
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS)

Tesis doctoral

BIG DATA MEETS HIGH PERFORMANCE COMPUTING:
GENOMICS AND NATURAL LANGUAGE PROCESSING AS CASE

STUDIES

Presentada por:

José Manuel Abuı́n Mosquera

Dirigida por:

Juan Carlos Pichel Campos
Tomás Fernández Pena

Santiago de Compostela, septiembre de 2017

Juan Carlos Pichel Campos, Profesor Contratado Doctor del Área de Arquitectura de
Computadores de la Universidad de Santiago de Compostela

Tomás Fernández Pena, Profesor Titular del Área de Arquitectura de Computadores de la
Universidad de Santiago de Compostela

HACEN CONSTAR:

Que la memoria titulada Big Data meets High Performance Computing: Genomics and
Natural Language Processing as case studies ha sido realizada por José Manuel Abuı́n
Mosquera bajo nuestra dirección en el Centro Singular de Investigación en Tecnoloxı́as da
Información de la Universidade de Santiago de Compostela, y constituye la Tesis que presenta
para optar al tı́tulo de Doctor.

Santiago de Compostela, septiembre de 2017

Juan Carlos Pichel Campos
Director/a de la tesis

Tomás Fernández Pena
Director/a de la tesis

José Manuel Abuı́n Mosquera
Autor/a de la tesis

Juan Carlos Pichel Campos, Profesor Contratado Doctor del Área de Arquitectura de
Computadores de la Universidad de Santiago de Compostela

Tomás Fernández Pena, Profesor Titular del Área de Arquitectura de Computadores de la
Universidad de Santiago de Compostela

como Director/res de la tesis titulada:
Big Data meets High Performance Computing: Genomics and Natural
Language Processing as case studies

Por la presente DECLARAN:

Que la tesis presentada por Don José Manuel Abuı́n Mosquera es idónea para ser pre-
sentada, de acuerdo con el artı́culo 41 del Regulamento de Estudos de Doutoramento, por la
modalidad de compendio de ARTÍCULOS, en los que el doctorando ha tenido participación
en el peso de la investigación y su contribución fue decisiva para llevar a cabo este trabajo. Y
que está en conocimiento de los coautores, tanto doctores como no doctores, participantes en
los artı́culos, que ninguno de los trabajos reunidos en esta tesis serán presentados por ninguno
de ellos en otras tesis de Doctorado, lo que firmo bajo mi responsabilidad.

Santiago de Compostela, septiembre de 2017

Juan Carlos Pichel Campos
Director/a de la tesis

Tomás Fernández Pena
Director/a de la tesis

A Martı́n e a Verónica
Por cambiarme a vida. De boa, a mellor

The two most important days in your life
are the day you are born and the day you
find out why.

Mark Twain

There are things known and there are
things unknown, and in between are The
Doors

Jim Morrison

Agradecementos

Non podo comezar esta sección doutra maneira que non sexa agradecendo a Pichel e a
Tomás por darme esta oportunidade. Primeiro co proxecto de PLN e despois coa bolsa FPI.
Sen o seu apoio dende un principio esta tese non serı́a posible. Ademais diso nunca deixaron
de recibirme amablemente sempre que petaba na súa porta cun novo problema (ou non tan
novo).

Quero tamén agradecer ó resto do Grupo de Arquitectura de Computadores da USC, en
especial a Fran, Caba e Dora. Ós primeiros porque a miña andanza no mundo “paralelo”
empezou con eles durante o meu TFM, e a Dora porque dela aprendı́n moitı́simo no referente a
docencia e á vida universitaria como investigador. Ası́ mesmo, tamén darlle as gracias a Pablo
Gamallo e a Jorge Amigo, pola súa axuda e sempre boa disposición coas miñas preguntas no
tocante ás súas especialidades, PLN e Bioinformática respectivamente.

