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Abstract. How to exploit spatio-temporal information in video to
improve the object detection precision remains an open problem. In
this paper, we boost the object detection accuracy in video with short-
and long-term information. This is implemented with a two-stage
object detector that matches and aggregates deep spatial features
over short periods of time combined with a long-term optimization
method that propagates detections’ scores across long tubes. Short-
time spatio-temporal information in neighboring frames is exploited
by Region-of-Interest (RoI) temporal pooling. The temporal pooling
works on linked spatial features through tubelets initialized from an-
chor cuboids. On top of that convolutional network, a double head
processes both temporal and current frame information to give the fi-
nal classification and bounding box regression. Finally, long-time in-
formation is exploited linking detections over the whole video from
single detections and short-time tubelets. Our system achieves com-
petitive results in the ImageNet VID dataset.

1 INTRODUCTION

Object detection has been one of the most active research topics in
computer vision for the past years. Although object detection accu-
racy in images has improved significantly based on Convolutional
Neural Networks (CNN), the use of temporal information in videos
to boost the detection precision or to perform action recognition is
still an active research area.

The simplest way to detect objects in video is to execute an object
detection framework at frame level that only uses spatial informa-
tion. The main issue with this approach is that it does not exploit the
temporal information available in videos to address challenges such
as motion blur, occlusions or changes in objects appearance at certain
frames.

Object detection frameworks implement two main tasks: bound-
ing box regression and object classification. The bounding box re-
gression in a given frame is highly related with the spatial informa-
tion available in that frame. However, the appearance of one object
in previous frames might provide valuable information to classify the
object in the present frame. This brings about the problem of how de-
tections in different frames are linked and how the system aggregates
this spatio-temporal information.

State-of-the-art object detection frameworks are based on two ma-
jor approaches: one stage and two stage architectures. In one stage
methods [21], [23], the network head has to process a dense set of
candidate object locations, with a high imbalance between objects of
interest and background examples. Two stage frameworks [9], [10],
[24] address this issue adding an object proposal method as the first
stage that filters out most of the background candidate locations.
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Then, the network head refines the proposal set. We develop a two
stage spatio-temporal architecture in which the proposals generated
by the first stage are also used to propagate information from previ-
ous frames.

This paper proposes a novel method that extends the Faster R-
CNN [24] framework to use both temporal and spatial information to
enhance the network classification accuracy. Our deep convolutional
network can be trained end to end. Also, it implements a double head
approach [29], one of the branches to process temporal information,
and another to deal with spatial data. As the network is built on the
Feature Pyramid Network (FPN) [19] backbone, the design is more
complex than single-scale approaches, as it requires to add a multi-
ple Region Proposal Network (RPN) and a multiple level Region of
Interest (RoI) feature extraction.

The main contributions of this work are:

• A tubelet proposal method that works with FPN models dealing
with multiple Region Proposal Networks (RPN) and extracting
RoI features at different pyramid levels. As far as we know, this
is the first spatio-temporal framework with a multiple level back-
bone such as FPN.

• A temporal propagation method of spatial features: the proposed
network includes a method that aggregates spatial information
from the previous N frames. This method summarizes the infor-
mation in order to provide an output feature map with the same
size as if the network was working with a single frame. There-
fore, the processing time of the network head remains constant,
independently of N .

• A spatio-temporal double head. One branch of the network head
calculates the final bounding box regression and the first guess
about the object class probabilities based on the information ex-
tracted from the current frame. The other branch complements the
classification output using the accumulated information through
the previous N frames, including the current one. This improves
the object classification task, not only allowing to distinguish bet-
ter among different object categories, but also between object and
non-object.

• A long-term optimisation method creates long tubes that associate
object instances throughout the video, rescoring all detections be-
longing to the same tube. Standard linking algorithms match de-
tections in one frame with the next one, being unable to give a
complete tube if some detections are missed. To overcome this,
our linking algorithm uses the tubelets initially calculated by the
convolutional network to join broken fragments of the same tube.

