
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tres20

Download by: [University of Santiago de Compostela], [Jorge Alberto Suarez Garea] Date: 22 February 2017, At: 08:49

International Journal of Remote Sensing

ISSN: 0143-1161 (Print) 1366-5901 (Online) Journal homepage: http://www.tandfonline.com/loi/tres20

GPU classification of remote-sensing images using
kernel ELM and extended morphological profiles

Alberto S. Garea, Dora B. Heras & Francisco Argüello

To cite this article: Alberto S. Garea, Dora B. Heras & Francisco Argüello (2016)
GPU classification of remote-sensing images using kernel ELM and extended
morphological profiles, International Journal of Remote Sensing, 37:24, 5918-5935, DOI:
10.1080/01431161.2016.1251629

To link to this article: http://dx.doi.org/10.1080/01431161.2016.1251629

Published online: 08 Nov 2016.

Submit your article to this journal

Article views: 68

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tres20
http://www.tandfonline.com/loi/tres20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01431161.2016.1251629
http://dx.doi.org/10.1080/01431161.2016.1251629
http://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tres20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/01431161.2016.1251629
http://www.tandfonline.com/doi/mlt/10.1080/01431161.2016.1251629
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2016.1251629&domain=pdf&date_stamp=2016-11-08
http://crossmark.crossref.org/dialog/?doi=10.1080/01431161.2016.1251629&domain=pdf&date_stamp=2016-11-08

GPU classification of remote-sensing images using kernel
ELM and extended morphological profiles
Alberto S. Garea a, Dora B. Heras a and Francisco Argüello b

aCentro Singular de Investigaciόn en Tecnoloxías da Informaciόn (CiTIUS), Universidade de Santiago de
Compostela, Santiago de Compostela, Spain; bDepartamento de Electrόnica e Computaciόn, Universidade
de Santiago de Compostela, Santiago de Compostela, Spain

ABSTRACT
Nowadays, the use of hyperspectral sensors has been extended to
a variety of applications such as the classification of remote-sen-
sing images. Recently, a spectral–spatial classification scheme
(ELM-EMP) based on Extreme Learning Machine (ELM) and
Extended Morphological Profiles (EMPs) computed using
Principal Component Analysis (PCA) and morphological operations
has been introduced. In this work, an efficient implementation of
this scheme over commodity Graphics Processing Units (GPUs) is
shown. Additionally, several techniques and optimizations are
introduced to improve the accuracy of the classification. In parti-
cular, a scheme using an ELM classifier based on kernels (KELM)
and EMP is presented (KELM-EMP). Similar schemes adding a
spatial regularization process (KELM-EMP-S and ELM-EMP-S) are
also proposed. Moreover, two PCA algorithms have been com-
pared in both accuracy and speed terms. Regarding the GPU
projection, different techniques and optimizations have been
applied such as the use of optimized Compute Unified Device
Architecture (CUDA) libraries or a block-asynchronous execution
technique. As a result, the accuracy obtained by the two proposed
schemes (ELM-EMP-S and KELM-EMP-S) is better than for the
original scheme ELM-EMP and the execution time has been sig-
nificantly reduced.

ARTICLE HISTORY
Received 13 January 2016
Accepted 12 October 2016

1. Introduction

The advances on image sensor technology have made it possible to extend the range of
electromagnetic spectrum that can be captured, going from a few bands in multispectral
images to hundreds of bands in hyperspectral images (Landgrebe 2002). This wide range
provides more information that can be used to improve the recognition and classifica-
tion of materials. Owing to the high dimensionality of hyperspectral images, specific
techniques are needed to take advantage of all this information (Fauvel et al. 2013).

In the field of neural networks, Extreme Learning Machine (ELM) is a term used to
describe a class of Single-hidden Layer Feedforward Neural Networks (SLFNs) with
random weights (Huang 2014). It has been shown (Tamura and Tateishi 1997; Huang

CONTACT Alberto S. Garea jorge.suarez.garea@usc.es Centro Singular de Investigaciόn en Tecnoloxías da
Informaciόn (CiTIUS), Universidade de Santiago de Compostela, Santiago, Spain

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016
VOL. 37, NO. 24, 5918–5935
http://dx.doi.org/10.1080/01431161.2016.1251629

© 2016 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0001-9394-0330
http://orcid.org/0000-0002-5304-1426
http://orcid.org/0000-0001-9279-5426
http://www.tandfonline.com

2003) that SLFNs (with N hidden nodes) with randomly chosen input weights and
hidden layer biases can exactly learn N distinct observations (Huang, Zhu, and Siew
2006). The same authors also proposed the use of a pseudo-inverse in the ELM algorithm
to avoid the low inference of the back-propagation training algorithms. In the ELM, the
assignment of random weights between the input layer and the hidden layer produces a
wide variation in the classification accuracy in different trials using the same number of
hidden nodes. To avoid this, Huang et al. (2012) proposed the use of a kernel function
for the ELM instead of the hidden layer.

One additional advantage of ELM is that it is an extremely suitable algorithm to be
implemented on commodity Graphical Processing Units (GPUs) and other parallel archi-
tectures because the required operations are mostly matrix operations that can be
computed in independent blocks, i.e. without data dependencies among them. Van
Heeswijk et al. (2011) developed a GPU implementation of some parts of a classification
scheme based on executing hundreds of ELM ensembles. Later, a complete and efficient
GPU implementation of ELM to classify hyperspectral images was published (López-
Fandiño et al. 2015). Nevertheless, for the kernel version of ELM, no GPU implementa-
tions have been published.

The accuracy of the results provided by a pixel-wise classification can be improved by
adding spatial information to the classifier (Plaza et al. 2009; Fauvel et al. 2013; Dalla
Mura et al. 2011; Palmason et al. 2005). This means that the decision to assign a pixel to
a specific class is based both on the spectral feature, which is the pixel value, and on
certain information extracted from the pixel’s neighbourhood that can be considered
spatial information. The spatial methods include those based on segmentation as the
watershed transform (Zhang, Feng, and Le 2008; Tarabalka, Chanussot, and
Benediktsson 2010; López-Fandiño et al. 2015) and Evolutionary Cellular Automata
based Segmentation (ECAS-II) (Priego, Bellas, and Duro 2015), based on partitional
clustering techniques (Tarabalka, Benediktsson, and Chanussot 2009), based on mini-
mum spanning forest (Fauvel et al. 2013), or based on local filtering (Kang, Li, and
Benediktsson 2014).

