be seen that the times obtained are very similar in most

13

The Split-and-Merge Method in General Purpose Computation on GPUs

W

Merge

W=0

Split

Merge

Split

Figure 9: Two possible sizes for the split and merge sections. The upper part of the figure
shows the case where the width of the merge section is the minimum possible (W = 0),
while the bottom shows a case W 6= 0.

(9,7) wavelet Cyclic reduction
W 9800 GT 295 GTX 480 GTX 9800 GT 295 GTX 480 GTX
0 1.70 0.72 0.42 4.88 2.36 1.33

16 1.97 0.74 0.43 11.93 2.41 1.36
32 2.03 0.71 0.43 6.77 2.34 1.37
64 2.18 0.70 0.41 7.45 2.35 1.32

128 2.35 0.71 0.38 10.16 2.36 1.30

Table 3: Execution times (in milliseconds) for different sizes of the split and merge sections.

cases. This result could be expected as the number of operations is the same in all cases,
although with different distribution of operations between the split and merge sections. For
example, for the (9,7) wavelet computed on the 295 GTX and for W = 0, the split section
consumes 640 µs and the merge section 82 µs, while for W = 128, these times are 491
and 220 µs, respectively.

4 Extension of the SM method to two dimensions

The SM method can be extended easily to the two-dimensional case. In this section we
analyze the performance of different partitioning schemes of a 2D sequence on the GPU.
As a model of 2D multilevel algorithm, we consider the 2D wavelet transformation. The
basic scheme of computation of the transformation of a 2D data sequence is the row-
column decomposition. This scheme consists of two phases, an initial one that computes
one-dimensional transformations on each of the rows, and a second one which does the
same on each of the columns. An alternative scheme, known as square decomposition,
alternates and combines computations on rows and columns. When the 2D transformation
is performed on the GPU, the factor that most influences the performance is the distribution
of computations among the blocks of threads.

Fig. 10 shows three possible partitioning schemes of the 2D array of data among the
blocks of threads, suitable for an implementation with global memory. The first scheme

14

The Split-and-Merge Method in General Purpose Computation on GPUs

rows and columns
Horizontal blocks in both, Square blocks in rows

and columns
Horizontal blocks in rows,
vertical blocks in columns

Figure 10: Three different partitioning schemes of a 2D transform on the GPU using global
memory. They use the row-column decomposition and different types of partitions of rows
and columns among the blocks of threads.

involves an initial phase of partition of the rows in horizontal blocks followed by a second
phase of partition of the columns in vertical blocks. The shaded rectangles in the figure
shows each of these blocks. This partitioning results in a poor implementation as the
vertical blocks of threads have highly inefficient memory access patterns. The second
approach solves this problem by carrying out the block partition of the second phase in the
same way as in the first one; i.e., using horizontal blocks also for the columns. Thus the
threads of a block perform access to memory data maintaining coalescence and minimizing
the stride [2]. In the row transformation phase, each block will perform the transformation
of part of a row. However, in the column transformation phase, each block will compute in
parallel a partial result of a set of columns. Finally, the third scheme shows a row-column
decomposition with square blocks. Depending on the size of the blocks, the efficiency of
this scheme may be similar to that of the previous one.

The application of SM method to the 2D transformation enables us to make efficient
use of the shared memory. In Fig. 11 we show two partitioning schemes that use the SM
method. In the left-hand part of the figure, the SM method is applied to a row-column
decomposition taking horizontal blocks for the rows and square blocks for the columns.
In the row transformation phase, the split and merge operations are carried out in shared
memory in the same way as the one-dimensional sequences. The column transformation is
carried out in square blocks, using the SM method in parallel on multiple columns. The
right part of the figure, by contrast, implements a square decomposition. The 2D data
sequence is partitioned into square blocks, and a single split section is computed using the
data stored in the shared memory of each block, transforming both rows and columns.
Next, two merge sections are computed, an initial one that completes the transformation of
the rows and a second one which completes the columns. Table 4 shows the execution times
obtained for the different implementations, where can be seen that the two SM schemes

15

The Split-and-Merge Method in General Purpose Computation on GPUs

square blocks in columns
horizontal blocks in rows,
SM in row−column

Merge 2

Split

Merge 1

Detail

SM in square decomposition

Figure 11: Two partitioning schemes of a 2D transform on the GPU using the SM method.