Non podo esquecerme do resto de compañeiros na miña vida profesional. Comezando,
primeiro, polo Cesga, onde me deron a miña primeira oportunidade. Alı́ tiven a sorte de
coñecer e aprender de grandes profesionais e amigos. Marı́a José, Manuel Gromaz, Silvia,
Cecilia e Javi. Despois, co salto ó Departamento de Matemática Aplicada da USC, tiven o
luxo de traballar con Alfredo Bermúdez, Julio, Chuco, Ángel e Vı́ctor, dos cales aprendı́n
tanto tecnicamente como coma persoa, e cos cales gardo grandes recordos.

E no tocante ó CiTIUS, pouco que dicir, e ó mesmo tempo, moito. Esta tese non terı́a
visto o fin sen as longas conversas, apoios, comidas e cafés compartidos con Esteban, Bea,
Julio, Diego Rodrı́guez, Guillermo, Vanesa, Rodrigo e Carlos Bran.

I would also like to thank the High Performance Computing Research Group at the Jo-
hannes Gutenberg Univertisät for the great experience in the three and a half months I spent
there. I learned a lot from them, specially from Bertil Schmidt, Tu Tuan Tran, Christian
Hundt, André Müller and André Weißenberger.

XII

Tamén quero darlle as gracias, como non, á miña familia, por estar sempre presente du-
rante o desenvolvemento deste traballo. Ademais, quero agradecer ás comunidades de Stack-
Overflow, Wikipedia e GitHub, ası́ coma a Linus Torvalds por Linux e a Dennis Ritchie pola
linguaxe C e por Unix.

Para rematar, quero agradecer á Xunta de Galicia pola súa financiación no proxecto “Com-
putación de Altas Prestacións para o Procesamento da Linguaxe Natural” (EM2013/041),
coa cal estiven contratado, e ó Ministerio de Economı́a y Competitividad pola financiación
do proxecto “Soluciones Hardware y Software para la Computación de Altas Prestaciones”
(TIN2013-41129-P) e a correspondente beca FPI (BES-2014-067914). Tamén, como non,
agradecer ó Cesga e a Amazon AWS pola posibilidade de empregar as súas instalacións.

Santiago de Compostela, septiembre de 2017

Resumen

En los últimos años las tecnologı́as Big Data han tenido un auge enorme dentro del mundo
de la industria y la investigación. Esto se ha debido, principalmente, a su capacidad para
realizar el procesamiento de grandes volúmenes de datos usando arquitecturas paralelas de un
modo sencillo, eficiente y completamente transparente para el usuario. Dicho de otro modo,
las tecnologı́as Big Data han acercado la programación paralela clásica en memoria distribuida
a un público más general, facilitando en gran medida su adopción sin una pérdida importante
de rendimiento, y ese es parte de su éxito.

Dicho éxito se manifiesta en su uso en centros de investigación punteros a nivel mundial.
Por ejemplo en el CERN, se usan tecnologı́as Big Data para procesar los datos producidos
por el Gran Colisionador de Hadrones (LHC), o la NASA, que utiliza este tipo de tecnologı́as
para tratar datos recibidos por grandes telescopios instalados en diferentes localizaciones a lo
largo del mundo.

El origen de estas tecnologı́as puede encontrarse en el año 2004, cuando Google publica
un trabajo donde presenta el modelo de programación MapReduce. A partir de ahı́, y con
el surgimiento de Apache Hadoop como implementación Open Source de dicho modelo, el
crecimiento de este tipo de tecnologı́as ha sido exponencial.

Por otro lado, en el ámbito de la Computación de Altas Prestaciones (High Performance
Computing o HPC), existe una carrera entre empresas, instituciones y centros de investiga-
ción para entrar en la era de los supercomputadores exascale. Estos sistemas de computación
deberán ser capaces de realizar 1018 operaciones en punto flotante por segundo, es decir, te-
ner un rendimiento de 1 EXAFLOP. Hoy en dı́a aún estamos lejos de alcanzar dicha meta,
ya que el supercomputador que se alza con el primer puesto en el TOP500 en Junio de 2017
es capaz de alcanzar los nada despreciables 125,4 PETAFLOPS (125,4×1015FLOPS), pero
todavı́a falta un orden de magnitud para alcanzar el EXAFLOP, lo que supone un enorme salto

XIV

tecnológico.