The spatial information can also be extracted from hyperspectral data using the tools
of mathematical morphology. Two widely used morphological operators are opening
and closing, which are based on the fundamental operations of erosion and dilation.
From these basic operations, the so-called Morphological Profile (MP) can be con-
structed (Quesada-Barriuso, Argüello, and Heras 2014; Pesaresi and Benediktsson 2001;
Soille and Pesaresi 2002; Palmason et al. 2005). A MP contains information of the
structures of the image at different resolution sizes. In remote sensing, MPs are usually
computed from hyperspectral data using Principal Component Analysis (PCA)
(Benediktsson, Pesaresi, and Amason 2003; Fauvel et al. 2013; Marpu et al. 2012). If
several components are retained, the MPs obtained for each Principal Component (PC)
can be used all together in one Extended Morphological Profile (EMP) (Benediktsson,
Palmason, and Sveinsson 2005; Licciardi et al. 2011). This can be further generalized in
order to model the spatial information more accurately. For example, a morphological
Attribute Profile (AP) is created in the same way as the MP but considering the attribute
operators (Dalla Mura et al. 2010). In Dalla Mura et al. (2011), an Extended Morphological
Attribute Profile (EMAP) is created using morphological attribute filters. In Quesada-
Barriuso, Argüello, and Heras (2014) and Benediktsson, Pesaresi, and Amason (2003),

INTERNATIONAL JOURNAL OF REMOTE SENSING 5919

spectral–spatial classification schemes based on SVM as the classifier and introducing
the information provided by EMPs for hyperspectral remote-sensing images are pre-
sented. In the case of Chen et al. (2014) instead of EMP, Gabor features are extracted
from the components generated by PCA and directly concatenated to the original
image, and the classification is performed by kernel ELM (KELM). This last article also
presents a multi-hypothesis prediction-based KELM classifier. In Argüello and Heras
(2015), a spatial–spectral ELM-based classification scheme for hyperspectral remote-
sensing images is presented that integrates the information provided by an EMP. The
profile is created from components generated using PCA. The proposed spectral–spatial
classifier allows different weights for both spatial and spectral features.

In this article, three main tasks have been addressed. The first one has been the
improvement of the scheme presented in Argüello and Heras (2015) in terms of execu-
tion time in the Central Processing Unit (CPU). Thus, two PCA methods have been
compared. The second task has been the development of a similar scheme based on
ELM with kernel functions. These kernel functions replace the generation of random
weights in the original ELM-based scheme. The third task has been the efficient imple-
mentation on GPU of the previously described schemes to reduce the execution times.
The rest of this article is organized as follows. Section 2 describes the algorithms
required. In Section 3 we present the implementation of the classification scheme in
GPU. The evaluation is performed in Section 4. And, finally, Section 5 presents the
conclusions.

2. Spectral–spatial ELM-based classification

In this section, the different steps involved in the classification scheme under study that
we call ELM-EMP, as in Argüello and Heras (2015) (see Figure 1), are explained. This
process starts with the extraction of the spatial information. The first step is to reduce
the dimensionality of the hyperspectral image using PCA. The second step is to con-
struct the EMP by morphological operations. Both spectral and spatial data contributions
are adjusted using a composite feature mapping method, called weighted concatena-
tion. It allows one to assign different weights to the different sources of data, kw and ks

Figure 1. Spectral–spatial classification scheme based on ELM and composite feature mappings
(ELM-EMP).

5920 A. S. GAREA ET AL.

for the spectral and the spatial sources, respectively. Finally, the classification by ELM is
performed.

2.1. Principal component analysis

The main idea of PCA is to reduce the dimensionality of a data set consisting of a large
number of interrelated variables, while retaining as much of the variation present in the
data set as possible.

Mathematically, there are several methods to compute the PCA. It can be performed
by Single Value Decomposition (SVD) of the data set or by Eigenvalue Decomposition
(EVD) of the covariance matrix of the data set, which is the method used in this article.
Both methods need a centred data set (Abdi and Williams 2010).

Let us assume that data matrix X is centred, i.e. column arithmetic means have been
subtracted from each column of X and are now equal to zero. Then the covariance
matrix A ¼ XTX=n is computed, where n is the number of features. It can be diagona-
lized as follows:

A ¼ USVT; (1)

where the diagonal elements of S are the eigenvalues of A and the first columns of U
and V are the left and right eigenvectors of A. Projections of the data on the principal
axes are called PCs, also known as scores.

An alternative method to calculate PCA is to use an iterative algorithm. The classical
Gram–Schmidt (CGS) algorithm recursively constructs a set of orthogonal basis vectors
for the subspace spanned by a given set of linearly independent normalized vectors
(Golub and Van Loan 1996). The CGS can be formulated using matrix-vector operations
and hence it is suitable for parallel computation (Lingen 2000). Owing to its rounding
error, the CGS algorithm is numerically unstable, but the stability can be achieved
applying it iteratively (Lingen 2000).

In this article, the comparison between a PCA method using EVD and an iterative PCA
method based on the Gram–Schmidt (GS) re-orthogonalization process called GS-PCA
(Andrecut 2009) is shown.

2.2. Extended morphological profile

Morphological transformations have been proposed to use spatial information in
remote-sensing classification (Pesaresi and Kanellopoulos 1999; Benediktsson, Pesaresi,
and Amason 2003; Benediktsson, Palmason, and Sveinsson 2005). In Benediktsson,
Pesaresi, and Amason (2003), the MP was introduced and it was extended to multi-
dimensional images in Benediktsson, Palmason, and Sveinsson (2005) in order to extract
information about the contrast and the size of the structures present in the image. The
MP of order n from the image I can be expressed as

MPðnÞðIÞ ¼ fγðnÞr ðIÞ; . . . ; γð1Þr ðIÞ; I;ϕð1Þ
r ðIÞ; . . . ;ϕðnÞ

r ðIÞg; (2)

where γ
ðiÞ
r and ϕðiÞ

r are the opening and closing by reconstruction operators, respectively,
with a structuring element i from 1 to n, whose size increases normally in steps of 1 or 2.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5921

When the MP approach is applied to hyperspectral data, the m most significant PCs
are used as base images. The result is an EMP:

EMPðnÞm ðIÞ ¼ fðMPÞðnÞ1 ðIÞ; . . . ; ðMPÞðnÞm ðIÞg; (3)

that contains mð2nþ 1Þ components.
Once the spatial information has been extracted from the image, it must be inte-

grated into the classifier.

2.3. KELM-based classification

ELM was originally developed as a training technique for a class of SLFNs with random
weights (Huang, Wang, and Lan 2011; Huang, Zhu, and Siew 2006). Huang et al. (2012)
proposed the use of a kernel function in the hidden layer instead of the random weights.
The objective is to avoid the wide variation in classification accuracy in different trials
produced by the random weights. Furthermore, Huang et al. (2012) suggested adding a
positive value 1

C (where C is defined by the user) to calculate the output weights β such that

β ¼ HT I
C
þ HHT

� ��1

M; (4)

where H is the hidden-layer output matrix and M is the target matrix for the training
data set. This positive value tends to obtain a stable solution and a better performance.
Then, for x 2 Rd jx is a sample vector of size d from the input data set, the output
function of ELM is

fðxÞ ¼ hðxÞβ ¼ hðxÞHT I
C
þ HHT

� ��1

M; (5)

where hðxÞ is a feature mapping. A kernel matrix Ω for ELM can be represented as

ΩELM ¼ HHT : ΩELM i;j ¼ ½hðxiÞ � hðxjÞ� ¼ ½Kðxi; xjÞ�; (6)

where xi and xj are training samples, i ¼ 1; . . . ;N, j ¼ 1; . . . ;N, and Kðxi; xjÞ is a kernel
function. Finally, the output function can be written as

fðxÞ ¼
Kðx; x1Þ

..

.

Kðx; xNÞ

2
6664

3
7775
T

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Kernel 1

I
C
þ ΩELM|ffl{zffl}

Kernel 2

0
@

1
A

�1

M; (7)

where the functions Kernel_1 and Kernel_2 will be used in the Compute Unified
Device Architecture (CUDA) algorithm. Thus, ELM with kernels can be summarized as
follows.