Type Rows Columns 9800 GT 295 GTX 480 GTX
Global 256×1 1×256 572.05 (1.00x) 132.70 (1.00x) 20.32 (1.00x)
Global 256×1 256×1 44.52 (12.9x) 11.92 (11.1x) 4.94 (4.12x)
Global 16×16 16×16 44.52 (12.8x) 10.80 (12.3x) 5.21 (3.90x)
SM 256×1 16×16 12.47 (45.9x) 4.33 (30.7x) 2.25 (9.03x)
SM 16×16 16×16 14.95 (38.3x) 3.77 (35.2x) 2.43 (8.41x)

Table 4: Execution times (in milliseconds) and speedups for the (9,7) wavelet of size
2048× 2048, 4 levels, with lifting, computed on GPU using blocks of 256 threads. We
specify the geometry of the blocks in the phases of transformation of rows and columns.

give similar performance. The lower speedup in the GTX 480 compared to other GPUs is
due to this model having a L1 cache which allows data reuse even in algorithms that do no
use the shared memory.

5 Comparison with previous proposals

The mapping of the wavelet transform on modern GPUs has been explored in several works.
Tenllado et al. [17] present the implementation of five wavelet families comparing the actual
performance of the filter bank and lifting schemes. The analysis is strictly focused in 2D
using a strategy of row-column decomposition. The 3D graphics API OpenGL is used to
organize data into streams, transfer those data streams to and from the GPU as 2D textures,
upload kernels, and perform the sequence of kernel calls dictated by the application flow.
A high level shading language, Cg, is used to code the fragment programs. In the filter
bank scheme, the horizontal kernels read from the top half of the allocated texture and
write into the bottom half, splitting the image into left-hand and right-hand boundaries and
inner columns. The vertical filtering is analogous to the horizontal filtering but the image
is divided into upper and lower boundaries and inner rows. Downsampling is performed by

16

The Split-and-Merge Method in General Purpose Computation on GPUs

Wavelet [17] [18] SM
D4, FBS, 5 levels 9.12 - 8.53
D4, LS, 5 levels 17.9 - 9.67
(9,7), FBS, 5 levels 16.5 - 16.15
(9,7), LS, 5 levels 20.7 - 14.37
D4, FBS, 1 level - 4.41 3.77
D4, LS, 1 level - 8.05 6.02

Table 5: Execution times (in milliseconds) of 2D wavelet transforms of size 4 megapixels.
The GPUs used are: 7800 GTX in [17], C870 in [18], and 8800 GTS in SM.

specifying input areas that are twice as large as the output ones. In the lifting scheme,
every lifting step is performed by a different kernel, and the CPU main program chains and
serializes these kernels to satisfy data dependencies.

Table 5 (column 2) shows the execution times obtained by these authors for the 2D
wavelet transform using the lifting scheme (LS) and the filter bank scheme (FBS). In
this same table (in column 4) we also include the times obtained by our implementation,
although the execution conditions are not exactly the same. In [17] the experiments were
performed on an Nvidia 7800 GTX (the most powerful model of the 7th generation GeForce
by Nvidia) and the programming model is based on OpenGL and Cg. Since this generation
of GPU does not support CUDA, the table shows the times obtained by our implementation
on an Nvidia 8800 GTS (which is the second most powerful model of the 8th generation).
The experiments consist of computing five levels of transformation on matrices of size 4
megapixels (2048× 2048 in our case). The SM algorithm is slightly more efficient in the
case of the filter-bank scheme while the efficiency is higher for the lifting scheme since, in
this case, the SM method saves a greater number of accesses to the global memory.