Para llegar a alcanzar el EXAFLOP de rendimiento, los supercomputadores necesitarán
que el envı́o de datos se realice de un modo rápido y eficiente, tanto dentro de un mismo
nodo como entre nodos diferentes. Esta es una tarea difı́cil de lograr en los grandes super-
computadores, ası́ como en los programas con una alta demanda computacional, como los
provenientes de problemas cientı́ficos y de análisis de datos. Además, las Application Pro-

gramming Interfaces (APIs) deberán proveer al programador de métodos que le permitan
llevar a cabo la explotación de cantidades excepcionales de paralelismo y, al mismo tiempo,
hacerlo de modo que la facilidad de uso y la programabilidad no sea un problema, ası́ co-
mo soportar arquitecturas heterogéneas, tales como las que incorporan GPGPUs o sistemas
manycore. Otro requisito es el de dar soporte a mecanismos de tolerancia a fallos, mediante
los cuales una aplicación se podrı́a recuperar de un fallo software o hardware, para continuar
con la ejecución normal del proceso justo desde el punto donde se produjo dicho error.

Las APIs de los lenguajes de programación de computación paralela clásicos (como por
ejemplo MPI, OpenMP, etc) se encuentran en una etapa de desarrollo y mejora, con el objetivo
de alcanzar los requisitos mencionados anteriormente. Por otro lado, los entornos de desarro-
llo Big Data (por ejemplo, Spark o Hadoop) ya cumplen con algunas de estas caracterı́sticas,
como la tolerancia a fallos o la facilidad de programación. Aún ası́, todavı́a no está claro
que paradigma encaja mejor para alcanzar un alto rendimiento y, al mismo tiempo, manejar
grandes cantidades de datos de una forma eficiente en un amplio rango de códigos cientı́ficos.

Además de lo expuesto en el párrafo anterior, existe una cierta tensión entre la necesidad
de reducir el movimiento de datos y el potencial de organizar y ejecutar tareas de un modo
dinámico (con el movimiento de datos que ello implica). El rol del usuario al tratar de ba-
lancear dichos parámetros es todavı́a un punto de debate. Aún ası́, podrı́amos preguntarnos,
¿existe una diferencia fundamental entre HPC y Big Data?, ¿o la diferencia simplemente re-
side en las aplicaciones y el software empleado? Mientras que la Computación de Altas Pres-
taciones se centra más en grandes cargas computacionales, las tecnologı́as Big Data tienen
como objetivo aplicaciones que necesitan manejar grandes y complejos conjuntos de datos.
Dichos conjuntos de datos son, habitualmente, del orden de varios PebiBytes o TebiBytes de
tamaño.

A primera vista, estas diferencias entre Big Data y HPC pueden resultar extrañas, ya que,
en el fondo, ambos ecosistemas engloban tecnologı́as que permiten realizar tareas de cómputo
en paralelo con la consiguiente reducción de tiempos de ejecución y mejora del rendimiento.

XV

Entonces, ¿a qué se deben estas diferencias? Podemos destacar varios factores. El primero es
que, con el surgimiento de las tecnologı́as Big Data, también ha surgido todo un ecosistema
de nuevas aplicaciones asociadas a ellas (schedulers, sistemas de fichero paralelos, etc). Estas
aplicaciones ya tenı́an anteriormente sus equivalentes en el mundo HPC. La gran diferencia es
que las nuevas tecnologı́as incorporan funcionalidades que son necesarias para implementar
algunas de las caracterı́sticas tı́picas de las aplicaciones Big Data (por ejemplo, la tolerancia a
fallos). La consecuencia más inmediata y evidente de esta divergencia es la existencia de dos
ecosistemas paralelos y completamente diferentes e incompatibles (al menos de momento)
entre el mundo HPC y en el mundo Big Data.