2 RELATED WORK

Single image object detection. State-of-the-art single frame ob-
ject detectors follow two main approaches: two stage and one stage
architectures.
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Two stage architectures were first popularized by R-CNN [10].
This method takes a precalculated object proposal set and then ap-
plies a deep CNN to extract per region features to perform object
classification. This method was improved in Fast R-CNN [9], adding
a RoI pooling layer that allows to run a per image CNN instead of
per region. This work also modifies the network header to calculate
both object classification and bounding box regression to refine the
proposals. This way, all backbone computations can be reused, im-
proving the execution time. All these methods rely on a region pro-
posal method independent of the network. This issue is addressed in
Faster R-CNN [24], defining a Region Proposal Network (RPN) that
performs the proposal generation task based on the same deep fea-
tures used by the network head for object classification and bound-
ing box regression. The R-FCN object detector [2] re-implements the
network header avoiding the fully connected layers used by previous
work. Instead, it follows a fully convolutional approach changing the
RoI pooling by a position sensitive RoI pooling.

One stage detectors such as SSD [21] and YOLO [23] do not refine
a previously calculated proposal set. Instead, they generate a dense
grid of bounding boxes and directly calculate the final detection set.
Having a dense set of proposals increases the imbalance between
object of interest and background examples due to the lack of a first
step that filters most of the negative proposals. Recent works [20]
try to overcome this problem modifying the cost function to prevent
easy examples from having a huge impact on the network training
process.

Video object detection. The recently introduced ImageNet object
detection from videos (VID) challenge has brought significant atten-
tion over the video object detection problem. Still, how temporal in-
formation available in videos should be used to improve the detection
performance remains an open problem.

Two-stream networks such as [1], [4], [5] or [27] have become the
standard approach in action recognition. One of the branches pro-
cesses video frames, while the other one takes precomputed dense
optical flow frames as input. Diba et al. [3] proposes an end to end
model able to extract temporal features in inference time by training
the network with optical flow images. Although action recognition
is a related problem, the benefits of adding optical flow information
to spatio-temporal object detectors might not be straightforward. To
be able to distinguish some action classes such as ”sitting down”
and ”getting up”, motion information given by optical flow might be
crucial. This is not so evident in object detection. This can be seen
in [14], that uses the same architecture for object detection and ac-
tion recognition, showing how traditional fusion methods work for
actions but not for objects.

Still, optical flow has been proven successful in [34] for object
detection. In this case, optical flow information finds feature corre-
spondences in consecutive frames rather than providing motion cues
for classification. These correspondences are used to aggregate spa-
tial features over time. Since our framework is based on a two-stage
architecture, we can extract RoI feature maps with a fixed size cen-
tered on the object applying RoI Align [12]. Associating proposals
in consecutive frames allows us to directly associate features in the
same position of each feature map in consecutive frames, avoiding
the usually long calculation time of optical flow.

Short-term object linking making up tubelets has become a widely
adopted technique in video object detection. Object tracking has been
used to link detections generated by a frame level object detector in
[17]. T-CNN [16] works on two single frame detectors and also ap-
plies tracking to link these detections over time. A slightly different

approach is presented in [15], replacing the tracking algorithm by a
Tubelet Proposal Network. Firstly, this network takes proposals for
the first frame and extracts features applying the same static proposal
across the time. Then, the pooled features are employed to calculate
the bounding box displacement in each frame to build the tubelet
proposal.

Alternatively, the idea of anchor box in single frame object de-
tectors can be extended to the spatio-temporal domain. This idea is
implemented in the ACT-detector [13] for action recognition and in
[28] for spatio-temporal object detection. A Cuboid Proposal Net-
work (CPN) was defined in [28] as the first step for short tubelet
detection. We implement a similar idea, where each anchor box in
the anchor cuboid is regressed independently by the corresponding
RPN using information from one frame.

Feichtenhofer et al. [6] perform tracking and object detection si-
multaneously using a multi-task objective training. They use tracking
information as input to a long-term object linking algorithm to build
long tubes, and aggregate detection scores throughout the tube. Sim-
ilar methods have been adopted by [28], linking small tubelets by
the overlap of detections in the same frame instead of tracking, and
by T-CNN [16] with a post processing tracking method. We extend
this idea exploiting short-term information to overcome missed de-
tections, being able to build larger tubes. In doing so, we only use
object proposals and detections given by the network without any
tracking method to aid the object linking.

3 SPATIO-TEMPORAL FRAMEWORK

The proposed framework is a two stage spatio-temporal object de-
tector able to improve the accuracy in each frame t by taking as in-
put a sequence of N frames ft−N−1, ..., ft−1, ft. Figure 1 shows
an overview of our network architecture. Although we will describe
the framework in this paper based on the Feature Pyramid Network
(FPN) backbone [19], the same ideas can be easily applied to single
scale models. In fact, working with FPN is a more complex approach
because of the multiple Region Proposal Network (RPN).