Franco et al. [18] compute the 2D wavelet transform using the row-column decompo-
sition with a matrix transposition as an intermediate step between the transformations of
rows and columns. This solves the problem of non-coalesced accesses to the global memory
during the transformation of the columns. They also carry out a comparison between the
filter bank and lifting schemes. The implementation was done in CUDA using, in the case
of the lifting scheme, a kernel for each lifting step. Table 5 (column 3) shows the execu-
tion times obtained by the authors on an Nvidia Tesla C870. It is a high-end GPU from
the Nvidia G80 processor. We compare these execution times with those obtained by our
implementation on an Nvidia 8800 GTS, which is a commodity card of the same generation
with slightly lower performance. The experiments consist of one level of transformation on
matrices of size 2048×2048.

There are not many implementations in the bibliography of tridiagonal systems solvers
on the GPU using shared memory. An implementation of cyclic reduction on GPU is
presented in [19], but this solution is designed to solve hundreds of tridiagonal systems in
parallel with 512 equations at most. In the case of a single large system, the SM method,
or some other similar technique, would need to be applied to divide the system among the
blocks of threads and solve the data dependency problem at the block boundaries. Hence
the results obtained by these authors are not comparable to those presented in this paper.

17

The Split-and-Merge Method in General Purpose Computation on GPUs

6 Conclusions

In this work we have presented a study of the split-and-merge method in the context of
general purpose computation on GPU. In particular, we have considered the (9,7) wavelet
(lifting version), the cyclic reduction method of resolution of tridiagonal systems, the D4
wavelet (filter bank version), and the packet D4 wavelet. These algorithms were selected
because they represent a wide variety of multilevel algorithms: in-place and not-in-place,
with and without decimation, pyramid-like, etc. Therefore, the method is general enough
to be applicable to any algorithm of this type.

The method allows us to solve the data dependency problem at the block boundaries in
the CUDA parallel programming model. In this way, we can efficiently exploit the thousands
of threads running in parallel on the GPU and make extensive use of the shared memory,
which is faster that the global one. In the study we have taken into account the different
parameters that influence the performance of the algorithms on the GPU, such as the size of
the split and merge sections, the use of the memory spaces and the reduction of the number
of threads. We have also considered the extension of the method to the two-dimensional
case. The comparison with previous works shows a reduction of the execution time of the
algorithms associated with a suitable partition of the data in the shared memory of the
GPU.

Furthermore, this method could be extended to compute a more general class of al-
gorithms, including those which consist of several stages with data dependencies between
them, efficiently on the GPU. In order to exploit the memory hierarchy of the GPU, it
could be advantageous to begin computing the subsequent stages before completing the
previous stages. Operations that cannot be performed with the available data within the
thread blocks can be completed later, as long as the partially computed results are stored
in the global memory of the GPU. The exploitation of shared memory (and in general, of
the memory hierarchy) usually provides positive results on the GPU.

References

[1] Nvidia CUDA Programming Guide. Version 2.0, 2010.

[2] Nvidia CUDA Best Practices Guide. Version 3.0, 2010.

[3] R.C. Gonzalez and R.E. Woods, Digital Image Processing, Prentice Hall, 2007.

[4] T.J. Barth, T. Chan, and R. Haimes (Eds.), Multiscale and Multiresolution Methods:
Theory and Applications, Springer, 2001.

[5] N.A. Dodgson, M.S. Floater, and M.A. Sabin (Eds.), Advances in Multiresolution for
Geometric Modelling, Springer, 2004.

[6] S. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Repre-
sentation, IEEE Trans. Pattern Anal. Machine Intell., 11 (1989) 674-693.

[7] S. Allmann, T. Rauber, and G. Runger, Cyclic Reduction on Distributed Shared Mem-
ory Machines, in Proc. 9th Euromicro Workshop on Parallel and Distributed Process-
ing, (2001) 290-297.

18

The Split-and-Merge Method in General Purpose Computation on GPUs

[8] P. González, J.C. Cabaleiro, and T.F. Pena, Parallel Computation of Wavelet Trans-
forms Using the Lifting Scheme, Journal of Supercomputing, 18 (2001) 141-152.