Otro de los factores causantes de dicha divergencia es, aunque pueda parecer poco impor-
tante en primera instancia, el lenguaje de programación empleado. Normalmente los lenguajes
de programación con más aceptación en el mundo HPC son C, C++ o Fortran. Mientras, las
tecnologı́as Big Data suelen utilizar lenguajes de más alto nivel, como por ejemplo, Java, Pyt-
hon o Scala, ya que estos lenguajes ofrecen una mejor programabilidad. Esto resulta ser un
problema, ya que las aplicaciones o librerı́as tradicionalmente empleadas en HPC, o incluso
en otras áreas cientı́ficas, no están implementadas mediante los lenguajes que se están usando
en Big Data. Las tecnologı́as Big Data se han orientado, desde su inicio, hacia su uso por par-
te de los denominados “cientı́ficos de datos”, más preocupados por el tratamiento estadı́stico
de los datos que por las caracterı́sticas a bajo nivel de sus aplicaciones. Por lo tanto, tienden
a usar lenguajes de más alto nivel como los citados anteriormente, o incluso de propósito
especı́fico, como por ejemplo SQL o R, para desarrollar códigos de una forma rápida.

Estos dos factores son, sin duda, una dificultad en el camino hacia los supercomputadores
exascale. Varias investigaciones en el área del HPC ya han manifestado la conveniencia de
que los dos mundos, HPC y Big Data, han de converger para poder alcanzar este objetivo. De
momento, sin embargo, no se han propuesto metodologı́as o tecnologı́as que hagan que los
dos mundos coexistan o converjan.

A medida que las investigaciones cientı́ficas demanden una mayor velocidad de cómputo
y capacidad para analizar datos, la potencial interoperabilidad de estos dos mundos es crucial
para el futuro. En esta tesis, se emplean tecnologı́as Big Data para tratar problemas cientı́ficos
que son computacionalmente intensivos en cuanto a tiempo de ejecución (tı́pico en problemas
HPC) y, al mismo tiempo, tienen un gran tamaño en cuanto a datos de entrada (tı́pico en
problemas Big Data), con el objetivo de mejorar el tiempo de ejecución, la escalabilidad y la
eficiencia.

XVI

Dichos problemas cientı́ficos abordados en esta tesis tienen una serie de caracterı́sticas
comunes que los hacen adecuados para demostrar los beneficios generados por la sinergia
entre los mundos HPC y Big Data:

Requerir una gran cantidad de datos de entrada.

Tener una elevada carga computacional, ya que las aplicaciones HPC son computacio-
nalmente intensivas.

Deben generar una gran cantidad de datos de salida. En muchos casos, aplicaciones de
ambos mundos forman parte de pipelines de trabajo que proporcionan datos de entrada
para otras aplicaciones. Por lo tanto, la salida de dichas aplicaciones también suele
generar una gran cantidad de información.

Deben estar escritos, al menos en su mayor parte, en un lenguaje de programación tı́pico
de las aplicaciones HPC.

Teniendo en cuenta dichos requisitos, los problemas cientı́ficos considerados en esta tesis
se engloban dentro de las áreas cientı́ficas de la Genómica y del Procesamiento del Lengua-
ge Natural (PLN).

El área del Procesamiento del Lenguaje Natural (PLN), está considerada como una de
las metodologı́as más apropiadas para poder estructurar y organizar la información textual
accesible a través de Internet. El procesamiento lingüı́stico de grandes cantidades de texto es
una tarea compleja que requiere del uso de varias subtareas organizadas en módulos interrela-
cionados. Estos módulos son necesarios para poder llevar a cabo tareas más complejas, como
la traducción automática, la recuperación de información o sistemas de vigilancia tecnológica.
Generalmente, se necesita que el procesamiento lingüı́stico en tareas NLP sea lo más precisa
y eficiente posible.

Uno de los mayores problemas que presentan los módulos PLN es su alto coste compu-
tacional y sus dificultades de escalabilidad. Esto los hace inviables para el análisis de grandes
volúmenes de documentos (GibiBytes e incluso TebiBytes). De este modo, en esta tesis hemos
considerado que el uso de soluciones HPC y Big Data se hace indispensable si se quiere redu-
cir de forma notable los tiempos de cómputo, mejorar la escalabilidad del sistema y abordar
problemas de un tamaño aún mayor. El conjunto de módulos PLN que se han seleccionado
han sido los que permiten realizar la identificación y clasificación de entidades con nombre o
NERC por sus siglas en inglés Named Entity Recognition and Classification.