Our network backbone shares the convolutional weights among all
input frames. Therefore, ft−1 at time t becomes ft−2 at time t + 1,
and so on. This reduces the impact of increasing the number of input
frames in the system performance.

In our network architecture, initially, tubelets are sequences of N
anchor boxes, one per frame, in the same position, with the same area
and aspect ratio. Then, each RPN modifies the anchor box indepen-
dently in each frame with features from the corresponding backbone
(Section 3.1). We also use shared weights for the RPN throughout
all input frames, so the RPN bounding box regression and classifi-
cation can also be reused following the same strategy explained for
the backbone. As a result, this process outputs a set of tubelet pro-
posals that must be filtered to remove the spatially redundant ones.
To do that, we add a Tubelet Non-Maximum Suppression (T-NMS)
[28] algorithm on top of the RPNs. The tubelet generation is further
addressed in Section 3.1.

Having the tubelet proposals and the backbone features, the RoI
Align method [12] extracts a per frame and per tubelet feature map
of fixed size. Figure 1 shows the most general case in which we have
a multiple scale backbone applying RoI Align at different levels (3
levels in the figure). The RoI Align result is a fixed size feature map
centered on the object and, therefore, features can be directly associ-
ated by position and propagated from neighboring frames. By doing
this aggregation after the RoI Align method, we work with summa-
rized data, so small changes in the object appearance in some frames
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Figure 1. Network architecture. Since we use the same backbone weights for every frame, feature maps computed previously can be reused (lighter
“Backbone” boxes). In this example, we have multiple RPNs and we extract RoI features at different pyramid levels. Bounding box proposals style border

represent that the bounding boxes belong to the same tubelet.

do not have a significant impact in the output feature map.
Then, we apply a Temporal Pooling operator that takes as input

a joined feature map from all RoI Align outputs associated with the
same tubelet. As Figure 1 shows, this feature map has as joined di-
mension N times the original RoI Align size in every frame. The
Temporal Pooling method reduces this dimension to a fixed size in-
dependently of N . Section 3.2 describes the joining and pooling pro-
cesses in more detail.

Lastly, we introduce a double head approach to process both the
current frame and the spatio-temporal information (Section 3.3). The
spatial branch is fed by the RoI Align output in the current frame,
while the spatio-temporal branch takes the Temporal Pooling output.
This network can be trained end-to-end without heavily engineered
proposals.

Object detections are linked, making up long tubes. The linking
algorithm employs short-term information given by tubelet associa-
tions to grow the tubes. Classification score is propagated throughout
each object tube, updating detections belonging to it (Section 3.4).

3.1 Tubelet proposals

The original Faster R-CNN model [24] works with a set of k anchor
boxes at each sliding position W × H , generating W × H × k an-
chors in total. The network tubelets are initialized as a sequence of
N anchor boxes, generating anchor cuboids [13]. Each anchor box
in the anchor cuboid represents the same anchor in the same position
for all frames. Therefore, the final number of anchor cuboids remains
the same as the original number of anchor boxes in the single frame
approach.

The FPN (Feature Pyramid Network) backbone [19] distributes
the anchor boxes among the RPNs by area. Thus, each anchor
cuboid is mapped to a pyramid level according to its anchor boxes
area to be processed by the corresponding RPN. In our implemen-
tation, every single anchor box bi in the anchor cuboid sequence
(bt−N−1, ..., bt−1, bt) is regressed independently in its correspond-
ing frame by each RPN. This means that, the RPN can resuse the
bounding box regression calculations for bi ∈ (bt−N−1, ..., bt−1),
and only needs to calculate bt at each time instant.

The proposed method generates spatially redundant tubelets in the

same way the single-frame approach does with box proposals. Never-
theless, a per frame and per RPN non-maximum suppression (NMS)
might break the tubelets, removing some of their bounding boxes.
Instead, we apply an extension of the NMS algorithm called Tubelet
Non-Maximum Suppression (T-NMS) proposed by [28] that discards
redundant tubelet proposals. To do that, we define both the tubelet
score and the overlap metric.

