
Leveraging Bitmap Indexing for Subgraph Searching
David Luaces

Centro Singular de Investigación en Tecnoloxías da
Información (CiTIUS), Universidade de Santiago de

Compostela (USC)
Santiago de Compostela, Spain

david.luaces@usc.es

José R.R. Viqueira
Centro Singular de Investigación en Tecnoloxías da
Información (CiTIUS), Universidade de Santiago de

Compostela (USC)
Santiago de Compostela, Spain

jrr.viqueira@usc.es

Tomás F. Pena
Centro Singular de Investigación en Tecnoloxías da
Información (CiTIUS), Universidade de Santiago de

Compostela (USC)
Santiago de Compostela, Spain

tf.pena@usc.es

José M. Cotos
Centro Singular de Investigación en Tecnoloxías da
Información (CiTIUS), Universidade de Santiago de

Compostela (USC)
Santiago de Compostela, Spain

manel.cotos@usc.es

ABSTRACT
Deciding whether a query graph is a subgraph of some other
in a very large database of small graphs is a problem of major
interest in many application domains. As an example, it arises in
the searching for specific molecular substructures in currently
available molecular databases, whose sizes may reach levels close
to one hundred million. State of the art methods to solve this
problem follow a filter-then-verify (FTV) paradigm, where an
indexing technique is first used in a filtering stage to obtain
result candidates and a subgraph isomorphism algorithm is next
applied to the candidates in a verification stage to obtain the
final result. Among all the available techniques of the state of the
art, two of them have demonstrated better performance when
applied to large datasets, namely, the GraphGrepSX (GGSX) and
CT-Index (CTI). In this paper, three new indexing techniques, one
based on GGSX and two based on CTI, are proposed. In particular,
Bitmap GGSX (BM-GGSX) leverages the use of bitmaps in the
trie structure used by GGSX to achieve performance gains of
around 90% in the filtering stage. Column-Wise CT-Index (CW-
CTI) exploits a column-wise representation of the fingerprints
(bitmaps) used by CT-Index to reduce the filtering times around
80% for small queries (8 edges). Finally, K-Means CT-Index (KM-
CTI), constructs a binary tree of bitmaps from the CT-Index
fingerprints to reach filtering time reductions of around 70% for
medium queries (20 edges) and 75% for large queries (40 edges).

1 INTRODUCTION
Graph database research is a topic to which much attention has
been paid by the data management community during the last
decade. Two major types of graph databases may be found in real
problems. In a first type, the database consists of just one very
large graph. This is, for example, the kind of database available
in the semantic web. Amongst the required query functional-
ity, many applications need to identify all the instances of a
specific subgraph that occurs inside the database graph. This NP-
complete problem, known in the literature as subgraph matching,
is solved through the application of subgraph isomorphism algo-
rithms [4, 12, 20, 21, 26, 27].

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the
22nd International Conference on Extending Database Technology (EDBT), March
26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

A second type of database contains a very large number of
small graphs. Typical examples of this type of databases are
molecular databases. For each molecule recorded in such a data-
base it is recorded, among other properties, its structure, i.e., a
small graph whose vertices are atoms and whose edges are bonds
between atoms. The current size of these databases is already very
large, reaching levels close to one hundred million molecules,
like in the PubChem dataset1, and it is increasing. Among other
queries of interests, it is important to provide functionality to
find all the molecules whose molecular structure (graph) contains
a specific query substructure (subgraph) [5, 6].

Finding all the graphs in a database that contain a specific sub-
graph is known in the literature as the subgraph decision problem.
A straightforward strategy to solve this problem is a linear search,
i.e., the application of a subgraph isomorphism algorithm to each
graph of the database. This strategy could be the appropriate
for not selective queries that return most of the database graphs.
Besides, given its simplicity, it is also straightforward to a obtain
parallel implementation following this strategy. However, in the
general case, a filter-then-verify (FTV) strategy based on index-
ing will get much better performance. In FTV approaches, query
processing is split in tho stages, namely filtering and verification.
In the filtering stage, an index structure is searched to obtain an
initial set of candidate graphs. In the second stage, a subgraph
isomorphism algorithm is applied to each candidate to refine
the final result. Many FTV methods have been proposed in the
literature [2, 3, 8, 15, 20, 24, 25, 28, 29].

Among the proposed FTV solutions, GraphGrepSX (GGSX) [2]
and CT-Index (CTI) [15] have demonstrated an excellent perfor-
mance when applied to large datasets of small graphs, as it is the
case of molecular databases. Both of them rely on the encoding,
in the index structures used during the filtering stage, of features
contained in the graph, such as paths, trees, and cycles. In partic-
ular, GGSX generates a trie structure with all the paths contained
in each graph up to a maximum length. Each node of the trie
represents a specific path and references all the graphs of the
database that contain such path, storing also the number of times
that the path is repeated in each graph. During the filtering stage,
the database trie is used to obtain all the graphs that contain
all the paths of the query up to a maximum length, at least the
number of times that the path is contained in the query.

The indexing technique used by CTI is completely different.
CTI generates a fingerprint (bitmap) for each database graph

1https://pubchem.ncbi.nlm.nih.gov/

as follows. First, graph features are extracted. CTI may work
with either paths or trees, and with cycles. Each feature of the
graph up to a maximum length is extracted, and represented
in a canonical string format. A hash function is next applied to
each extracted string to obtain integer numbers that range from
0 to the fingerprint length. The bits of the fingerprint located
at the positions defined by those integers are set to 1. In the
filtering stage, bitmap containment is tested between the query
fingerprint and the fingerprint of each database graph.

In this paper, three new FTV solutions are proposed for sub-
graph search in large databases of small graphs. The paper focus
on the filtering stage, improving GGSX and CTI structures and
algorithms to obtain filtering time reductions between 70% and
80%, whereas the verification stage of the three techniques re-
lies on the parallel execution in a multi-thread architecture of
a improved version of the VF2 [4] subgraph isomorphism al-
gorithm already proposed by CTI [15]. In particular, the main
contributions of the present work are summarized as follows.

(1) Bitmap GGSX (BM-GGSX) takes advantage of the incor-
poration of compressed bitmaps in the representation of
graph references in the GGSX trie nodes. This enables a
drastic reduction of the filtering time (around 90% less
than GGSX), maintaining the index size and building time
almost unaltered. When compared with the techniques
based on CT-Index also proposed in this paper, BM-GGSX
offers good response times for medium and large queries,
but it is worse for small queries. Besides, BM-GGSX is also
much worse in both index size and building time.

(2) Column-Wise CT-Index (CW-CTI) adopts a column-wise
storage structure for the CT-Index fingerprints, where the
same bit position of all the fingerprints of all the graphs
are recorded together in a compressed bitmap. During the
filtering stage, only the bit positions with a 1 in the query
fingerprint have to be accessed, which makes the filtering
time dependent on the query size. Regarding index size
and building time, CW-CTI gets the best results.