Algorithm ELM with kernels. Given a training set J ¼ fxijxi 2 Rd; i ¼ 1; . . . ;Ng, target
training matrix M, kernel function Kðu; vÞ; u; v 2 Rd (e.g. Kðu; vÞ ¼ expð�λjju� vjj2Þ) and
user-defined parameters C and λ,

5922 A. S. GAREA ET AL.

(1) Calculate I
C þ ΩELM
� ��1M, with ΩELM ¼ ½Kðxi; xjÞ�, xi; xj 2 J and K(u,v) =

expð�λjju� vjj2Þ.

(2) Compute

Kðx; x1Þ
..
.

Kðx; xNÞ

2
6664

3
7775
T

, where x1; . . . ; xN 2 J and x refers to all the points of test
data.

(3) Calculate the output function of ELM as Equation (7).

In our hyperspectral image case, each training sample represents a random selected
pixel on the image and each component of the sample represents a weighted spatial
and spectral component of the pixel. The spatial components provided by the EMP are
multiplied by a factor ks whereas the spectral components of the original image are
multiplied by a constant kw . The output obtained after the classification phase is the
predicted class for each pixel of the image.

3. Spectral–spatial hyperspectral image classification in GPU

In this section, we introduce some CUDA programming fundamentals as well as the imple-
mentation in GPU of the algorithms proposed in Sect. II. The kernels executed in GPU are
placed between <> symbols. The pseudocodes also include the GM and SM acronyms to
indicate kernels executed in global memory and in shared memory, respectively.

3.1. CUDA GPU programming fundamentals

CUDA is a hardware/software platform combination that enables NVIDIA GPUs to
execute programs invoking parallel functions called kernels (Nvidia 2012). The kernels
are executed by threads that are organized into blocks. The blocks are arranged in a grid
that is mapped to a hierarchy of CUDA cores in the GPU. Threads can access data from
multiple memory spaces. First, each thread has a private local memory and registers.
Each block of thread has a shared memory that is visible exclusively to the threads
within this block and whose lifetime is equal to the block lifetime. Finally, all threads
access the same global memory space.

Shared memory lifetime makes it difficult to share data among thread blocks, and
thus it implies the use of global memory whose access is slower than shared memory
access. The Kepler architecture (Nvidia 2012) includes a two-level cache hierarchy.
Different performance optimization strategies have been applied in this work.

(1) Maximize parallel execution. To organize the algorithm in computational blocks
that can be executed independently.

(2) Improve the efficiency in the use of the memory hierarchy. To perform the
maximum number of computations on the data already stored in shared memory.

(3) Reduce the number of global synchronizations by computing asynchronous
blocks. In the EMP computation each block is updated a number of times through
local synchronization before a global synchronization takes place.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5923

(4) Add a border to the data regions. Since in the EMP stage processing each pixel
requires data from its neighbours, each data region is extended with a border in
order to minimize dependencies among blocks.

(5) Overlap CPU and GPU operations. Sometimes it is possible to execute several
independent operations in CPU and GPU at the same time, reducing the execu-
tion time. In particular, in ELM computation, the generation of random weights for
the input data and the hidden neurons is overlapped with the generation of the
matrix Xtest.

(6) Exploit the available optimized libraries. Owing to the fact that most of the
operations of the algorithms used in this work are matrix operations, different
CUDA libraries for linear algebra and image processing have been used. In
particular, Matrix Algebra on GPU and Multicore Architectures (MAGMA)
(MAGMA 2015), which is a dense linear algebra library for heterogeneous/hybrid
architectures used to obtain the matrix Xtest and the pseudo-inverse of matrix H,
and CUDA Linear Algebra (CULA) tools (Nvidia 2015b), a set of GPU-accelerated
linear algebra libraries, have been used to calculate the EVD in the PCA algorithm.
Finally, CUDA Basic Linear Algebra Subroutine (CUBLAS) library (Nvidia 2015a), a
GPU version of the standard Basic Linear Algebra Subprograms (BLAS) library, was
used to obtain the matrix correlation in the PCA calculation and to obtain the
weight matrix in the training step of the ELM and KELM algorithms.

3.2. PCA on GPU

The PCA algorithm using EVD (EVD-PCA) explained in Section 2.1 is applied to reduce
the dimensionality of the data set.

Algorithm 1 includes the pseudocode of the EVD-PCA algorithm in GPU. Suppose that
matrix X contains the data set and it is stored in the global memory on the GPU. It is
necessary to preprocess the data set before the analysis. The data set must be centred
by subtracting from each pixel the mean of the coefficients of that band.

The centred stage starts by creating a vector y of ones of a size equal to the number
of pixels (line 1 in Algorithm 1), which is passed together with the matrix X to the
cublasSgemv CUBLAS function to perform the matrix-vector product z ¼ XT � y (line 2).
Each value of the vector contains the sum of all pixels of one band of the data set X. The
centring stage finishes the centring matrix X using the values of vector z (line 3). This
step is performed using a CUDA kernel, where each thread operates over all bands of
each pixel of X. To improve the efficiency, it is necessary to store z in the shared
memory.

Once the matrix X contains the centred data, the PCA stage commences. First, the
correlation matrix of matrix X is calculated using the cublasSsyrk CUBLAS function (line
4). This function performs the XXToperation, but owing to the fact that the result is
symmetric, only the upper triangular matrix is computed. The next step is to complete

the correlation matrix XXT (line 5).
The PCA stage continues with the computation of EVD using the culaDeviceSgesvd

CULA function. It performs the operation of Equation (1) (line 6). The last step is to
compute the PC using the cublasSgemm CUBLAS function, which calculates the product
between X and V.

5924 A. S. GAREA ET AL.

The second algorithm to reduce the dimensionality used in this article is an iterative
PCA algorithm (GS-PCA) (Andrecut 2009) based on the GS re-orthogonalization process
(see Section 2.1). The GPU implementation is illustrated in Algorithm 2. This algorithm
iteratively extracts one PC at a time. Similar to the EVD-PCA algorithm, it is necessary to
centre the data set before the analysis (lines 1–3 in the pseudocode). Then, an iterative
process starts. It is repeated as many times as the number of PCs required (line 4). Inside
it, another iterative process performs the operations to obtain both eigenvectors and
eigenvalues, which will be used to calculate the k-th PC (lines 6–9). This second iterative
process ends when either the limit of iterations is reached or the residual error is
achieved. All the operations of the GS-PCA algorithm have been performed using the
CUBLAS library.

Algorithm 1 GPU EVD-PCA algorithm
Require: The dataset X is initially stored in the Global Memory.

⊳ Dataset centering phase
1: <Create a vector of 1’s> ⊳ GM
2: Obtain the sum of all pixels in each band of dataset ⊳ SM + GM
3: <Dataset centering> ⊳ SM

⊳ PCA phase
4. Calculate the covariance matrix XXT of centered dataset ⊳ SM + GM
5: <Complete the lower triangular values of XXT> ⊳ GM
6: Calculate the matrix of eigenvectors V ⊳ SM + GM
7: Obtain the PCs by XV ⊳ SM + GM

Algorithm 2 GPU GS-PCA algorithm
Require: The dataset X is initially stored in the Global Memory.