The score of a given tubelet τi is calculated as:

ts(τi) = mean(bst−N−1
i , bst−1

i , ..., bsti). (1)

being bis the score associated with the proposal b at frame i.
The overlap between a pair of tubelets τi and τj is defined as:

overlap(τi, τj) = mean
k=t−N−1,...,t

IoU(bki , b
k
j ). (2)

The T-NMS algorithm takes the whole set of tubelets and glob-
ally removes the spatially redundant ones instead of running a per
RPN filtering. The resultant subset T will be the final collection of
proposals.

3.2 Temporal Pooling

The RoI Align method [12] takes the proposal set filtered by the T-
NMS algorithm and the backbone feature maps from the correspond-
ing frame as the input data. In the spatial case, the FPN model maps
each RoI to different feature map levels according to the bound-
ing box area. In this spatio-temporal approach, for a given tubelet
τi = (bt−N−1

i , ..., bt−1
i , bti) every single bounding box bj goes to its

corresponding pyramid level in the frame fj . This means that RoIs
belonging to the same tubelet could be mapped to different pyra-
mid levels in their respective frame. This makes our method robust
against scale variations in the tubelet sequence. This scale variability
can be caused by changes in the object appearance, specially in those
objects whose area is close to the mapping threshold of a certain
pyramid level. In these cases, small changes in the bounding box as-
sociated with one frame might cause this threshold to be exceeded in
this specific frame. Even if the actual object does not change enough,
different bounding boxes in the same tubelet might have enough area
differences due to slight errors in the RPN regression. The reason is
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that the RPN output is just the first adjustment of the anchor box, and
not the final detection box, so it does not fit the object with the same
precision as the final output.

On top of that, we introduce an operator called Temporal Pool-
ing that summarizes the whole tubelet information in a feature map
with just the same size as the RoI Align output for a single frame,
independently of the number of input frames. To be able to aggre-
gate temporal data, the first step must be to find the correspondences
among features throughout all input frames. The RPNs adjust an-
chor boxes applying bounding box regression, so all boxes in a given
tubelet are optimized to fit the target object. Then, for each RoI in
the tubelet, the RoI Align method produces a feature map of fixed
size (in our case of 7 × 7 × 256, Figure 1). Thus, since all these
feature maps are centered on the object in each input frame, we can
aggregate values in the same position in each feature map. Although
errors in the RPN bounding box regression might cause feature mis-
matches, our method is robust against small variations since we use
pooled features. These pooled features are a broad representation of
features extracted from the backbone, so slight changes on the pro-
posal bounding box do not have a significant effect.

Our method concatenates the N input feature maps with size
W ×H × C into one feature map with size W ×H ×N · C (Fig-
ure 1). Then, feature map channels are reordered, so that channels
at position i from all input feature maps are concatenated consecu-
tively (see the input to the Temporal Pooling operator in Figure 1).
Finally, the Temporal Pooling applies the following transformation
to get each element of the resultant feature map X:

xijk = max
t=0,...,N−1

(yij(N(k−1)+t)) (3)

being xijk an element in the position i× j in channel k of the output
feature map, and yij(N(k−1)+t) an element in the position i × j in
channel (N(k − 1) + t) from the concatenated feature map. This
propagates the highest activation values through the tubelet.

3.3 Spatio-temporal double head

The network head follows a double head approach. As Figure 1
shows, we build two fully connected heads specialized in spatial and
spatio-temporal information, respectively. On the one hand, the spa-
tial head processes the output of the RoI Align method in the current
frame. This branch calculates the final bounding box regression and
the spatial classification based only on the current appearance of the
object. On the other hand, the spatio-temporal head classifies the ob-
ject based on the output of the Temporal Pooling operator. Therefore,
this branch takes into account the appearance of the object in the pre-
vious N frames. This head does not propose a bounding box regres-
sion because the most relevant information to do that is the location
of the object in the current frame and not in the previous ones.

Finally, both classification vector scores are aggregated as follows
[29]:

p = ptmp + pspt(1− ptmp) (4)

where pspt and ptmp are the score vectors from the spatial and tem-
poral heads, respectively.

3.4 Long-term object linking

The network outputs a set of detection boxes per category at frame
level and their classification scores. Linking these boxes over time
to identify single action/object instances has become a standard ap-
proach in both action recognition [11], [26], and recently in object

detection [6], [16], [28]. These methods try to join single boxes or
small tubelets into larger tubes in order to propagate the classifica-
tion score throughout the video.

Our long-term object linking proposal performs a two step ap-
proach. First, the frame to frame linking problem is defined as an
optimization problem that maximizes the global tube linking score
to build long object tubes. Then, the second step joins these tubes,
getting larger ones, overcoming network errors such as false nega-
tives or misclassified detections that might break object tubes in the
first step.