(3) K-Means CT-Index (KM-CTI) applies recursively the K-
Means clustering method on CT-Index fingerprints to con-
struct a bitmap binary tree that is used to discard sets of
fingerprints during the filtering stage. KM-CTI index size
and building time is worse than CW-CTI, but better than
BM-GGSX. Regarding filtering time, it is competitive with
BM-GGSX in medium and large queries, thus it is a good
complement of CW-CTI.

(4) An extensive evaluation of the performance of all the tech-
niques is undertaken using real databases of molecular
graphs of different sizes. A first experiment is conducted to
determine the best parameter values to tune the methods.
The objective of the second experiment is to test the scala-
bility of the techniques with increasing database sizes. Real
databases with sizes ranging from 200000 to one million
molecules were built from the PubChem dataset. Notice
that those sizes are much larger than even the synthetic
datasets used in previous surveys [11, 13].

The remainder of this paper is organized as follows. Section 2
reviews related work, with special attention to the original GGSX
and CT-Index methods. The proposed BM-GGSX, CW-CTI and
KM-CTI methods are described in detail in Sections 3, 4 and 5,
respectively. Section 6 is devoted to the discussion of the evalua-
tion experiments and, finally, Section 7 concludes the paper and
outlines some lines of potential future work.

2 RELATEDWORK
The current state of the art classifies the subgraph querying
problem into two different subproblems. The first one, named
matching problem, deals with extracting all subgraph isomorphic
embeddings of a query graph q in a single graph G. The second
one, usually called decision problem, is focused in retrieving the
ID of every graph g, stored in a given dataset G, which satisfies
that the query graph q is a subgraph of g.

The matching problem has been widely studied over the years,
and there are several proposals to solve it. As mentioned in the
introduction, a subgraph isomorphism algorithm must be applied
to ensure that the verified graph contains at least one subgraph
that matches exactly the query graph. In [16], the authors provide
a performance comparison of six of the most relevant solutions
at the time. Among these algorithms, Ullmann [21], VF2 [4],
and QuickSI [20] were originally designed for handling small
graphs, while GraphQL [12], GADDI [26], and SPath [27] were
designed for handling large graphs. The tests were accomplished
in four real-world datasets with different size and characteristics,
containing two of them multiple and small graphs, and the other
two single and relatively large graphs. The study concluded that
GraphQL was the only algorithm that completed all the queries,
while QuickSI performed the best for both small and large data
graphs, even though it was designed for handling small graphs,
since the cost of its recursive call is the lowest. The study also
concluded that all existing algorithms had problems in their join
order selections. Since the survey was published, new algorithms
designed for handling large graphs have been proposed [10, 19],
showing an improvement in the performance by addressing the
issues of matching order selection. Recently, a new approach [1]
proposes a new framework to minimize the redundant Cartesian
products.

The decision problem is typically arising in the scope of ap-
plications with big datasets of small graphs. Since this is a NP-
complete problem, and datasets contain often a large number of
graphs, deciding whether a query graph q is contained in every
graph g in the dataset G, by applying one by one a subgraph iso-
morphism algorithm would be very costly. Due to this, a pruning
phase must be undertaken in an early stage of the process in
order to select a reasonable number of candidates to be tested
with a subgraph isomorphism algorithm. This idea is carried out
by the techniques based in the filter-then-verify (FTV) paradigm.
FTV techniques rely in building an index of the graph dataset,
through decomposing each graph into features (i.e., paths, trees,
cycles, etc.), and store them in an appropriate structure (e.g., trie,
fingerprints, etc.). The search algorithm of FTV techniques is
divided into two different stages. The first stage, called filtering
stage, aims at obtaining a candidate set of graphs. To do this, the
query graph q is decomposed into its corresponding features,
according to the applied technique, which are used to retrieve
from the index a reduced candidate set with the graphs that con-
tain all the query features. The candidate set is tested finally with
a subgraph isomorphism algorithm in the second stage, called
verifying stage.

A performance comparison of different indexing techniques [3,
20, 24, 25, 28, 29] for subgraph query processing is provided
in [11]. The above survey is extended in [13], by including three
new algorithms [2, 8, 15] and also by performing an exhaustive
performance and scalability study, varying different dataset fea-
tures such as number of nodes and graphs. According to the con-
clusions of [13], CT-Index [15] and gCode [29] have the smallest

index size. Regarding query processing time, this study concludes
that the approaches that build the index with graph features
(Grapes [8], GraphGrepSX [2], and CT-Index [15]) outperform
the others, and, among them, those that use simpler features
(Grapes and GraphGrepSX) obtain the best results. The tech-
niques that show a better scalability are GraphGrepSX, Grapes,
and CT-Index. However, Grapes, fails to build an index for large
datasets due its memory requirements. Finally, the survey shows
that algorithms based in mining techniques (gIndex [24] and
Tree+∆ [28]) are only competitive for small datasets.

Recently, two new methods that employ caching on top of ex-
isting FTV techniques have been proposed (iGQ [22] and Graph-
Cache [23]). They take advantage of the fact that, in real-world
scenarios, most current queries have subgraph or super-graph
relations with the future ones. Therefore, they use a caching sys-
tem with past queries and their answers, including some novel
replacing strategies, to improve the performance of existingmeth-
ods. Another recent work [14], after analyzing both matching
and decision problems, it concludes that there exist algorithm
specific straggler queries that are challenging only for specific
approaches. Based on the above observation, a novel framework
is proposed in [14] that leverages parallel execution and query
rewriting to achieve better overall performance.

Based on the conclusions of [13], we select GraphGrepSX and
CT-Index as the base of the present work, to develop improved
indexing structures to solve the decision problem. Notice that
our experiments consider databases whose size is between 10 and
20 times larger than those of [13], and, therefore, we discarded
Grapes due to its problems with large databases. Finally, the
results of the present work may be incorporated in complex
query processing frameworks, as the one proposed in [14], which
may also leverage in caching techniques [22, 23].

2.1 GraphGrepSX
GraphGrepSX, GGSX for short henceforth, decomposes each
graph in paths up to a maximum length p specified by the user.
Repeated paths are taken into account. With these paths, in the
index building stage, GGSX incrementally builds a trie with a
depth equal to the maximum path length p. Each node of the trie
represents a path from the root to that node, and stores a list of
key-value pairs, where the key represents the ID of a graph in
the dataset that contains the path represented by the node, and
the value is the number of times that the path appears in the
graph. Figure 1 shows an example of a small trie. Each node of
the trie records a large list of key-values pairs, although only two
of them are depicted in the figure due to space limitations. Thus,
as it is represented at the bottom left node of the trie, path “CCC”
is contained 4 times in graphG1, 5 times in graphG3 and 3 times
in graphGn . Notice that the size of the main structure of the trie
is completely dependent on the chosen maximum path length p,
which in practice is a short value. On the other hand, the lists of
key-value pairs recorded in each node increase their size linearly
with the size of the database.