[9] W. Jiang and A. Ortega, Lifting Factorization-Based Discrete Wavelet Transform Ar-
chitecture Design, IEEE Trans. Circuits and Systems for Video Technology, 11 (2001)
651-657.

[10] Pablo Quesada-Barriuso, J. Lamas-Rodŕıguez, D.B. Heras, M. Bóo, and F. Argüello,
Selecting the Best Tridiagonal System Solver Protected on Multi-Core CPU and GPU
platforms, Proceedings of PDPTA’11 - 17th Int’l Conference on Parallel and Dis-
tributed Processing Techniques and Applications, 2001.

[11] Press et al., Numerical Recipes in C: the Art of Scientific Computing, Cambridge
University Press, 1992.

[12] A. Cohen, I. Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly sup-
ported wavelets, Communications on Pure and Applied Mathematics, 45 (1992) 485-
560.

[13] I. Daubechies and W. Sweldens, Factoring Wavelets Transforms into Lifting Steps, J.
Fourier Anal. Appl., 4 (1998) 247-269.

[14] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.

[15] F.G. Meyer, A.Z. Averbuch, and J.-O. Stromberg, Fast Adaptive Wavelet Packet Image
Compression, IEEE Trans. Image Processing, 9 (2000) 792-800.

[16] P.E. Tikkanen, Nonlinear Wavelet and Wavelet Packet Denoising of Electrocardiogram
Signal, Biological Cybernetics, 80 (1998) 259-267.

[17] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado, Parallel Implementation of
the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus
Lifting, IEEE Trans. Parallel and Distributed Systems, 19 (2008) 299-310.

[18] J. Franco, G. Bernabe, J. Fernandez, M.E. Acacio, and M. Ujaldon, The GPU on the
2D Wavelet Transform. Survey and Contributions, in Proc. Para 2010: State of the
Art in Scientific and Parallel Computing, Extended Abstract No. 264J, 2010.

[19] Y. Zhang, J. Cohen, and J.D. Owens, Fast Tridiagonal Solvers on the GPU, in Proc. of
the 15th ACM SIGPLAN Symposium on Principles and Practice of parallel program-
ming, (2010) 127-136.

19

The Split-and-Merge Method in General Purpose Computation on GPUs

Author biographies

1. Francisco Argüello received the BS and PhD degrees in Physics from the University
of Santiago, Spain in 1988 and 1992, respectively. He is currently an Associate Pro-
fessor in the Department of Electronic and Computer Engineering at the University of
Santiago de Compostela, Spain. His current research interests include signal and im-
age processing, computer graphics, parallel and distributed computing, and quantum
computing.

2. Dora B. Heras received a MS degree in Physics in 1994 and a PhD in 2000 from the
University of Santiago de Compostela (Spain). She is currently an Associate Professor
in the Department of Electronics and Computer Engineering at the same University.
Her research interests include parallel programming for irregular codes, performance
analysis and improvement, specially regarding the behavior of irregular codes on the
memory hierarchy, and computer graphics for high performance computing.

3. Montserrat Bóo received the BS and PhD degrees in Physics from the University
of Santiago de Compostela (Spain) in 1993 and 1997, respectively. Currently she
is Associate Professor in the Department of Electronics and Computer Eng. at the
University of Santiago de Compostela. Her interests are in the area of VLSI digital
signal and image processing, computer graphics, GPGPU and computer arithmetic.

4. Julián Lamas-Rodŕıguez received his BS degree in Computer Engineering from the
University of Coruña, Spain, and his MS in Videogame Creation from the University
Pompeu-Fabra in Barcelona, Spain, both in 2006. In 2009 he joined the Computer
Architecture Group of the Department of Electronics and Computer Science in the
University of Santiago de Compostela, where he is currently pursuing the PhD degree
in Information Technologies. The scope of his research is centered in high performance
computing using graphics processors.

20

	Introduction
	The split-and-merge method
	Implementation of the SM method on the GPU
	Extension of the SM method to two dimensions
	Comparison with previous proposals
	Conclusions