In this implementation, each detection dit = {xi
t, y

i
t, w

i
t, h

i
t, p

i
t} in

the set Dt indexed by i in the frame t, is composed of a box centered
at (xi

t, y
i
t) with width wi

t and height hi
t, and an associated confidence

pit for the object class. A lower threshold β is applied over the detec-
tion set Dt before the object linking algorithm to prevent that low
confidence detections adversely affect the tube creation. The linking
score ls(di, dj) between two detections di and dj at different frames
is defined as:

ls(dit, d
j
t′) = pit + pjt′ + IoU(dit, d

j
t′). (5)

Then, the optimal tube v̂ can be found by solving the following
optimization problem applying the Viterbi algorithm to the detection
set per object category:

v̂ = argmax
V

T∑

t=2

ls(Dt−1, Dt) (6)

where V is the set of all possible tubes.
Algorithm 1 describes the tube building process in detail. This

method solves Equation 6 (Algorithm 1:4) iteratively to find all tubes
ending in frame i. In each iteration, all detections in the best tube
v̂ are removed from the candidate set D (Algorithm 1:5) and the
new tube is added to the result set (Algorithm 1:6). When there are
no more candidate detections in the current frame (Algorithm 1:3),
the same process is applied to find all tubes ending in the previous
frame (Algorithm 1:2). Doing this iteratively leads to tubes of differ-
ent lengths, linking all detections.

Algorithm 1: Long-term tubes creation
Input : Per frame detection set

D = {Dt = (d1t , ..., d
nt
t )}Tt=1

Input : All possible tubes: V
Output: Object tubes V̂

1 V̂ ← ∅
2 for i in T, ..., 2 do

3 while Di �= ∅ do

4 v̂ ← argmaxV
∑i

t=2 ls(Dt−1, Dt)
5 D ← D \ v̂
6 V̂ ← V̂ ∪ v̂

Previous work defined action/objects tubes as sequences of con-
secutive detection boxes, without interruptions. In fact, the output
of the method described above fits completely this definition of ob-
ject tube. Nevertheless, object occlusions or even network errors such
as false negatives or misclassified examples could artificially break
large tubes into smaller chunks. Figure 2 shows an example where an
object tube is broken in two parts due to a network error. In this case,
there is a false negative (there are two object instances and only one
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Figure 2. Long-term object-linking. Green boxes represent network detection outputs in a test video while dotted boxes represent RPN proposals in each
frame (this example works with N = 3). The network joins two object instances in the same box detection in frame f4, breaking the blue tube in two

fragments. As the first box detection of the second fragment and the last detection of the first fragment belong to the same RPN tubelet, a larger single tube is
made joining both small tubes just skipping f4.

detection) in frame f4 that breaks the blue tube, making one small
tube from f1 to f3 and another one from f5 to f7.

RPN tubelet information solves this issue joining those small tubes
to provide larger ones, making up the second step of the long-term
object linking. Although the network head does not output a detec-
tion (green solid boxes) for each object in frame f4 in Figure 2, the
RPN outputs a tubelet with size N (dotted boxes in the figure), link-
ing proposals in frames f3 to f5.

Algorithm 2: Long-term object tube linking
Input : Per frame detection set

D = {Dt = (d1t , ..., d
nt
t )}Tt=1

Input : Tubelet set T = {τi = (b1i , ..., b
N
i )}θi=1

Input : Object tubes V̂ = {v̂i = (di,1, ..., di,mi}δi=1

Output: Joined object tubes Ṽ
1 Ṽ ← V̂
2 for v̂i in V̂ do

3 for v̂j in V̂ do

4 tsmax = 0
5 for τl in T do

6 if ∃bkl ∈ τl | γ(bkl , di,mi) and

∃bk′
l ∈ τl | γ(bk

′
l , dj,1) and

time(di,mi) > time(dj,1) then

7 if ts(τl) > tsmax then

8 tsmax = ts(τl)

9 Cij = tsmax

10 H ← Hungarian(C)
11 for hi in H do

12 Ṽ ← Ṽ \ v̂hi

13 ṽi ← ṽi ∪ v̂hi

14 for ṽi in Ṽ do

15 updateScores(ṽi)

Algorithm 2 describes the tube linking method in detail. Formally,
giving two tubes v̂i = (di,1, ..., di,mi) and v̂j = (dj,1, ..., dj,mj )
with size mi and mj respectively, both will be joined in a tube of size
mi + mj if dj,1 follows di,mi in time, and both detections belong
to the same RPN tubelet (Algorithm 2:6). Thus, the tubelet allows to
link both tubes as it contains detections from both of them, although
the tubes do not have temporal overlap.