⊳ Dataset centering phase
1: <Create a vector of 1’s> ⊳ GM
2: <Obtain the sum of all pixels in each band of dataset> ⊳ GM
3: <Dataset centering> ⊳ SM

⊳ PCA phase
4: for each PC do
5: Copy the data from the dataset ⊳ SM + GM
6: repeat
7: Calculate the eigenvalues and the eigenvectors ⊳ SM + GM
8: Calculate the PC ⊳ SM + GM
9: Until either the limit of iterations is reached or the residual error is achieved
10. end for

Algorithm 3 GPU KELM algorithm
Require: Hyperspectral dataset X, target set M and user-defined parameters C and λ

⊳ Preprocesing phase
1: <Normalize hyperspectral dataset> ⊳ SM + GM
2: Randomly choose the training points (Xtrain)
3: <Process training target matrix M> ⊳ GM

⊳ Kernel function computation
4: <Calculate Kernel_2 (Equation 7)> ⊳ GM
5: <Calculate α ¼ ðI=C þ Kernel 2Þ�1M> ⊳ GM
6: <Take test points> (Xtest) ⊳ GM
7: <Calculate Kernel_1 (Equation 7)> ⊳ GM

⊳ Classification
8: <Calculate αKernel 1> ⊳ GM

INTERNATIONAL JOURNAL OF REMOTE SENSING 5925

3.3. EMP on GPU

The EMP is the set of MPs created through opening and closing by reconstruction for
each coefficient-band resulting from the PCA step.

The implementation selected is based on a block-asynchronous propagation
(Quesada-Barriuso, Heras, and Argüello 2013) where multiple scans are performed in
both directions at the same time. The main advantage of this GPU asynchronous
implementation (Quesada-Barriuso et al. 2015) for the morphological reconstruction
(consisting of intra- and inter-block updates) is that as many updates as possible are
performed in shared memory with the available data before performing a global
synchronization among the thread blocks. Data updated within a block in shared
memory can be reused, which is much faster than the global memory updates (Kirk
and Wen-Mei 2010). In this asynchronous proposal, the number of global synchroniza-
tion is reduced compared with the synchronous version of the algorithm (Quesada-
Barriuso, Heras, and Argüello 2013).

3.4. KELM classification on GPU

The KELM algorithm has three main phases: preprocesing, kernel function computation,
and classification. The pseudocode in Algorithm 3 shows the implementation on GPU as
explained in Section 2.3.

In our case the KELM is part of the KELM-EMP algorithm, so its input is the result of
joining and normalizing the hyperspectral data set and the EMP. In the joining phase,
the profile data obtained from the EMP algorithm are multiplied by the spatial weight.
Then, in the normalization step (line 1 in the pseudocode), the minimum value of the
hyperspectral data set is subtracted from all its pixels. For the EMP data, the normal-
ization consists of subtracting the minimum value of each band from all pixels of the
band. The kernel used to calculate the minimum value takes advantage of the shared
memory and avoids bank conflicts that reduce the execution time.

Given that ELM and KELM are supervised learning algorithms, the pixels for the
training data set are randomly selected from the reference data, scaled in the range
[0:1] and stored in the matrix Xtrain (line 2 in the pseudocode). Finally, the training
target matrix is processed so that each row represents a sample and each column
represents a class, where a value of 1 indicates membership to a class (line 3 in the
pseudocode).

The second phase (computation of kernel functions) starts computing the second
kernel function, Kernel_2, where Kðu; vÞ ¼ expð�λjju� vjj2Þ and u,v belong to the

training data set. First, we calculate the matrix XtrainðXtrainÞT containing all possible
products between two elements of the training data set. Then we use this matrix, its
diagonal, and the user-defined parameter λ to compute Kernel_2 matrix. The next step is
generating a modified identity matrix dividing all the elements of its diagonal by the
user-defined parameter C. Then, we add the modified identity matrix to the previously
computed Kernel_2 matrix. Finally, we use a magma_dgesv_gpu MAGMA function to
solve a system of linear equations and obtain α, where

α ¼ ðI=C þ Kernel 2Þ�1M:

5926 A. S. GAREA ET AL.

This second phase continues computing the first kernel function, Kernel_1, as the
previous one, but this time u belongs to the test data set and v belongs to the training
data set. First, the test data set is scaled in the range [0:1] and stored in the matrix Xtest.
Then, to compute the kernel function, we create one matrix to store XtestXtrain, one
vector to store the diagonal of, XtestXtest and another one for the diagonal of XtrainXtrain.
Finally, the kernel function for all the elements of Xtest and all the elements of Xtrain is
computed.

The last phase of the KELM algorithm only needs to compute the product of Kernel_1
by α to obtain the final classification.

3.5. KELM-EMP classification on GPU

KELM-EMP is an alternative algorithm to the ELM-EMP one explained in Sect. 2.3 but
replacing ELM by KELM. The GPU implementation of the different stages of the algo-
rithm has been explained in the previous sections.

Variants of the ELM-EMP (ELM-EMP-S) and KELM-EMP (KELM-EMP-S) schemes have
been developed, including a post-processing step after the ELM classification consisting
of a spatial regularization (Heras, Argüello, and Quesada-Barriuso 2014). This regulariza-
tion is an iterative process performed over the classification map obtained by the ELM or
KELM. Each pixel checks the class label of its neighbours and all the pixels do it
simultaneously. If more than half of the neighbours share the same label, and this
label is different from that of the pixel, the pixel updates its own class label. This is
computed by a single kernel that is iteratively executed as many times as it takes to
reach stability (no changes between two consecutive iterations in any of the pixels).

4. Results

This section shows the experimental results obtained by the classifiers. The proposed
algorithms have been evaluated on a PC with a quad-core Intel Xeon E5-2609v2 at 2.5
GHz and 15 GB of RAM. The code has been compiled using the gcc 4.8.4 version with
OpenMP (OMP) 3.0 support under Linux using four threads. The OPENBLAS library
(OpenBLAS 2015) has been used to accelerate the algebra operations included in the
algorithms. Regarding the GPU implementation, CUDA codes run on an NVIDIA GeForce
GTX Titan with 14 Streaming Multiprocesors (SMXs) and 192 CUDA cores each. The
CUDA 7.5 of the toolkit under Linux has been used.

The accuracy results are expressed in percentage in terms of overall accuracy (OA),
which is the percentage of correctly classified pixels; average accuracy (AA), which is
computed as the mean of the class accuracies; and kappa coefficient (Richards 1999),
which is the percentage of agreement corrected by the amount of agreement that could
be expected due to chance alone.

The performance results are expressed in terms of run times (in seconds) and
speedups. The results are the average of 100 runs. The run times for the GPU codes
do not include CPU–GPU data transfers, only computation times.

The algorithms have been used over three remote-sensing images: a 103-band ROSIS
image of the University of Pavia (Pavia Univ.) with a spatial dimension of 610 × 340
pixels, a 220-band AVIRIS image of 145 × 145 pixels taken over Northwest Indiana

INTERNATIONAL JOURNAL OF REMOTE SENSING 5927

(Indian Pines), and a 204-band AVIRIS image 512 × 217 pixels from Salinas Valley,
California (Salinas).

The number of training samples is the same as in the reference works in the literature
(Argüello and Heras 2015) in order to perform a reliable comparison. Table 1 presents
some information on the remote-sensing images including the dimensions of the
images and the number and percentage of training samples. The training set is ran-
domly chosen and these samples are excluded when the accuracy evaluation is per-
formed. The number of hidden-layer neurons employed for the ELM are 1000 for Pavia
Univ., 300 for Indian Pines, and 350 for Salinas in all the cases (Argüello and Heras 2015).