In GGSX, as in any other FTV technique, subgraph query
processing is divided into two stages: filtering and verification.
In the filtering stage, a trie is built using all the paths of the query
whose length is lower or equal to the chosen maximum length p.
The number of repetitions of each path is only recorded now for
leaf nodes. The filtering algorithm performs a joint breadth-first
traversal of query and database tries. When a query leaf node
is reached, the number of repetitions r recorded in the query

C

G
G

G

4
5

3
... ...

G
G

G

1
3

1
... ...

C

C C C C C

C C

O

O

O O O

N

N

N N N

. . .

.

......

....

.

1
2

n

1
2

n

Figure 1: Trie structure used as indexing in GGSX.

trie node is compared with the list of repetitions recorded in the
database trie node, obtaining the set of graphs that contain at
least r times the relevant path. Such list of graphs is maintained to
be intersected with subsequent lists obtained from the remainder
query trie leaf nodes. The final list of graphs resulting from all
the intersections is tested, in the verification stage, using the VF2
subgraph isomorphism algorithm.

Overall, it is expected that the chosen p value should have
an impact in different aspects: the index size (should increase
with p), the index construction time (should increase with p), the
filtering time (should increase with p) and the verification time
(should decrease with p). To the best of our knowledge, there is
not, currently, any mathematical model for the determination of
the best expected p value for a given dataset, therefore, it has to
be chosen based on some benchmarking.

2.2 CT-Index
CT-Index uses a list of bitmaps of a fixed size f called fingerprints,
for indexing purposes in the filtering phase. Roughly speaking,
either paths or trees, and cycles of each graph are hashed to
integers between 0 and f , which are next used to activate bits in
the graph fingerprint. To generate all the possible either paths
or subtrees, and cycles, a maximum length p is again considered.
Figure 2 illustrates the creation of a fingerprint from a given
graph. First, all possible features, either paths or trees, and cycles
of a maximum length p are generated from the graph. A specific
tree contained in a graph is depicted in Figure 2(a). Next, the
extracted features are encoded in a canonical string format (see
Figure 2(b)). A hash function is next applied to the generated
canonical string to obtain an integer. Integer number 27 is ob-
tained from the string in the example of Figure 2(c). Finally, the
relevant bit of the graph fingerprint is set to 1 (see Figure 2(d)). It
has to be noticed that the hash function may generate the same
integer for different features (collisions). Such collision have a
negative effect, decreasing the number of pruned graphs in the
filtering stage.

CT-Index is also a FTV technique, with relevant filtering and
verification stages. In the filtering stage, a fingerprint is obtained
for the query graph as described above, using the same finger-
print size 2f and the same feature maximum length p. The query
fingerprint is then tested for bitmap containment with each fin-
gerprint in the index. Bitmap containment is performed by first
splitting both fingerprints (query FQ and database FD) into a
sequence of long integers (query LQ and database LD), and then

C

C

O

C

C

C

N

O

1 1

1

1

1

1

1

2

C1C$1C$1N$$

h(C1C$1C$1N$$) = 27
0 1 27 1272

0 0 0 01... ...
... ...

(a) Tree selection (b) Canonical string

(c) Hashing of feature (d) Insertion in fingerprint

Figure 2: Fingerprint construction process. In (a) a tree fea-
ture is selected. In (b) the feature is transformed into a
canonical string. It is hashed in (c). In (d) the hashed value
is set in the fingerprint.

testing bitmap containment between each pair of (LQ,LD) using
bitmap operations (LQ ∧ LD = LQ).

CT-Index uses, in the verification stage, a version of the VF2
subgraph isomorphism algorithm, improvedwith additional heuris-
tics.

It is noticed that with this technique, two parameters may
be chosen to construct the index, namely, the maximum feature
length p and the fingerprint size 2f . It is expected that the maxi-
mum feature length should not have an impact either in the index
size or in the filtering time. However, increasing p should have
a positive impact in the verification time (more graphs should
be discarded in the filtering phase) and should have a negative
impact in the index construction time (more and larger features
have to be processed). Regarding the fingerprint size 2f , on one
hand, it has clearly a negative impact in the index size, and there-
fore in the filtering time (larger fingerprints have to be compared).
On the other hand, however, it should have a positive impact
in the verification time, by reducing the number of collisions
generated by the hash function.

3 BITMAP GGSX
In this section, an evolution of the GGSX method, called Bitmap-
GGSX (BM-GGSX), is explained in detail. We modify the original
GGSX method in the following three aspects: i) The labels of
the graph edges are now considered, improving the performance
of the method in graphs such as molecule structures, whose
edges contain bound type information (simple bound, double
bound, etc.). ii) Very large compressed bitmaps are now exploited
to provide a more compact and efficient representation of the
list of pairs (graph id, repetitions) recorded in each trie node.
iii) The original VF2 subgraph isomorphism algorithm used in
the verification stage was replaced by the parallel execution,
in a multi-thread architecture, of the improved version of VF2
algorithm provided by the CT-Index implementation.

The original GGSX method discards the edge labels during
the construction of the trie structure. On one hand, this reduces
the size of the structure, and as a consequence it reduces also the
filtering time. But, on the other hand, it increases the number of
candidates for the verification stage, which is in general more
costly. To incorporate edge labels in the trie, we modify the
structure of the trie nodes by adding a new field that records
edge labels. Now, the interpretation of a trie node changes from

0
3
5
8
10
11
14

2
1
2
3
1
2
2

ID R

(a)
1
2
3

100101001011001
100001001001001
000000001000000

(b)

R IDs

Figure 3: Comparison between (a) GGSX and (b) BM-GGSX
graph repetitions storage technique.

interpreting it as a graph node of a path, as it is in the original
GGSX, to interpreting it as the combination of a graph node with
the edge that precedes it in the path. Obviously, given that paths
start at node and not at edges, the nodes of the first level of the
trie have always null edges. Clearly, this new trie structure has
more nodes in each level, enabling the representation of a larger
number of different paths of the same length.

In the original GGSX method each node of the tree records a
list of pairs (i, r), where i is an identifier of a graph (integer index)
that contains the path represented by the trie node and r is the
number of times that such path appears in the graph. Such lists
are replaced in BM-GGSX by an structure that exploits the use
of bitmaps. In particular, each trie node records now an array of
bitmaps. The bitmap recorded at the index r of the array has a 1
in its position i if, and only if, the graph with identifier i contains
the path represented by the trie node at least r times. Figure 3
illustrates the difference between the representation of graph
references and repetition in both GGSX and BM-GGSX. Bitmaps
are compressed in BM-GGSX using the Enhanced Word-Aligned
Hybrid method [17].