The detection set Dt is the output of Non-Maximum Suppression
(NMS) followed by a Bounding Box Voting transformation [7] to the
actual network output. This method takes the highest score detec-

tion d and removes all other detections with an overlap with d higher
than a given threshold. Therefore, the final detection d has many as-
sociated network outputs. Since each network detection came from
one RPN tubelet, d has also many RPN tubelets associated, one per
each suppressed detection. Therefore, there can be many tubelets τ
that contain the first or the last detection box of a specific tube. The
function γ(bkl , d

i,mi) returns True if the detection di,mi is associated
with the box proposal bkl in the tubelet τl (Algorithm 2:6).

For a given tube v̂i = (di,1, ..., di,mi) we might have more than
one candidate tube v̂j to join with. We use the RPN tubelet score
defined by Equation 1 to choose the best candidate to link for v̂i.
We choose the highest score of all tubelets associated with di,mi

and dj,1 (Algorithm 2:7-8). Then, a cost matrix C can be constructed
with as many rows as ending candidate tubes and as many columns
as starting tubes. Each element cij is the maximum score for tubelets
containing di,mi and dj,1. This becomes an assignment problem that
can be easily solved with the Hungarian Method (Algorithm 2:10-
13). For each tube assignment (i, j), we remove the second tube from
the output set (Algorithm 2:12) and build a new tube joining the two
original fragments (Algorithm 2:13). Once this process has finished,
for a giving tube ṽi the score of all detections di,j ∈ ṽi is set to the
mean of the α = 10% highest scores in that tube (Algorithm 2:15).

4 EXPERIMENTAL RESULTS

4.1 Datasets

We use the ImageNet VID dataset [25] to test our method. It contains
3,862 training and 555 validation videos with annotated objects of 30
different categories. As the test subset annotations are not publicly
available and the challenge evaluation server is closed, we use the
Average Precision (AP) and Mean AP over the validation set as the
main evaluation metrics following the standard approach established
by previous works [6] [17] [28] [34].

Following the training procedure proposed by [6], we also use data
from the ImageNet DET dataset to enhance the training set. Ima-
geNet DET consists of 456,567 training and 20,121 validation im-
ages of 200 different categories that include the 30 object classes
used in VID. We add to the training set at most 2,000 images per
VID object class from ImageNet DET. This upper bound prevents
the bias of the training set for large object categories in DET.

4.2 Implementation details

Single frame. We train our single frame Faster R-CNN baseline
network using both ImageNet VID and ImageNet DET following the
strategy explained in Section 4.1 for DET. In the single frame case
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we select 20 uniformly distributed frames over time from each video
in the VID training set. The chosen backbone is a Feature Pyramid
Network (FPN) based on ResNeXt-101 [30] pretrained on the Ima-
geNet classification dataset.

All input images are scaled so that the smallest dimension is 720 at
most. If the highest dimension remains above 1280 pixels, the image
is scaled down to prevent that. In any case, the image scaling keeps
the original aspect ratio.

We use the SGD learning algorithm with a learning rate set to
2, 5×10−4 for the first 240K iterations, 2, 5×10−5 for the next 80K
iterations and 2, 5×10−6 for the last 40K iterations. RPN redundant
proposals are suppressed by NMS with a threshold of 0.7, while the
final detection set is filtered by means of NMS with an IoU threshold
equal to 0.5.

Spatio-temporal. Our spatio-temporal network is initialized with
the single frame model keeping all backbone and RPN layers frozen.
The training set sampling strategy is slightly different from the single
frame baseline. Now, the network needs N consecutive input frames
in each iteration instead of just one. To do that, we select 2 groups
of input frames with size N × 15, giving 60 training examples per
video. Images from ImageNet DET are also included in the train-
ing set as described in Section 4.1. The only difference is that each
image is converted into a small video with N repeated frames. We
have trained our spatial baseline also with this sampling strategy to
assess that it does not bias the results analysis. We have not seen any
significant differences in the precision values of the test for the two
strategies in the single frame case.