In the case of spectral–spatial classifiers, the EMP was computed as a preprocessing
step. The best results were obtained for an EMP with seven PCs and seven openings and
closings by reconstruction, using disks of increasing radius (the structuring element sizes
are 3, 5, 9, 13, 17, 21, and 25, giving a total of 105 components), and a weighted
concatenation-type composite feature mapping. The weight of the spectral feature, kw ,
was set to 1, whereas the weight of the spatial feature, ks, was adjusted for each case.
The best results obtained were for ks values of 1, 5, and 3 for the Pavia University, Indian
Pines, and Salinas data sets, respectively. As mentioned in Section 2.3, in order to
maximize the discriminative capacity of the classifier, each data set χ was shifted to
the ½0;maxðχÞ �minðχÞ� range. This process was performed independently for the
hyperspectral data and for each one of the individual components of the EMP. Finally,
after concatenating both features, the entire data set was scaled in the range of [0,1].

The GPU implementations of the two versions of PCA explained in Section 2.1, Gram–
Schmidt (GS-PCA) and Eigenvalue Decomposition (EVD-PCA), have been computed over
the three hyperspectral images. The GS-PCA algorithm is up to 19 times slower than the
EVD-PCA one (See Table 2). Therefore, the EVD-PCA algorithm will be used in the final
versions of the classifiers.

Regarding the comparison between the original scheme based on ELM (ELM-EMP) and
the version including a spatial post-regularization (ELM-EMP-S), eight neighbours are
considered for each pixel. Table 3 shows that the most time-consuming stages of the
ELM-EMP algorithm in CPU are the profile (EMP) and ELM calculations. Comparing these
results for Pavia Univ. to those presented in Table 4 for the same image, we see that the
total time in GPU for ELM-EMP is 2.29 s with an OA value of 99.64%, whereas for the ELM-
EMP-S the time is 2.30 s and the OA value is improved to 99.82%. Therefore, ELM-EMP-S

Table 1. Information for the test remote-sensing images.
Data set Sensor No. of classes Dimensions No. of samples No. of training samples

Pavia Univ. ROSIS 9 610 × 340 × 103 42776 3921 (9.17%)
Indian Pines AVIRIS 16 145 × 145 × 220 10249 625 (6.10%)
Salinas AVIRIS 16 512 × 217 × 204 54129 1076 (1.99%)

Table 2. Execution time results for the PCA algorithms in GPU.
Execution time (s)

PCA Algorithm Pavia Univ. Salinas Indian Pines

GS-PCA 0.96 0.39 0.12
EVD-PCA 0.05 0.07 0.06

5928 A. S. GAREA ET AL.

will be used in the final versions of the classifier. Table 4 shows also the time and accuracy
results for the other two hyperspectral images. The accuracy results are always equal to or
better than those previously published for the ELM-EMP method (Argüello and Heras
2015). The speedups achieved for the ELM-EMP-S scheme are shown in Table 5. If the GPU
versus OMP (with four threads) speedups are observed, values of 4.92× are achieved for
the Pavia Univ. data set. The lowest value is obtained for the Indian Pines data set (1.28×).
The reason is that this image is 4.5 times smaller than the other two used in this article.
Therefore, the number of threads required is smaller and the cost of memory transfers is
not fully hidden.

In Section 3.5 we also presented a version of the classification scheme based on
KELM. In Table 6 results of the K-ELM-EMP-S scheme (including spatial post-regulariza-
tion) are shown. The values of the user-defined parameters C and λ (see Section 3.4) for
the three hyperspectral images are: C¼ 108 and λ ¼ 10 for Pavia Univ.; C¼ 106 and λ ¼
10 for Indian Pines; and C¼ 108 and λ ¼ 12 for Salinas. The accuracies achieved for the
first two images (Pavia Univ. and Indian Pines) with this scheme (Table 6) are better than
those obtained for the ELM-EMP-S scheme (Table 4). However, the K-ELM-EMP-S scheme
requires more time than the ELM-EMP-S to achieve the final result. Table 7 shows the
speedups achieved for the K-ELM-EMP-S scheme. If the GPU versus OMP speedups are

Table 3. Execution times and classification accuracies of the ELM-EMP scheme.
Results for the Pavia Univ.

Execution time (s)

Platform PCA EMP ELM Total

CPU 0.43 14.93 14.54 29.90
OMP 0.28 4.35 6.41 11.04
GPU 0.05 1.08 1.16 2.29

OA: 99.64 AA: 99.60 Kappa: 99.51

Table 4. Execution times and classification accuracies of the ELM-EMP-S scheme.
Execution time (s)

Data set Platform PCA EMP ELM Total

Pavia Univ. CPU 0.43 14.93 14.97 30.33
OMP 0.28 4.35 6.70 11.33
GPU 0.05 1.08 1.17 2.30

OA: 99.82 AA: 99.76 Kappa: 99.75
Indian Pines CPU 0.13 1.52 0.82 2.47

OMP 0.07 0.44 0.4 0.91
GPU 0.06 0.58 0.07 0.71

OA: 95.05 AA: 96.44 Kappa: 94.32
Salinas CPU 0.60 8.00 3.96 12.56

OMP 0.31 2.30 2.06 4.67
GPU 0.07 0.70 0.22 0.99

OA: 99.21 AA: 99.09 Kappa: 99.12

Table 5. Speed increase (multiple of original speed) for the ELM-EMP-S scheme.
Data set OMP vs. CPU GPU vs. OMP GPU vs. CPU

Pavia Univ. 2.68 4.92 13.19
Indian Pines 2.71 1.28 3.48
Salinas 2.69 4.71 12.68

INTERNATIONAL JOURNAL OF REMOTE SENSING 5929

observed, values of 4.97× are achieved for the Pavia Univ. data set. Once again, the
lowest value is obtained for the Indian Pines data set due to its reduced size.

In Table 8 the ELM-EMP-S and K-ELM-EMP-S proposed schemes are compared to other
schemes projected to GPU and available in the literature in terms of classification accuracy
and execution times in GPU. These schemes use ELM as a classifier such as ELM+wat
(López-Fandiño et al. 2015), and SVM as a classifier such as SVM+wat (Tarabalka,
Chanussot, and Benediktsson 2010). – Both schemes use watershed (wat) to extract spatial
information. Another example that uses SVM is WT-EMP (Quesada-Barriuso, Argüello, and
Heras 2014) that utilizes Wavelet Transforms (WT) and EMP to extract spatial information.
All the experiments in the table were performed in the same experimental conditions as
described at the beginning of this section. In the table, the best results are in bold. The
ELM implemented in the López-Fandiño et al. (2015) scheme performs a regularization
after the classification as the proposed ELM-EMP-S and K-ELM-EMP-S schemes. The ELM
+wat (López-Fandiño et al. 2015) scheme combines the information provided by the ELM
scheme with a spatial information obtained through a watershed algorithm. The SVM
(Tarabalka, Chanussot, and Benediktsson 2010) and the SVM+wat (Tarabalka, Chanussot,
and Benediktsson 2010) schemes use SVM, but the second one adds spatial information
using a watershed algorithm. Finally, in the WT-EMP (Quesada-Barriuso, Argüello, and
Heras 2014) scheme, an EMP is created from the features extracted by wavelets and
combined with the denoised image in a stacked vector used for the SVM classification.