XVII

El NERC es una lı́nea de investigación en sı́ misma dentro del Procesamiento de Lenguaje
Natural. El objetivo de esta lı́nea es reconocer, identificar y clasificar nombres dentro de un
texto. Este proceso se lleva a cabo con la ayuda de una lista predeterminada de categorı́as, por
ejemplo, Persona, Lugar, Organización, etc. Las herramientas del estado del arte en esta área
usan tanto técnicas lingüı́sticas basadas en gramáticas como modelos estadı́sticos. Normal-
mente los sistemas basados en gramáticas hechas a mano obtienen mejor precisión, pero con
el coste de meses de trabajo de expertos lingüistas con experiencia en computación. Por otro
lado, los sistemas NERC estadı́sticos requieren de una gran cantidad de datos de entrenamien-
to anotados a mano. También existen los enfoques semi-supervisados, que han sido sugeridos
para evitar parte del esfuerzo de anotación.

Todos estos enfoques adolecen de la misma caracterı́stica, que es la capacidad de procesar
grandes cantidades de datos en un tiempo razonable. Por ejemplo, procesar toda la Wikipedia
en español conlleva un tiempo de ejecución de alrededor de 19 dı́as con un sistema NERC
del estado del arte incluido en el repositorio Linguakit1. Los módulos PLN de dicho sistema
están implementados en lenguaje Perl, y funcionan como un pipeline de trabajo.

El lenguaje Perl se usa frecuentemente en tareas de PLN, ya que está preparado para tratar
con datos de tipo texto, debido sobre todo a su potencia en el uso de expresiones regulares.
Sin embargo, el caso de emplear herramientas escritas en lenguaje Perl o en cualquier otro
lenguaje diferente de Java con Apache Hadoop no está contemplado. Para poder realizar dicha
tarea, Apache Hadoop permite emplear la herramienta Hadoop Streaming. Dicha herramienta
permite al usuario ejecutar programas que siguen el modelo MapReduce empleando cualquier
lenguaje de programación, con la única limitación de que el código debe leer los datos de
entrada desde la entrada estándar, o stdin, y escribir los datos de salida en la salida estándar, o
stdout. El problema es que dicha herramienta ha demostrado carecer de la eficiencia esperada.
Debido a ello en esta tesis se han explorado otro tipo de soluciones a este problema, el cual
también podrı́a presentarse en otro tipo de aplicaciones.

Tras explorar dichas soluciones, se ha creado la herramienta Perldoop, que permite tradu-
cir códigos escritos en lenguaje Perl a códigos escritos en Java preparados para su ejecución
con Apache Hadoop sin necesidad del módulo de Hadoop Streaming. Esto permite que inves-
tigadores en PLN puedan traducir y ejecutar sus códigos desarrollados en Perl en un entorno
Big Data, con la consiguiente mejor eficiencia posible, escalando adecuadamente y, además,
con la tolerancia a fallos que proporciona.

1https://linguakit.com

XVIII

El proceso de traducción es relativamente sencillo, ya que tan sólo requiere por parte del
usuario añadir una serie de tags o etiquetas en el código Perl y emplear unos templates o
plantillas en lenguaje Java que ya provee la propia herramienta Perldoop. De este modo, los
investigadores en el área del PLN no tienen que profundizar en un nuevo lenguaje o unas
nuevas tecnologı́as con las que no tienen por qué estar familiarizados. Todo este proceso de
traducción, ası́ como de la implementación y resultados obtenidos, se tratan con profundidad
en el Capı́tulo 2. Ası́ mismo, también se muestran ejemplos de traducción sencillos, de modo
que el usuario pueda comprender fácilmente el proceso.

Para obtener resultados de un problema real y con un software del estado del arte, en
dicho capı́tulo se ha empleado Perldoop con los modulos NERC de Linguakit. La plataforma
seleccionada para llevar a cabo los experimentos ha sido un clúster Big Data del Centro de
Supercomputación de Galicia. Con estas caracterı́sticas, los resultados han mostrado un speed-
up de 57.9× usando 64 cores para los módulos NERC traducidos, frente al speed-up de 29.4×
obtenido por Hadoop Streaming. Como se puede apreciar, el rendimiento de los módulos
usando Perldoop es aproximadamente el doble que usando la herramienta Hadoop Streaming.