We train the spatio-temporal model following the described sam-
pling strategy with a learning rate set to 1.25×10−3 for the first 180K
iterations, 1.25× 10−4 for the next 60K iterations and 1.25× 10−5

for the last 30K iterations. We need to feed the network with N
frames in each train iteration, and also for test: the current frame
and the N − 1 previous ones. To do this, we replicate the first frame
of each video N − 1 times. Then, the network can work on these
replicated frames to process the first N − 1 real ones following this
rule. The network output detection set is also filtered applying a con-
fidence threshold β = 0.05 preventing detections with lower scores
from degrading the long-term object linking method.

4.3 Ablation studies

We test our framework under different conditions, changing the num-
ber of input frames and removing some components to prove how
they affect the final detection result.

2 3 4 5
74

75

76

77

75.2
75.4

75.9 75.9

N

m
A

P

VID dataset

Figure 3. Detection mAP with different tubelet lengths tested on the
ImageNet VID validation set without long-term information.

Spatial head
Cls

Spatio-temporal head
Cls

Long-term
object linking Mean AP

� 74.3
� 74.5

� � 75.9
� � � 78.2

Table 1. Influence of each component on the framework precision on
ImageNet VID dataset.

Figure 3 shows how the number of input frames N affects the
network precision testing on the ImageNet VID validation set. We
have tested the network up to a maximum length of 5 frames. Fig-
ure 3 shows that to increase N from 4 to 5 has no impact on the
network precision. On this basis, we hypothesize that it is very likely
that increasing the number of input frames above 5 does not improve
or even degrades the network output. This is because of the tubelet
initialization, as our anchor cuboids regression method expects the
same object to be associated with the same anchor box in the same
position in every input frame. If the object movement exceeds the
network receptive field this assumption is not true, which is more
likely for large N values. It should also be said that 2 input frames
suffice to exceed the single model FPN with ResNetX-101 by 0.5
points; i.e., 75.2% of mAP in Figure 3 vs 74.7% in Table 2.

In order to evaluate how the temporal information helps to enhance
the object classification accuracy, we perform two tests on the Ima-
geNet VID dataset: one of them with the current frame only, and the
other one with the spatio-temporal information propagated through-
out the last N frames for N = 4, combining spatial and temporal
information by means of Equation 4. Table 1 summarizes the re-
sults. Working with information from the current frame is different
from just running the spatial network baseline. This is due to the fact
that, instead of the original NMS method to remove redundant RPN
proposals in the current frame, we resort to T-NMS, which removes
redundant tubelets instead of boxes. It can be seen that the network
precision with one head branch is lower than both of them combined.
This proves that both branches provide complementary information
for the classification task. Furthermore, Table 1 also shows how the
long-term object linking improves significantly the final Mean AP.
This is consistent with previous works with this kind of post pro-
cessing methods, and reveals that the RPN tubelet information can
be valuable to link object instances throughout the video.