In Table 8 we can see that the proposed schemes (ELM-EMP-S and K-ELM-EMP-S)
obtain very close results in terms of accuracies. If the execution time is a priority, then
ELM-EMP-S must be chosen (see Tables 4 and 6).

Based on the detailed classification results obtained by each classification scheme for
each pixel, we also perform the standard McNemar test (Foody 2004; Chen et al. 2014). It
is employed to verify the statistical significance of accuracy differences among pairs of
schemes. Table 9 presents the results of the test where each Z value compares the

Table 6. Execution times and classification accuracies of the KELM-EMP-S scheme.
Execution time (s)

Data set Platform PCA EMP KELM Total

Pavia Univ. CPU 0.43 14.93 51.61 66.97
OMP 0.28 4.35 14.92 19.55
GPU 0.05 1.08 2.80 3.93

OA: 99.83 AA: 99.79 Kappa: 99.77
Indian Pines CPU 0.13 1.52 1.22 2.87

OMP 0.07 0.44 0.56 1.07
GPU 0.06 0.58 0.15 0.79

OA: 95.39 AA: 96.82 Kappa: 94.72
Salinas CPU 0.60 8.00 8.92 17.52

OMP 0.31 2.30 2.81 5.42
GPU 0.07 0.70 0.62 1.39

OA: 99.16 AA: 99.05 Kappa: 99.06

Table 7. Speed increase (multiple of original speed) for the KELM-EMP-S scheme.
Data set OMP vs. CPU GPU vs. OMP GPU vs. CPU

Pavia Univ. 3.42 4.97 17.04
Indian Pines 2.68 1.35 3.63
Salinas 3.23 3.90 12.60

5930 A. S. GAREA ET AL.

Ta
bl
e
8.

Ac
cu
ra
ci
es

an
d
ex
ec
ut
io
n
tim

es
in

G
PU

fo
r
th
e
di
ff
er
en
t
im
ag
es
.

Sc
he
m
e

Pa
vi
a
U
ni
v.

In
di
an

Pi
ne
s

Sa
lin
as

O
A
(%

)
AA

(%
)

Ka
pp

a
(%

)
t
(s
)

O
A
(%

)
AA

(%
)

Ka
pp

a
(%

)
t
(s
)

O
A
(%

)
AA

(%
)

Ka
pp

a
(%

)
t
(s
)

KE
LM

-E
M
P-
S

99
.8
3

99
.7
9

99
.7
7

3.
93

95
.3
9

96
.8
2

94
.7
2

0.
79

99
.1
6

99
.0
5

99
.0
6

1.
39

�
0.
07

�
0.
04

�
0.
09

�
0.
13

�
0.
80

�
0.
63

�
0.
92

�
0.
15

�
0.
18

�
0.
20

�
0.
20

�
0.
16

EL
M
-E
M
P-
S

99
.8
2

99
.7
6

99
.7
5

2.
30

95
.0
5

96
.4
4

94
.3
2

0.
71

99
.2
1

99
.0
9

99
.1
2

0.
99

�
0.
09

�
0.
05

�
0.
13

�
0.
11

�
0.
74

�
0.
56

�
0.
85

�
0.
13

�
0.
25

�
0.
18

�
0.
28

�
0.
14

EL
M

96
.9
4

96
.1
3

95
.8
3

0.
99

82
.2
5

89
.8
5

79
.9
3

0.
06

93
.6
3

96
.3
8

92
.8
9

0.
19

�
0.
31

�
0.
34

�
0.
43

�
0.
01

�
1.
57

�
0.
98

�
1.
73

�
0.
01

�
0.
29

�
0.
25

�
0.
32

�
0.
01

EL
M
+
w
at

97
.2
0

96
.4
2

96
.3
0

1.
16

80
.6
4

79
.9
0

78
.4
0

0.
10

93
.6
0

96
.4
1

92
.8
6

0.
39

�
0.
33

�
0.
43

�
0.
44

�
0.
01

�
2.
46

�
3.
04

�
2.
73

�
0.
01

�
0.
32

�
0.
27

�
0.
36

�
0.
01

SV
M

79
.4
3

86
.6
2

76
.7
0

3.
74

79
.4
3

86
.6
2

76
.7
0

1.
50

88
.4
5

92
.3
7

87
.0
8

2.
49

�
0.
96

�
0.
86

�
1.
05

�
0.
05

�
0.
96

�
0.
86

�
1.
05

�
0.
03

�
0.
47

�
0.
50

�
0.
54

�
0.
07

SV
M
+
w
at

96
.1
8

96
.5
8

94
.8
1

3.
91

87
.6
5

91
.4
1

85
.9
6

1.
54

–
–

–
-

�
0.
52

�
0.
25

�
0.
70

�
0.
05

�
1.
26

�
1.
78

�
1.
42

�
0.
03

–
–

–
-

W
T-
EM

P
98
.7
0

98
.7
2

98
.2
2

3.
16

89
.7
3

94
.1
2

88
.2
8

1.
66

–
–

–
-

�
0.
18

�
0.
13

�
0.
24

�
0.
05

�
1.
14

�
0.
67

�
1.
28

�
0.
07

–
–

–
-

Th
e
re
su
lts

sh
ow

n
ar
e
av
er
ag
es

of
10
0
ru
ns
.A

ft
er

±
sy
m
bo

ls
ta
nd

ar
d
de
vi
at
io
ns

ar
e
sh
ow

n.
Th
e
be
st
ac
cu
ra
ci
es

ar
e
in
di
ca
te
d
in

bo
ld
.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5931

KELM-EMP-S classifier to each one of the methods shown in the table. The difference in
accuracy between each pair of classifiers is considered to be significantly different at
95% confidence level if jZj > 1:96, and at 99% confidence level if jZj > 2:58. A positive
sign of Z indicates that the first classifier outperforms the second one (Z > 0). We can
observe that only in one case, the comparison between KELM-EMP-S and ELM-EMP-S,
the small differences in accuracy are not statistically relevant, indicating that both
classification schemes are similar in accuracy terms.

5. Conclusion

In this article, a GPU implementation of a spectral–spatial ELM-based classification
scheme for hyperspectral images (ELM-EMP) that integrates spatial information by a
composite feature mapping method is presented. Several optimizations are introduced
to improve the accuracy of this scheme. In particular, an ELM-EMP algorithm based on
kernels (KELM-EMP) has been proposed. Moreover, a spatial regularization process is
applied to the previous schemes (ELM-EMP-S and KELM-EMP-S) outperforming the first
ones. These schemes require an initial reduction of dimensionality of the image by PCA,
followed by the computation of an EMP. A later weighted concatenation combines the
profile with the initial hyperspectral image. In order to improve the execution time, two
different PCA algorithms have been compared, an EVD method and an iterative GS
algorithm. The first one was selected because of the lower execution times.

Both schemes (ELM-EMP-S and K-ELM-EMP-S) obtain high accuracies, achieving
99.83% accuracy for the Pavia Univ. image. The K-ELM-EMP-S algorithm in GPU achieves
a speedup over the sequential implementation of 17.04×.

Acknowledgements

We thank our colleague Chen Chen at the University of Texas for his collaboration sharing his
MATLAB codes with us.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Ministry of Science and Innovation, Government of Spain,
cofounded by the FEDER funds of European Union [2013-41129-P], and by Xunta de Galicia,
Program for Consolidation of Competitive Research Groups ref. 2014/008.