The algorithm of the filtering stage that exploits the above
structure is illustrated in Figure 4. First, as it is shown in the
left part of the figure, the query is processed to obtain its trie
structure. Remember that, now, each node contains a pair of
(node label, edge label) and that the number of repetitions in the
query trie is recorded only in the leaf nodes. As in the case of
GGSX, a joint breadth-first traversal of both query and database
tries is performed, obtaining now, for each leaf node of the query
trie, the bitmap recorded in the position of the array whose index
matches the number or repetitions recorded in the leaf node. This
is illustrated in the central part of the figure. Finally, a binary
AND operation is performed between all the compressed bitmaps,
to obtain the result bitmap, which will contain a 1 in the positions
of all the graphs containing, at least the number of times required,
all the paths of maximum length of the query.

Notice that, as it is shown in Figure 3, if the bitmap recorded at
the index r of the array of a trie node has a 1 in position i , then all
the bitmaps recorded in indices lower than r must also have a 1
at position i . This inserts redundant information in the structure,
but, as a consequence, it also enables better performance during
query processing, since only one of the bitmaps of each candidate
node of the trie has to be accessed.

4 COLUMN-WISE CT-INDEX
The index structure used by CT-Index consists of one fingerprint
for each graph of the database. Those fingerprints are sequen-
tially generated and recorded during the index construction and
sequentially processed during the query evaluation. The collec-
tion of all fingerprints might be seen as a matrix, where each

C .H.

C 1. H1. C 1.

C 1.
2 2

3

C 1. C 2.

C 1.

C .

C 2.

C 1.

C 1. C 2.

C 1.

H.

H1.

O.

O2.

H1. C 1. O2.

1 1111111111

3 1101110101
4 1101000100

2 1101110111
1 1111111111

3 1101110101
4 1101000100

2 1101110111
1 1111011111

4 0011010010

2 1011011110
3 1011011010

1101110111

1101110111
AND

AND
1011011010

1001010010

0, 3, 5, 8

Query Trie Index Trie

Figure 4: Example of filtering stage in BM-GGSX.

G

FP Building

5

0
0

1
1

0
2

0
3

1
4

...
...

1
k

...
...

0
2 -1

f

Index Insertion

0 1 2 3 4 ... k ... 2-1
f

1
0
1
0
1

.

.

.

0
0
1
1
0

.

.

.

1
1
0
0
1

.

.

.

0
0
1
1
0

.

.

.

1
0
0
0
1

.

.

.

.

.

.
1
0
0
1
0

.

.

.

.

.

.
1
0
1
1
0

.

.

.

0
1
2
3
4

0 1 0 0 1 1 05

Figure 5: Example of a new graph(ID = 5) insertion in the
CW-CTI index.

row is a fingerprint and each column a bit position inside the
fingerprint. It is noticed that such matrix is recorded row-wise in
CT-Index. The Column-Wise CT-Index, in short CW-CTI, lever-
ages the use of compressed bitmaps by recording and processing
the fingerprints column-wise. Thus, if 2f is the chosen size for
the fingerprints, then the index of CW-CTI is a sequence of 2f
bitmaps, such that fingerprint number b has a 1 at position i if,
and only if, the fingerprint of molecule number i has a 1 in the po-
sitionb of its fingerprint. The bitmaps of CW-CTI are much larger
than the fingerprints of CT-Index, and they are likely to contain
larger sequences of repeated bits, so, they are good candidates for
the use of bitmap compression. Enhanced Word-Aligned Hybrid
compression [17] is used in the present implementation, which
enables the reduction of index size compared to the original
CT-Index.

The building stage of CW-CTI is similar to that of CT-Index.
Each fingerprint is constructed exactly in the same way, however,
now each bit of the obtained fingerprint is appended to the end
of each corresponding CW-CTI bitmap. This process is illustrated
in Figure 5 for a specific graph G5.

Figure 6 illustrates the algorithm of the filtering stage of CW-
CTI. It is noticed that the algorithm is completely different from
the one of CT-Index. First, the fingerprint of the query is obtained
in the same way that it is obtained for CT-Index. Next, for each 1
in the query fingerprint, the compressed bitmap recorded at the
relevant column of the CW-CTI structure is obtained. Remember
that such compressed bitmap contains a 1 for each graph whose
fingerprint has a 1 in the same position. Finally, all the obtained
bitmaps are intersected to produce the final result of the filtering
stage. The result compressed bitmap will contain a 1 for each
candidate graph, i.e., each graph whose fingerprint is binary
contained in the query fingerprint.

The verification stage in CW-CTI performs a subgraph isomor-
phism test to the final candidate set of graphs with the improved
version of the VF2 used in the CT-Index method, except that now
this algorithm is executed in parallel in a multi-thread architec-
ture.

As it was already stated, CW-CTI requires, in general, less
storage than the original CTI-Index, due to the use of bitmap
compression. The number of candidates obtained from the filter-
ing stage is exactly the same as the one obtained by CTI, however,
the verification time should be better, due to the use of a parallel
execution of the VF2 algorithm. Regarding the filtering time, it
is noticed that the number of binary AND operations between
compressed bitmaps required is directly determined by the num-
ber of 1s in the query, i.e., by the number of different features in
the query, which is higher as the query size increases. Therefore,
it is expected to behave better with smaller queries.

5 K-MEANS CT-INDEX
In this section K-Means CT-Index (KM-CTI), a new proposal
based in the CT-Index method, is described. This new method
was constructed with the aim of reducing the number of finger-
print comparisons made in the filtering stage of the CT-Index
algorithm. It is reminded that CT-Index performs a comparison
between the query fingerprint and each of the fingerprints of
the database, therefore, it is expected that the filtering time will
increase linearly with the database size. KM-CTI uses a binary
tree of bitmaps, where the leaf nodes correspond to the database
fingerprints, and parent nodes are constructed by performing

0
0

1
1

0
2

0
3

1
4

...
...

1
k

...
...

1
2 -1

f

0 1 2 3 4 ... k ... 2-1
f

1
0
1
0

0

.

.

.

0
0
1
1

1

.

.

.

1
1
0
0

0

.

.

.

0
0
1
1

0

.

.

.

1
0
0
0

1

.

.

.

.

.

.
1
0
0
1

1

.

.

.

.

.

.
1
0
1
1

1

.

.

.

0
1
2
3

n

... ...

... ...

1

0

0
0
1
1
.
.
.

AND

4
1
0
0
0

1

.

.

.

AND ... AND

k

0

1
0
0
1
.
.
.

AND ...AND

2-1
f

1
0
1
1

1

.

.

.

Filtering IntersectionCW-CTI Index

Query Fingerprint

Figure 6: Example of filtering stage in CW-CTI.

the binary OR operation between two children. If the compari-
son between the query fingerprint and a given node of the tree
returns false, then the whole branch below the node may be
directly discarded. Thus, if the database is large enough, then
searching the KM-CTI binary tree will require less comparisons
than the number of database fingerprints, reducing the time of
the filtering stage.