4.4 Results

We compare our framework with state-of-the-art spatio-temporal ob-
ject detectors in Table 2. The method described in [17] has two main
components, a tubelet proposal module based on a single frame ob-
ject detector combined with object tracking. On top of that, it per-
formes a tubelet classification and re-scoring module using a Tempo-
ral Convolutional Network (TCN) to achive 47.5% mAP. In [15], the
first module is replaced by a Tubelet Proposal Network, and the clas-
sification task is performed by an encoder-decoder LSTM achieving
68.4% mAP. T-CNN [16] is the winner of the ILSVRC2015 with
73.8% mAP. This work uses two single frame object detectors, the
DeepId-Net [22] and CRAFT [31] frameworks combined by an NMS
process. Both detection sets are processed separately applying con-
text suppression and detection propagation using optical flow. Fur-
thermore, it uses tracking algorithms to build object tubelets. A bi-
nary classifier identifies positive and negative tubelets re-scoring de-
tections belonging to those tubelets accordingly. Multi-Class Multi-
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Kang et al. [15] 84.6 78.1 72.0 67.2 68.0 80.1 54.7 61.2 61.6 78.9 71.6 83.2 78.1 91.5 66.8 21.6
Kang et al. [16] 83.7 85.7 84.4 74.5 73.8 75.7 57.1 58.7 72.3 69.2 80.2 83.4 80.5 93.1 84.2 67.8
Lee et al. [18] 86.3 83.4 88.2 78.9 65.9 90.6 66.3 81.5 72.1 76.8 82.4 88.9 91.3 89.3 66.5 38.0
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ours (Short-Term) 92.2 83.1 83.0 69.9 75.6 81.0 63.5 61.3 74.3 83.2 77.1 89.7 89.8 91.4 76.1 57.9
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Kang et al. [17] 54.2 1.6 61.0 36.6 19.7 55.0 38.9 2.6 42.8 54.6 66.1 69.2 26.5 68.6 47.5
Kang et al. [15] 74.4 36.6 76.3 51.4 70.6 64.2 61.2 42.3 84.8 78.1 77.2 61.5 66.9 88.5 68.4
Kang et al. [16] 80.3 54.8 80.6 63.7 85.7 60.5 72.9 52.7 89.7 81.3 73.7 69.5 33.5 90.2 73.8
Lee et al. [18] 77.1 57.3 88.8 78.2 77.7 40.6 50.3 44.3 91.8 78.2 75.1 81.7 63.1 85.2 74.5
Yang et al. [32] - - - - - - - - - - - - - - 76.2
Feichtenhofer et al. [6] 83.4 57.6 86.7 74.2 91.6 59.7 76.4 68.4 92.6 86.1 84.3 69.7 66.3 95.2 79.8
Tang et al. [28] 81.5 56.0 85.7 79.9 87.0 68.8 80.7 61.6 91.6 85.5 81.3 73.6 77.4 91.9 80.6
FPN-X101 baseline 78.6 55.2 85.8 66.7 68.6 60.1 59.2 53.8 89.6 84.2 77.2 72.0 75.2 90.5 74.7
Ours (Short-Term) 79.5 56.7 86.2 69.8 72.8 60.9 54.7 56.3 90.2 84.4 78.0 73.4 75.2 91.1 75.9
Ours (Short&Long-Term) 81.5 57.3 89.6 77.5 82.5 63.0 55.9 58.0 90.9 82.8 79.3 73.5 68.3 91.9 78.2

Table 2. VID validation set results. We use a number of input frames N = 4 to test our framework.

Object Tracking (MCMOT) [18] achieves 75.5% mAP, combining
two different object detectors with multi object tracking (MOT) tech-
niques. The ILSVRC2016 winner [32] comprises a 3 step cascade
R-FCN [2] with a correlation tracker and context inference. They are
able to improve the accuracy up to 81.2% using multi-scale testing
and ensembles. Our system outperforms all previous methods (78.2%
mAP) with a single model implementation.

Our network is trained end-to-end without any precomputed pro-
posals such as those used in [6]. That method reuses the proposal
set from [33], which implements a two-stage cascade RPN with mul-
tiscale testing adding to the proposal set those calculated by the ap-
proach addressed in [8]. Also, that method is based on the R-FCN [2]
framework using convolutional features to perform object detection
and tracking simultaneously. This procedure leads to 79.8% mAP.

Tang et al. [28] implement a short tubelet detection framework
to identify tubelets with temporal overlapping. Then, given two
tubelets, they join those tubelets analyzing the spatial overlap be-
tween bounding boxes belonging to each tubelet in the common
frame. They perform a multi-scale training and testing to boost the
precision to 80.6% mAP. This cannot be directly compared with our
results since we only test our system with single scale images, creat-
ing a more realistic real-life testing environment.

Finally, we include in Table 2 our single frame baseline using a
Feature Pyramid Network with ResNeXt101 getting 74.7% mAP.
Our spatio-temporal network outperforms this baseline by 1.2%
mAP only taking into account short-term information, i.e., perform-
ing the tubelet proposal and the Temporal Pooling method to feed
the spatio-temporal head. Table 2 also shows how adding long-term

information improves the AP for almost every object class increasing
the final mAP by 3.5%.

5 CONCLUSION

We have described a framework that exploits spatio-temporal infor-
mation to improve object detection precision in videos. We intro-
duce a short-term propagation method that relies on network pro-
posals to link features along time without any other external infor-
mation, such as associations given by tracking algorithms or optical
flow. We also define a spatio-temporal header that takes advantage of
both spatial and spatio-temporal features to perform bounding box
regression and object classification. We are able to further improve
the detection results by combining this short-term information with
long-term knowledge with our object linking method. The proposed
method achieves competitive results in the widely used ImageNet
VID dataset. Moreover, the same ideas can be easily extended to add
spatio-temporal information to other single frame frameworks.
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