Table 9. Statistical significance of differences in classification accuracies expressed as Z values
among KELM-EMP-S and the schemes proposed in the table.
Data set ELM-EMP-S ELM ELM+wat SVM SVM+wat WT-EMP

Pavia Univ. 0.62 33.94 32.31 64.30 38.25 19.72
Indian Pines 1.55 31.27 26.86 89.76 89.52 88.76
Salinas –1.48 50.99 74.32 51.09 - -

5932 A. S. GAREA ET AL.

ORCID

Alberto S. Garea http://orcid.org/0000-0001-9394-0330
Dora B. Heras http://orcid.org/0000-0002-5304-1426
Francisco Argüello http://orcid.org/0000-0001-9279-5426

References

Abdi, H., and L. J. Williams. 2010. “Principal Component Analysis.” Wiley Interdisciplinary Reviews:
Computational Statistics 2 (4): 433–459. doi:10.1002/wics.101.

Andrecut, M. 2009. “Parallel GPU Implementation of Iterative PCA Algorithms.” Journal of
Computational Biology 16 (11): 1593–1599. doi:10.1089/cmb.2008.0221.

Argüello, F., and D. B. Heras. 2015. “ELM-Based Spectral-Spatial Classification of Hyperspectral
Images Using Extended Morphological Profiles and Composite Feature Mappings.” International
Journal of Remote Sensing 36 (2): 645–664. doi:10.1080/01431161.2014.999882.

Benediktsson, J. A., J. A. Palmason, and J. R. Sveinsson. 2005. “Classification of Hyperspectral Data
from Urban Areas Based on Extended Morphological Profiles.” IEEE Transactions on Geoscience
and Remote Sensing 43 (3): 480–491. doi:10.1109/TGRS.2004.842478.

Benediktsson, J. A., M. Pesaresi, and K. Amason. 2003. “Classification and Feature Extraction for
Remote Sensing Images from Urban Areas Based on Morphological Transformations.” IEEE
Transactions on Geoscience and Remote Sensing 41 (9): 1940–1949. doi:10.1109/
TGRS.2003.814625.

Chen, C., W. Li, H. Su, and K. Liu. 2014. “Spectral-Spatial Classification of Hyperspectral Image
Based on Kernel Extreme Learning Machine.” Remote Sensing 6 (6): 5795–5814. doi:10.3390/
rs6065795.

Dalla Mura, M., J. A. Benediktsson, B. Waske, and L. Bruzzone. 2010. “Morphological Attribute
Profiles for the Analysis of Very High Resolution Images.” IEEE Transactions on Geoscience and
Remote Sensing 48 (10): 3747–3762. doi:10.1109/TGRS.2010.2048116.

Dalla Mura, M., A. Villa, J. A. Benediktsson, J. Chanussot, and L. Bruzzone. 2011. “Classification of
Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent
Component Analysis.” IEEE Geoscience and Remote Sensing Letters 8 (3): 542–546. doi:10.1109/
LGRS.2010.2091253.

Fauvel, M., Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton. 2013. “Advances in
Spectral–Spatial Classification of Hyperspectral Images.” Proceedings of the IEEE 101 (3): 652–675.
doi:10.1109/JPROC.2012.2197589.

Foody, G. M. 2004. “Thematic Map Comparison.” Photogrammetric Engineering & Remote Sensing 70
(5): 627–633. doi:10.14358/PERS.70.5.627.

Golub, G. H., and C. F. Van Loan. 1996. Matrix Computations. 1996, 374–426. Baltimore, MD: Johns
Hopkins University Press.

Heras, D. B., F. Argüello, and P. Quesada-Barriuso. 2014. “Exploring ELM–Based Spatial–Spectral
Classification of Hyperspectral Images.” International Journal of Remote Sensing 35 (2): 401–423.
doi:10.1080/01431161.2013.869633.

Huang, G.-B. 2003. “Learning Capability and Storage Capacity of Two–Hidden–Layer
Feedforward Networks.” IEEE Transactions on Neural Networks 14 (2): 274–281. doi:10.1109/
TNN.2003.809401.

Huang, G.-B. 2014. “An Insight into Extreme Learning Machines: Random Neurons, Random
Features and Kernels.” Cognitive Computation 6 (3): 376–390. doi:10.1007/s12559-014-9255-2.

Huang, G.-B., D. H. Wang, and Y. Lan. 2011. “Extreme Learning Machines: A Survey.” International
Journal of Machine Learning and Cybernetics 2 (2): 107–122. doi:10.1007/s13042-011-0019-y.

Huang, G.-B., H. Zhou, X. Ding, and R. Zhang. 2012. “Extreme Learning Machine for Regression and
Multiclass Classification.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)
42 (2): 513–529. doi:10.1109/TSMCB.2011.2168604.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5933

http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1089/cmb.2008.0221
http://dx.doi.org/10.1080/01431161.2014.999882
http://dx.doi.org/10.1109/TGRS.2004.842478
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.1109/TGRS.2003.814625
http://dx.doi.org/10.3390/rs6065795
http://dx.doi.org/10.3390/rs6065795
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1109/LGRS.2010.2091253
http://dx.doi.org/10.1109/LGRS.2010.2091253
http://dx.doi.org/10.1109/JPROC.2012.2197589
http://dx.doi.org/10.14358/PERS.70.5.627
http://dx.doi.org/10.1080/01431161.2013.869633
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.1109/TNN.2003.809401
http://dx.doi.org/10.1007/s12559-014-9255-2
http://dx.doi.org/10.1007/s13042-011-0019-y
http://dx.doi.org/10.1109/TSMCB.2011.2168604

Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew. 2006. “Extreme Learning Machine: Theory and
Applications.” Neurocomputing 70 (1–3): 489–501. doi:10.1016/j.neucom.2005.12.126.

Kang, X., S. Li, and J. A. Benediktsson. 2014. “Spectral–Spatial Hyperspectral Image Classification
with Edge-Preserving Filtering.” IEEE Transactions on Geoscience and Remote Sensing 52 (5):
2666–2677. doi:10.1109/TGRS.2013.2264508.

Kirk, D., and W. H. Wen-Mei. 2010. Programming Massively Parallel Processors: A Hands–On
Approach. Vol. 1. Elsevier Science, Applications of GPU Computing Series. Waltham, MA: Elsevier.

Landgrebe, D. 2002. “Hyperspectral Image Data Analysis.” IEEE Signal Processing Magazine 19 (1):
17–28. doi:10.1109/79.974718.

Licciardi, G., P. R. Marpu, J. A. Benediktsson, and J. Chanussot. 2011. “Extended Morphological
Profiles Using Auto–Associative Neural Networks for Hyperspectral Data Classification.” In
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011 3rd
Workshop on, Portugal, June 6–9, edited by A. Plaza and B. Dias, 1–4. IEEE.

Lingen, F. J. 2000. “Efficient Gram-Schmidt Orthonormalisation on Parallel Computers.”
Communications in Numerical Methods in Engineering 16 (1): 57–66. doi:10.1002/(ISSN)1099-
0887.

López-Fandiño, J., P. Quesada-Barriuso, D. B. Heras, and F. Argüello. 2015. “Efficient ELM-Based
Techniques for the Classification of Hyperspectral Remote Sensing Images on Commodity
GPUs.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (6):
2884–2893. doi:10.1109/JSTARS.2014.2384133.