An example of the use of a KM-CTI binary tree to evaluate the
fingerprint of an input query is illustrated in Figure 7. It is noticed
that, in the binary tree, all the fingerprints are in the leaf nodes,
and each parent node contains the binaryOR of its children. The
query is first comparedwith the root node. Given that the query is
binary contained in the root node, then it has to be comparedwith
each of the two children. The comparison with the left children
is positive, and therefore the process has to continue through
the left branch. However, the comparison with the right child is
negative, therefore the whole branch may be discarded. In the
figure, highlighted nodes have been compared with the query and
nodes of dark color represent positive results in the comparison.
Therefore, in this example, the algorithm performs 7 comparisons
(instead of the 8 comparisons that the original CI-Index would
require) to select two fingerprint candidates for the verification
stage. Again, the chosen algorithm for the verification stage is
the VF2 version proposed by the original CT-Index method, and
again, this algorithm is executed in parallel in a multi-thread
architecture.

The KM-CTI binary tree will offer a good performance if the
internal nodes discard large numbers of fingerprints with few
comparisons. To achieve this, pairs of bitmaps have to be com-
bined under parent nodes in a way that minimizes as much as
possible the number of 1s in those internal nodes. This behav-
ior during the tree construction is achieved in KM-CTI through
the application of the K-Means [7, 18] clustering algorithm, re-
cursively to the original set of fingerprints, as it is explained
below.

In general, K-Means is used to distribute a set of elements
in K clusters, in a way that a given distance measure is mini-
mized between the elements of each cluster. Broadly speaking,
the algorithm works as follows. First, K elements of the set are
aleatory chosen as centroids of theK clusters. Next, each element
is assigned to the cluster corresponding to its nearest centroid.
Once the first cluster have been defined, a new centroid is chosen
for each cluster by computing some kind of mean between the
elements of the cluster. The processes of assigning elements to
their nearest neighbor centroid and computing new centroid are
iteratively repeated until the elements of each cluster do not
change in two consecutive iterations.

To construct the tree, K-Means is first applied with K = 2 to
the original set of fingerprints, to obtain two clusters. The binary

OR of the elements of each cluster is computed to obtain the two
children of the root node of the tree. This process is recursively
repeated inside each cluster until one of the two following con-
ditions hold: i) the elements per cluster reach two (two original
fingerprints), ii) the K-Means method cannot subdivide the clus-
ter further. At this stage the tree is completed. The number of
fingerprints contained in a leaf node may be greater than two if
they are either equal, or so similar that they cannot be subdivided
further.

To be able to apply K-Means to sets of bitmaps, both a distance
measure and a mean calculation method have to be defined. The
number of 1s in common between elements of the same cluster
must be maximized, in order to to minimize the 1s in the binary
OR. If b1 and b2 are two bitmaps, then the distance between b1
and b2, denoted d(b1,b2), is defined in the current proposal as
follows.

d(b1,b2) =
{
0, if b1 ⊆ b2 ∨ b2 ⊆ b1.

count1s(b1 ⊕ b2), otherwise.
(1)

In the above definition, bi ⊆ bj is used to denote that bi
is binary contained in bj , i.e., bi ∧ bj = bi . The XOR binary
operation between two bitmaps bi and bj is denoted by bi ⊕ bj ,
and count1s(b) denotes the number of 1s of a bitmap b. It is
noticed that the above definition of distance between bitmaps is
based on the well-known Hamming distance [9], that counts the
number of 1s in the XOR of the bitmaps.

The mean calculation method enables obtaining a representa-
tive centroid bitmap from all the bitmaps of a cluster. If zeros(i)
is the number of 0s in position i of all the bitmaps of the cluster
and ones(i) is the number of 1s in position i of all the bitmaps of
the cluster, then value of the bit at position i of the mean of the
bitmaps of the cluster is 0 if zeros(i) > ones(i) and 1 otherwise.

The calculation of distance and mean between bitmaps if illus-
trated in Figure 8 through various examples. Note that KM-CTI is
an in-memory index, therefore a binary tree is expected to offer
better results than trees of higher order. The value of K , however,
can be increased to obtain an structure suitable for secondary
storage, as it is the B-tree.

As it is the case of the tree based indexes of conventional
alphanumerical data, KM-CTI is expected to improve the perfor-
mance of the sequential search adopted by CT-Index, if the query
is selective enough. Therefore, it is expected that KM-CTI will
behave better with large query graphs than with small ones.

6 EVALUATION
In this section, the experiments performed and their results are
described and discussed. The system setup, datasets and queries
are described in a first subsection. Next, the benchmark under-
taken to select the appropriate values for maximum path length

11010000

11110000 01110010 01111000 01011100 00011100 00000111 0000110111010100

11110100 01111010 01011100 00001111

11111110 01011111

11111111

Query FP Index Tree

Figure 7: Example of filtering stage in KM-CTI. Highlighted nodes represent the tested ones, and the nodes filled with
color are the ones that passed the test.

11001101(b)

11000101

01000101(b)
10100110(b)
01101101(b)
11010101(b) mean =

d(b ,b) = 0

d(b ,b) = 5
d(b ,b) = 2

1

2

3

4

5

1 2

1 3

2 4

Figure 8: Example of distance and mean measures be-
tween bitmaps used in KM-CTI.

and fingerprint size is described. Finally, the last subsection is
devoted to the comparison of the performance of the various
techniques, with different query and database sizes.

6.1 System Setup, Datasets and Queries
The experiments were performed on a CentOS Linux release
7.4.1708, with 2 processors Intel(R) Xeon(R) CPU E5-2630 v4 (2.20
GHz, 10 cores) and 384 GB RAM. The GGSX implementation in
C++ was obtained from the authors, and reimplemented in Java.
For the CT-Index method, a jar was obtained from one of the
authors website, and then a reverse engineering technique was
applied in order to obtain the code. All the new methods were
implemented in Java, reusing the above two base implementa-
tions. The experiment executions were executed using a JVM
with 32GB. The verification stage in BM-GGSX, CW-CTI, and
KM-CTI methods was performed using 10 threads.

Two different datasets were used to construct databases of
different sizes for the experiments. The AIDS2 dataset has al-
ready been used to evaluate other previous works of the state of
the art [2, 8, 13, 15, 16]. It is composed of 42689 graphs, with an
average of 45.70 vertices and 47.71 edges per graph. PubChem3

is a molecular dataset that has currently around 96 million com-
pounds, with an average of 41.40 vertices and 42.16 edges per
graph.

In both experiments queries of sizes ranging from 4 to 40
edges (4, 8, 12, 16, 20, 24, 28, 32, 36, 40) were used. For each size,
a set of 1000 query graphs was constructed. The construction
of the queries was performed in the same way as in previous
works [13, 15], by extracting subgraphs from the dataset. For
each query, a graph was randomly selected according to a uni-
form distribution. A vertex of the graph was randomly selected
according to a uniform distribution to act as starting point from
which to make the query graph grow. From this starting vertex, a
random tree was created until the desired size was reached. The
size of the query was given by the number of edges of its graph.

2https://cactus.nci.nih.gov/download/nci/
3https://pubchem.ncbi.nlm.nih.gov/

Two different sets of queries were constructed. One for the AIDS
dataset, and the other for the PubChem dataset.