La segunda área cientı́fica que tratamos en esta tesis es la Genómica. El primer paso en un
análisis genómico de ADN o ARN es siempre la lectura de una muestra biológica, para poder,
de este modo, trasladar la información contenida en dicha muestra desde el entorno biológi-
co al computador, y ası́ poder analizar dichos datos computacionalmente. Esto se consigue
mediante el uso de las tecnologı́as de ultrasecuenciación. Gracias a estas tecnologı́as, se han
desarrollado máquinas que permiten introducir la muestra y obtener directamente los datos en
un formato digital, es decir, después del proceso de ultrasecuenciación, los datos tienen forma
de uno o varios ficheros de texto que siguen un determinado formato.

En los últimos años, dichas tecnologı́as de ultrasecuenciación han dado un salto impor-
tantı́simo en lo referente a la cantidad de datos que se pueden obtener de muestras, ası́ como
en la velocidad a la que se pueden obtener dichos datos. Dicho salto en lo referente a estas
tecnologı́as es en parte debido a los avances cientı́ficos llevados a cabo por compañı́as como,
por ejemplo, Illumina, o a centros como el Wellcome Trust Sanger Institute del Reino Unido.

Debido a la velocidad en la obtención de datos y a la cantidad obtenida de los mismos,
éstos pueden alcanzar fácilmente el orden de varios GibiBytes o TebiBytes de datos, depen-
diendo del tipo de muestra. El problema que se presenta ahora es dar sentido cientı́fico a dichos
datos, ya que la velocidad a la que aumenta su tamaño está sobrepasando a la velocidad a la
que crece la capacidad de cómputo de un procesador.

XIX

1 2 3 4 5 6
AACGT- -AACGT A-ACGT AACGT—— AA-CGT- -A-A-C-G-T-
ACCGTT ACCGTT ACCGTT —–ACCGTT A-CCGTT A-C-C-G-T-T

Tabla 1: Seis posible alineamientos para las secuencias de ejemplo.

Normalmente, los profesionales en el área emplean flujos de trabajo descritos en las GATK

Best Practices del Broad Institute, del MIT y Harvard para dar sentido cientı́fico, o analizar,
los datos obtenidos. Dichas buenas prácticas describen los pasos a seguir, ası́ como el software
a utilizar en cada uno de esos pasos, para elaborar una serie de análisis concretos. Algunos de
estos pasos son comunes a varios de los flujos de trabajo.

Una de las etapas que son comunes a varios de estos flujos de trabajo es la del alineamien-
to o mapeado de secuencias. Para explicar lo que es el alineamiento, primero hay que tener
en cuenta que las secuencias de ADN o proteı́nas pueden cambiar su codificación mientras
evolucionan en el tiempo. Los tipos más simples de mutaciones son mutaciones puntuales e
inserciones/extracciones, también conocidos como indels (insertion/deletion). El alineamien-
to trata de identificar estas mutaciones mediante algoritmos de alineamiento clásicos. Por
ejemplo, al alinear las dos secuencias de ADN, AACGT y ACCGTT, algunos de los posibles
resultados son los que se pueden ver en la Tabla 1, donde cada carácter representa una base
nitrogenada y el guión representa un hueco.

La cuestión ahora serı́a saber cuál de dichos alineamientos es el “mejor”. Para ello, existen
varios algoritmos de puntuación o score explicados en la literatura. Las referencias a la litera-
tura donde se explican dichos algoritmos de puntuación se indican en la Introducción de este
documento. Sin embargo, y teniendo en cuenta que hay varios posibles alineamientos y que
es necesario puntuarlos, y que al mismo tiempo estamos hablando de una gran cantidad de da-
tos, este paso es uno de los más costosos computacionalmente dentro de los flujos de trabajo
mencionados. Al mismo tiempo, es uno de los pasos más fundamentales, por lo tanto, obtener
herramientas que permitan realizar este alineamiento de una forma eficiente y escalable es un
requisito indispensable.