MAGMA. 2015. “Matrix Algebra on GPU and Multicore Architectures.” Accessed 25 February 2015.
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/.

Marpu, P. R., M. Pedergnana, M. D. Mura, S. Peeters, J. A. Benediktsson, and L. Bruzzone. 2012.
“Classification of Hyperspectral Data Using Extended Attribute Profiles Based on Supervised and
Unsupervised Feature Extraction Techniques.” International Journal of Image and Data Fusion 3
(3): 269–298. doi:10.1080/19479832.2012.702687.

Nvidia. 2012. “Nvidia Kepler GK110 Architecture.” Accessed 15 February 2015. https://www.nvidia.
com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf.

Nvidia. 2015a. “CUDA Toolkit Documentation: CUBLAS.” Accessed March 5, 2015. http://docs.
nvidia.com/cuda/cublas/index.html.

Nvidia. 2015b. “CULA Tools.” Accessed 13 April 2015. http://www.culatools.com/.
OpenBLAS. 2015. “An Optimized BLAS Library.” Accessed 3 April 2015. http://www.openblas.net/.
Palmason, J. A., J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot. 2005. “Classification of

Hyperspectral Data from Urban Areas Using Morphological Preprocessing and Independent
Component Analysis.” In International Geoscience and Remote Sensing Symposium Seoul, July 25–
29, edited by P. Moon, K. Lee, and C. Emery, Vols. 1, 176–179.

Pesaresi, M., and J. A. Benediktsson. 2001. “A New Approach for the Morphological Segmentation
of High–Resolution Satellite Imagery.” IEEE Transactions on Geoscience and Remote Sensing 39
(2): 309–320. doi:10.1109/36.905239.

Pesaresi, M., and I. Kanellopoulos. 1999. “Detection of Urban Features Using Morphological Based
Segmentation and Very High Resolution Remotely Sensed Data.” In Machine Vision and
Advanced Image Processing in Remote Sensing, edited by K. Ioannis, W. G. Graeme, and M.
Theo, 271–284. Berlin: Springer.

Plaza, A., J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls, J. Chanussot,
et al. 2009. “Recent Advances in Techniques for Hyperspectral Image Processing.” Remote
Sensing of Environment 113: S110–S122. doi:10.1016/j.rse.2007.07.028.

Priego, B., F. Bellas, and R. J. Duro. 2015. “ECAS-II: A Hybrid Algorithm for the Construction of
Multidimensional Image Segmenters.” In Neural Networks (IJCNN), 2015 International Joint
Conference on, Killarney, July 12–17, edited by D.-S. Huang and Y. Choe,, 1–8. IEEE.

Quesada-Barriuso, P., F. Argüello, and D. B. Heras. 2014. “Spectral–Spatial Classification of
Hyperspectral Images Using Wavelets and Extended Morphological Profiles.” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing 7 (4): 1177–1185. doi:10.1109/
JSTARS.2014.2308425.

5934 A. S. GAREA ET AL.

http://dx.doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/TGRS.2013.2264508
http://dx.doi.org/10.1109/79.974718
http://dx.doi.org/10.1002/(ISSN)1099-0887
http://dx.doi.org/10.1002/(ISSN)1099-0887
http://dx.doi.org/10.1109/JSTARS.2014.2384133
http://icl.cs.utk.edu/projectsfiles/magma/doxygen/
http://dx.doi.org/10.1080/19479832.2012.702687
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://docs.nvidia.com/cuda/cublas/index.html
http://docs.nvidia.com/cuda/cublas/index.html
http://www.culatools.com/
http://www.openblas.net/
http://dx.doi.org/10.1109/36.905239
http://dx.doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.1109/JSTARS.2014.2308425
http://dx.doi.org/10.1109/JSTARS.2014.2308425

Quesada-Barriuso, P., F. Argüello, D. B. Heras, and J. A. Benediktsson. 2015. “Wavelet-Based
Classification of Hyperspectral Images Using Extended Morphological Profiles on Graphics
Processing Units.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 8 (6): 2962–2970. doi:10.1109/JSTARS.2015.2394778.

Quesada-Barriuso, P., D. B. Heras, and F. Argüello. 2013. “Efficient 2D and 3D Watershed on
Graphics Processing Unit: Block-Asynchronous Approaches Based on Cellular Automata.”
Computers & Electrical Engineering 39 (8): 2638–2655. doi:10.1016/j.compeleceng.2013.04.020.

Richards, J. A. 1999. Remote Sensing Digital Image Analysis. Vol. 3. Berlin: Springer.
Soille, P., and M. Pesaresi. 2002. “Advances in Mathematical Morphology Applied to Geoscience

and Remote Sensing.” IEEE Transactions on Geoscience and Remote Sensing 40 (9): 2042–2055.
doi:10.1109/TGRS.2002.804618.

Tamura, S., and M. Tateishi. 1997. “Capabilities of a Four–Layered Feedforward Neural Network:
Four Layers versus Three.” IEEE Transactions on Neural Networks 8 (2): 251–255. doi:10.1109/
72.557662.

Tarabalka, Y., J. A. Benediktsson, and J. Chanussot. 2009. “Spectral–Spatial Classification of
Hyperspectral Imagery Based on Partitional Clustering Techniques.” IEEE Transactions on
Geoscience and Remote Sensing 47 (8): 2973–2987. doi:10.1109/TGRS.2009.2016214.

Tarabalka, Y., J. Chanussot, and J. A. Benediktsson. 2010. “Segmentation and Classification of
Hyperspectral Images Using Watershed Transformation.” Pattern Recognition 43 (7): 2367–
2379. doi:10.1016/j.patcog.2010.01.016.

Van Heeswijk, M., Y. Miche, E. Oja, and A. Lendasse. 2011. “GPU-Accelerated and Parallelized ELM
Ensembles for Large-Scale Regression.” Neurocomputing 74 (16): 2430–2437. doi:10.1016/j.
neucom.2010.11.034.

Zhang, Y., X. Feng, and X. Le. 2008. “Segmentation on Multispectral Remote Sensing Image Using
Watershed Transformation.” In Image and Signal Processing, 2008. CISP’08. Congress on, Sanya,
May 27–30, edited by D. Li and G. Deng, 4773–4777. IEEE.

INTERNATIONAL JOURNAL OF REMOTE SENSING 5935

http://dx.doi.org/10.1109/JSTARS.2015.2394778
http://dx.doi.org/10.1016/j.compeleceng.2013.04.020
http://dx.doi.org/10.1109/TGRS.2002.804618
http://dx.doi.org/10.1109/72.557662
http://dx.doi.org/10.1109/72.557662
http://dx.doi.org/10.1109/TGRS.2009.2016214
http://dx.doi.org/10.1016/j.patcog.2010.01.016
http://dx.doi.org/10.1016/j.neucom.2010.11.034
http://dx.doi.org/10.1016/j.neucom.2010.11.034

	Abstract
	1. Introduction
	2. Spectral–spatial ELM-based classification
	2.1. Principal component analysis
	2.2. Extended morphological profile
	2.3. KELM-based classification

	3. Spectral–spatial hyperspectral image classification in GPU
	3.1. CUDA GPU programming fundamentals
	3.2. PCA on GPU
	3.3. EMP on GPU
	3.4. KELM classification on GPU
	3.5. KELM-EMP classification on GPU

	4. Results
	5. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References