6.2 Parameter Selection
The objective of this first experiment was twofold. The first aim
is to test the behavior of the different techniques, including the
two methods obtained from the state of the art (GGSX and CT-
Index), and the three new proposals, with two different datasets
and query sizes. At the same time, the experiment aims at testing
the performance of each technique with different values of its
parameters, including maximum path length for all the methods
and fingerprint size for those based in CT-Index.

The experiment was executed on two databases, AIDS on the
one hand and 200k molecular structures obtained from PubChem
(PubChem200k) on the other hand. The 1000 queries extracted
from each dataset were evaluated 5 times with each method,
and the experiment was repeated 4 times at different moments.
As it was expected, the size and building time of the BM-GGSX
trie structure increases with the maximum path length used.
Regarding the CT-Index based methods, the size of the indexes
is only affected by the fingerprint size, whereas both fingerprint
size and maximum path length have a negative impact on the
index building time.

Regarding query response time, Figure 9(a) shows the com-
parison (subdivided into filtering, query building and verifica-
tion times) between the original GGSX and BM-GGSX on the
AIDS database, using different maximum path lengths and query
sizes. As it is shown in the figure, the reduction in filtering time
achieved by BM-GGSX is huge (around 90% of reduction in many
cases). Due to this large difference, the original GGSX method
was not considered for subsequent experiments. As it can be
observed in the figure, using different values for the maximum
path length (4, 5, 6 and 7) does not show to have a significant
impact in the query response time.

Figures 9(b-d) show the query response times obtained with
the three CT-Index based methods on the AIDS database, using
different maximum path lengths, fingerprint sizes and query
sizes. In general, for small queries, where the query building
time is not important, a maximum path length higher than 4
offers better results, whereas the fingerprint size does not show
a significant impact in the response time. For larger queries, the
query building time becomes very significant, due to the few
candidates retrieved from such a small database, and therefore,
increasing the maximum path length impacts negatively in the
response time.

The results of the experiment on the PubChem200k database
are illustrated in Figures 10(a-d). In particular, Figure 10(a) shows

(a) Comparison of response times (ms) between GGSX and BM-GGSX on AIDS for different maximum path lengths and query sizes.

(b) Response times (ms) of CT-Index on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.

(c) Response times (ms) of CW-CTI on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.

(d) Response times (ms) of KM-CTI on AIDS for different fingerprint sizes, maximum tree lengths and query sizes.

0

10

20

30

40

50

60

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

8

0
1
2
3
4
5
6
7
8

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

20

0

2

4

6

8

10

12

14

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

40

0

5

10

15

20

25

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

8

0

1

2

3

4

5

6

7

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

20

0

2

4

6

8

10

12

14

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

40

0

5

10

15

20

25

30

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

8

0

1

2

3

4

5

6

7

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

20

0

2

4

6

8

10

12

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

20
48

40
96

81
92

4 5 6 7

40

0

50

100

150

200

250

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

4 5 6 7

8

0

10

20

30

40

50

60

70

80

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

4 5 6 7

20

0

10

20

30

40

50

60

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

G
G
S
X

B
M
-G
G
SX

4 5 6 7

40

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Figure 9: Response times of the methods on the AIDS database using different parameters.

(a) Response times (ms) of BM-GGSX on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(b) Response times (ms) of CT-Index on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(c) Response times (ms) of CW-CTI on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

(d) Response times (ms) of KM-CTI on Pubchem200k for different fingerprint sizes, maximum tree lengths and query sizes.

0

50

100

150

200

250

4 5 6 7

8

0

10

20

30

40

50

60

70

80

90

100

4 5 6 7

20

0

50

100

150

200

250

300

350

4 5 6 7

40

0

50

100

150

200

250

300

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

8

0

50

100

150

200

250

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

20

0

100

200

300

400

500

600

700

800

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

40

0

20

40

60

80

100

120

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

8

0

10

20

30

40

50

60

70

80

90

100

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

20

0

50

100

150

200

250

300

350

400

450

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

40

0

20

40

60

80

100

120

140

160

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

8

0

20

40

60

80

100

120

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

20

0

50

100

150

200

250

300

350

400

450

2048 4096 8192 2048 4096 8192 2048 4096 8192 2048 4096 8192

4 5 6 7

40

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Filtering Time Query Building Time Verification Time

Figure 10: Response times of the methods on the PubChem200k database using different parameters.

the response times obtained by BM-GGSX, with different maxi-
mum path lengths and with different query sizes. As it may be
observed, the way the queries are constructed and the the much
larger size of the database, compared to AIDS, causes the veri-
fication time to be the most significant one in this experiment.
Again, the maximum path length does not show a clear impact
in the total response time for BM-GGSX. Regarding the methods
based on CT-Index (see Figures 10(b-d)), again, significant differ-
ences cannot be observed in general between different values of
fingerprint size and maximum path length, although maximum
path lengths higher than 4 provide slightly better results in most
cases.

Based on the above experimental results, and also taking into
account relevant decisions made in a previous survey [13], in
the subsequent experiment we decided to use the same values of
6 for the maximum path length and of 4096 for the fingerprint
size, for all the methods. The objective of such new experiment
is the comparison of the performance of all the methods (except
the discarded original GGSX), for increasing database and query
sizes and the results and relevant discussion are given in the next
subsection.

6.3 Performance comparison
In this section, the results of the performance comparison of all
the methods (except the discarded GGSX) are discussed. As it
was already stated, a maximum path length of 6 and a finger-
print size of 4096 were chosen. First, the results of the experi-
ments described in the previous subsection are used to compare
the performance of all the methods on the AIDS database. Fig-
ures 11(a-c) show the filtering, query building and verification
times of queries of different sizes on the AIDS database. As it
may be observed in Figure 11(a), CW-CTI has the best perfor-
mance for small queries, both in filtering time and also in total
response time. This is due to the few intersections between com-
pressed bitmaps that the technique has to perform when few
1s are present in the query fingerprint. However, as the query
size increases, the performance of CW-CTI deteriorates, reach-
ing the same performance of CTI for large queries, whereas the
performance of KM-CTI improves. The reason is that, with large
queries, with many 1s in their fingerprints, many branches of
the KM-CTI binary tree of bitmaps will be discarded during the
filtering stage.

A second experiment was undertaken to compare all the meth-
ods, except the discarded GGSX, with increasing database and
query sizes. To achieve this, 10 databases with sizes ranging from
100k to one million graphs were extracted from the PubChem
dataset. All the index structures were created for each database,
and relevant index size and index building time results were ob-
tained. Figure 12 shows the index size and index building time for
each of the analyzed methods. Index building time scales well for
CT-Index and CW-CTI methods, growing linearly, and ranging
from less than 6 minutes to index 100k graphs, to around 1 hour
to index the largest dataset of one million graphs. KM-CTI index
building time grows linearly as well, but with a higher slope than
CT-Index and CW-CTI methods, being more than 3 times slower
for the largest dataset. This is due to the recursive application of
the K-Means method to construct the binary tree of bitmaps. BM-
GGSX has the worst performance of all methods, taking more
time to index 200k graphs, than CT-Index and CW-CTI methods
to index one million. Its index building time increases drastically

(a) 8 Edges Queries

(b) 20 Edges Queries

(c) 40 Edges Queries

0

5

10

15

20

25

30

35

CTI CW-CTI KM-CTI BM-GGSX

TI
M

E
(M

IL
LI

SE
C

O
N

D
S)

Filtering Time Query Building Time Verification Time

0

1

2

3

4

5

6

7

CTI CW-CTI KM-CTI BM-GGSX

TI
M

E
(M

IL
LI

SE
C

O
N

D
S)

Filtering Time Query Building Time Verification Time

0

1

2

3

4

5

6

7

CTI CW-CTI KM-CTI BM-GGSX

TI
M

E
(M

IL
LI

SE
C

O
N

D
S)

Filtering Time Query Building Time Verification Time

Figure 11: Performance comparison of themethods on the
AIDS database.

with the size of the dataset, and it needed more than 14 hours to
index the largest database of one million graphs.

Regarding the index size, BM-GGSX performs again the worst
among all the proposed methods, showing a big slope in its scal-
ability plot, going from 155MB in the shortest dataset to almost
1.4GB in the largest one. CW-CTI performs the best, scaling
slightly better than CT-Index method, due to the use of com-
pressed bitmaps in its storage structure. KM-CTI doubles the
space of CW-CTI and CT-Index, due to the additional bitmaps
stored in the internal nodes of its binary tree. However, its size
is still almost half of that required by BM-GGSX.

(a) Index Building Time (b) Index Size

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IN

U
T

E
S

)

DB SIZE

CT-Index CW-CTI KM-CTI BM-GGSX

0

200

400

600

800

1000

1200

1400

1600

0 200000 400000 600000 800000 1000000

S
IZ

E
(M

B
)

DB SIZE

CT-Index CW-CTI KM-CTI BM-GGSX

Figure 12: Index Size and Building Time for increasing database sizes.

(a) 8 Edges Query Filtering Response Time (b) 20 Edges Query Filtering Response Time (c) 40 Edges Query Filtering Response Time

(f) 40 Edges Total Query Response Time(e) 20 Edges Total Query Response Time(d) 8 Edges Total Query Response Time

0
10
20
30
40
50
60
70
80
90

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CT-Index CW-CTI KM-CTI BM-GGSX

0

10

20

30

40

50

60

70

80

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CT-Index CW-CTI KM-CTI BM-GGSX

0

10

20

30

40

50

60

70

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CT-Index CW-CTI KM-CTI BM-GGSX

0

100

200

300

400

500

600

700

800

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CTI CW-CTI KM-CTI BM-GGSX

0

100

200

300

400

500

600

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CTI CW-CTI KM-CTI BM-GGSX

0
200
400
600
800

1000
1200
1400
1600
1800

0 200000 400000 600000 800000 1000000

T
IM

E
 (

M
IL

L
IS

E
C

O
N

D
S

)

DB SIZE

CTI CW-CTI KM-CTI BM-GGSX

Figure 13: Filtering time and total query response time for increasing database and query sizes.

Once the indexes were created, the 1000 queries of each size
(from 4 edges to 40 edges), generated for the previous experiment
from the 200k PubChem database, were executed four times for
each database size, and the whole experiment was repeated three
times in different moments. Figures 13(a-c) depict the filtering
time of each method. It is reminded that the main contribution of
the present work is on the index structures used in the filtering
stage of the methods. BM-GGSX and CW-CTI obtain the fastest
filtering time for small queries (around 80% of reduction with
respect to CTI), as it is shown in Figure 13(a), whereas KM-CTI
and CTI offer a similar performance. It is reminded that CW-CTI
was expected to behave well with small queries that have few
1s in their fingerprints. On the other hand, small not selective
queries, with few 1s in their fingerprints, do not leverage the
binary tree of KM-CTI. As the query size increases, CTI and
BM-GGSX keep their performance figures, however, CW-CTI
and KM-CTI invert their positions. With queries of large sizes,

with many 1s in their fingerprints, CW-CTI has to perform many
intersections between large compressed bitmaps. On the other
hand, KM-CTI behaves better, as many branches of its binary
tree are discarded during the evaluation. This situation is clearly
shown in Figures 13(b) (around 70% of reduction with respect
to CTI) and 13(c) (around 75% of reduction with respect to CTI).
These results are completely aligned with those already described
for the AIDS database above.

To complete the analysis of the results, the total query response
times are shown in Figures 13(d-f). First, looking at the scale of
the total response times, it is noticed that, in these databases,
contrary to what it was observed with AIDS, the filtering time
does not have a great impact on the total response time, since
the verification time is the largest one by difference. In spite of
this, it is shown how the three methods proposed in the present
work outperform the CT-Index method. This is mainly due to
the parallel execution in a multi-thread architecture of the VF2

subgraph isomorphism algorithm. It is also noticed that, BM-
GGSX, which had the best results in filtering time for all the
query sizes, does not show a good total response time for small
queries. The reason for this lost of performance is the use of paths
as graph features in BM-GGSX, contrary to the use of trees in CT-
Index based techniques, which enable the generation of a larger
number of different features in small graphs, reducing the number
of candidates to verify. The small differences between CW-CTI
and KM-CTI are caused by the already mentioned differences in
filtering time, since both the effectiveness of their filtering stage
and their verification stage are identical.

7 CONCLUSIONS
In this paper, three new FTV methods for subgraph search on
large databases of small graphs are proposed. The methods are
based on already existing state of the art solutions, namely GGSX
and CT-Index, and provide improvements both in filtering and
verification response times. BM-GGSX improves GGSX through
the incorporation of compressed bitmaps for the representation
of graph references, and reaches the best filtering times for all
types of queries and the best total response times for medium and
large queries. However, it does not improve the bad figures that
GGSX already have in both index size and index building time.
CW-CTI exploits also compressed bitmap inside a column-wise
structure for the storage of the CT-Index fingerprints, obtaining
very good performance for small size queries. KM-CTI uses the K-
Means clustering method on CT-Index fingerprints to construct a
binary tree of bitmaps, which is used during the filtering stage to
reduce the required fingerprint comparisons. KM-CTI has very
good performance for medium and large queries, with the cost
of increasing the index size and building time with respect to
the original CT-Index, but keeping the figures much lower than
those reached by BM-GGSX. Thus, a combination of CW-CTI
and KM-CTI covers all the query sizes with performances either
similar of better than those of BM-GGSX, but keeping both index
size and building times inside a reasonable range.

Future research work is related to the implementation of the
proposed techniques in distributed large scale data processing
architectures, to reach reasonable performances for databases of
sizes larger than 100 million graphs, as it will be the case of the
PubChem dataset in the near future. The results will be incorpo-
rated in a query engine prototype that is being implemented in
the scope of the NEXTCHROM project, co-funded by the Spanish
government and the company Mestrelab Research S.L.

ACKNOWLEDGMENTS
This work has been co-funded by the Ministerio de Economía
y Competitividad of the Spanish government, and by Mestrelab
Research S.L. through the project NEXTCHROM (RTC-2015-3812-
2) of the call Retos-Colaboración of the program Programa Estatal
de Investigación, Desarrollo e Innovación Orientada a los Retos
de la Sociedad.

REFERENCES
[1] F. Bi, L. Chang, X. Lin, L. Qin, andW. Zhang. 2016. Efficient subgraphmatching

by postponing Cartesian products. In Proceedings of the 2016 ACM SIGMOD
International Conference on Management of Data. ACM, 1199–1214.

[2] V. Bonnici, A. Ferro, R. Giugno, A. Pulvirenti, and D. Shasha. 2010. Enhanc-
ing graph database indexing by suffix tree structure. In IAPR International
Conference on Pattern Recognition in Bioinformatics. Springer, 195–203.

[3] J. Cheng, Y. Ke, W. Ng, and A. Lu. 2007. FG-Index: Towards verification-free
query processing on graph databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 857–872.

[4] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. 2004. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence 26, 10 (2004), 1367–1372.

[5] H.-C. Ehrlich andM. Rarey. 2012. Systematic benchmark of substructure search
in molecular graphs - From Ullmann to VF2. Journal of Cheminformatics 4, 1
(31 Jul 2012), 13. DOI:http://dx.doi.org/10.1186/1758-2946-4-13

[6] H.-C. Ehrlich, A. Volkamer, and M. Rarey. 2012. Searching for substructures in
fragment spaces. Journal of Chemical Information and Modeling 52, 12 (2012),
3181–3189. DOI:http://dx.doi.org/10.1021/ci300283a PMID: 23205736.

[7] E. Forgy. 1965. Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications. Biometrics 21 (1965), 768–780.

[8] R. Giugno, V. Bonnici, N. Bombieri, A. Pulvirenti, A. Ferro, and D. Shasha. 2013.
GRAPES: A software for parallel searching on biological graphs targeting
multi-more architectures. PLoS ONE 8, 10 (2013).

[9] R. W. Hamming. 1950. Error detecting and error correcting codes. Bell System
Technical Journal 29, 2 (1950), 147–160.

[10] W.-S. Han, J. Lee, and J.-H. Lee. 2013. TurboISO: Towards ultrafast and robust
subgraph isomorphism search in large graph databases. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data. ACM,
337–348.

[11] W.-S. Han, J. Lee, M.-D. Pham, and J.X. Yu. 2010. iGraph: A framework for
comparisons of disk based graph indexing techniques. Proceedings of the VLDB
Endowment 3, 1 (2010), 449–459.

[12] H. He and A. K. Singh. 2008. Graphs-at-a-time: Query language and access
methods for graph databases. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 405–417.

[13] F. Katsarou, N. Ntarmos, and P. Triantafillou. 2015. Performance and scalability
of indexed subgraph query processing methods. Proceedings of the VLDB
Endowment 8, 12 (2015), 1566–1577.

[14] F. Katsarou, N. Ntarmos, and P. Triantafillou. 2017. Subgraph querying with
parallel use of query rewritings and alternative algorithms. In Advances in
Database Technology - EDBT, Vol. 2017-March. 25–36.

[15] K. Klein, N. Kriege, and P. Mutzel. 2011. CT-Index: Fingerprint-based graph
indexing combining cycles and trees. In Data Engineering (ICDE), 2011 IEEE
27th International Conference on. IEEE, 1115–1126.

[16] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. 2012. An in-depth comparison
of subgraph isomorphism algorithms in graph databases. In Proceedings of the
VLDB Endowment, Vol. 6. 133–144.

[17] D. Lemire, O. Kaser, and K. Aouiche. 2010. Sorting improves word-aligned
bitmap indexes. Data and Knowledge Engineering 69, 1 (2010), 3–28.

[18] J. MacQueen. 1967. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of the Fifth Berkeley Symposium on Mathe-
matical Statistics and Probability, Volume 1: Statistics. University of California
Press, Berkeley, 281–297.

[19] X. Ren and J. Wang. 2015. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the VLDB Endowment
8, 5 (2015), 617–628.

[20] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. 2008. Taming verification hardness:
An efficient algorithm for testing subgraph isomorphism. Proceedings of the
VLDB Endowment 1, 1 (2008), 364–375.

[21] J. R. Ullmann. 1976. An algorithm for subgraph isomorphism. J. ACM 23, 1
(1976), 31–42.

[22] J. Wang, N. Ntarmos, and P. Triantafillou. 2016. Indexing query graphs to
speedup graph query processing. In Advances in Database Technology - EDBT,
Vol. 2016-March. 41–52.

[23] J. Wang, N. Ntarmos, and P. Triantafillou. 2017. GraphCache: A caching
system for graph queries. In Advances in Database Technology - EDBT, Vol.
2017-March. 13–24.

[24] X. Yan, P.S. Yu, and J. Han. 2004. Graph indexing: A frequent structure-based
approach. In Proceedings of the ACM SIGMOD International Conference on
Management of Data. 335–346.

[25] S. Zhang, M. Hu, and J. Yang. 2007. TreePi: A novel graph indexing method.
In Proceedings - International Conference on Data Engineering. 966–975.

[26] S. Zhang, S. Li, and J. Yang. 2009. GADDI: Distance index based subgraph
matching in biological networks. In Proceedings of the 12th International Con-
ference on Extending Database Technology: Advances in Database Technology,
EDBT’09. 192–203.

[27] P. Zhao and J. Han. 2010. On graph query optimization in large networks.
Proceedings of the VLDB Endowment 3, 1 (2010), 340–351.

[28] P. Zhao, J. X. Yu, and P. S. Yu. 2007. Graph indexing: Tree + Delta >= Graph. In
33rd International Conference on Very Large Data Bases, VLDB 2007 - Conference
Proceedings. 938–949.

[29] L. Zou, L. Chen, J. X. Yu, and Y. Lu. 2008. A novel spectral coding in a
large graph database. In Advances in Database Technology - EDBT 2008 - 11th
International Conference on Extending Database Technology, Proceedings. 181–
192.

http://dx.doi.org/10.1186/1758-2946-4-13
http://dx.doi.org/10.1021/ci300283a

	Abstract
	1 Introduction
	2 Related Work
	2.1 GraphGrepSX
	2.2 CT-Index

	3 Bitmap GGSX
	4 Column-Wise CT-Index
	5 K-Means CT-Index
	6 Evaluation
	6.1 System Setup, Datasets and Queries
	6.2 Parameter Selection
	6.3 Performance comparison

	7 Conclusions
	Acknowledgments
	References