Dentro de las herramientas del estado del arte, existen varias que permiten llevar a cabo el
alineamiento de secuencias. En concreto, en el caso de alineamiento de secuencias cortas (de
menos de 100 caracteres o pares de bases), la herramienta BWA (Burrows-Wheeler Aligner)
es una de las más utilizadas, como ası́ lo refleja el hecho de que es la indicada en las GATK

Best Practices para realizar la fase de alineamiento. Dicha herramienta está implementada

XX

en C y utiliza paralelismo a nivel de hilo (es decir, en memoria compartida). Debido a su
amplia aceptación entre la comunidad de investigadores en Bioinformática y a los detalles
de su implementación, se ha seleccionado esta herramienta como caso de estudio en esta
tesis. A pesar de disponer de una versión paralela para sistemas de memoria compartida, el
alineamiento con BWA puede suponer varios dı́as de cómputo dependiendo del tamaño de los
datos de entrada.

Debido a lo expuesto en el párrafo anterior, y al tratar con una gran cantidad de datos de
entrada proveniente de las máquinas de ultrasecuenciación, las tecnologı́as Big Data parecen
las adecuadas para tratar con este problema. Al mismo tiempo, al tratarse de un problema
computacionalmente intensivo, las tecnologı́as HPC también podrı́an ser adecuadas. Por ello,
se ha implementado la herramienta BigBWA, la cual emplea Hadoop como tecnologı́a Big
Data para poder realizar en paralelo el alineamiento, mientras que internamente emplea los
algoritmos implementados en BWA. Dichos algoritmos están escritos en lenguaje C, y se hace
uso de ellos mediante llamadas desde Java en las partes que son computacionalmente inten-
sivas mediante el uso de JNI (Java Native Interface). Debido a que las secuencias de entrada
son totalmente independientes entre sı́, estamos hablando de un problema de los denomina-
dos Embarrassingly Parallel, ya que los datos se dividen en fragmentos y cada uno de dichos
fragmentos pueden ser procesados independientemente de los demás.

Siguiendo esta estrategia, cuyos detalles se pueden ver en el Capı́tulo 3, y empleando un
clúster Big Data desplegado en Amazon Web Services se han llevado a cabo una serie de
experimentos que demuestran la viabilidad de esta herramienta. Los datos de entrada se han
tomado de un repositorio público de secuencias de ADN humano, que proviene del proyecto
1000 Genomes. Los resultados de dichos experimentos han mostrado como BigBWA consigue
una aceleración de 36.6× empleando 64 cores con respecto a la versión secuencial de BWA
(1 thread), mientras que, al mismo tiempo, es más rápido que otras herramientas similares del
estado del arte. Además incorpora caracterı́sticas tı́picas de los ecosistemas Big Data, como
la tolerancia a fallos.

Dentro del mundo de las tecnologı́as Big Data, los avances se producen muy rápidamente.
Ası́ lo demuestra la aparición de Apache Spark, un motor que mejora Apache Hadoop en va-
rios aspectos. Por ejemplo, permite ir más allá del modelo MapReduce o proporciona mejoras
en el acceso a disco. Debido a ello, en esta tesis se ha implementado también una versión de
BWA empleando Apache Spark, surgiendo ası́ SparkBWA.

SparkBWA sigue la misma estrategia que su predecesor, BigBWA. Es decir, realiza la di-

XXI

visión de datos y tareas empleando tecnologı́as Big Data, en este caso Apache Spark, mientras
que el cómputo intensivo requerido por el algoritmo de alineamiento se realiza con el código
en C de BWA mediante JNI. De este modo, las ventajas obtenidas en BigBWA se mantienen y,
al mismo tiempo, se incluyen mejoras que proporciona Apache Spark. Por poner un ejemplo,
una fase de preprocesado de datos que requerı́a BigBWA, ahora con SparkBWA se realiza de
forma más eficiente empleando funciones nativas de Spark.

Todos los detalles de la implementación, ası́ como las mejoras mencionadas en el párrafo
anterior, se pueden ver en el Capı́tulo 4. En dicho capı́tulo también se presentan los resultados
obtenidos. SparkBWA consigue una aceleración de hasta 85.6× usando 128 cores con res-
pecto a la versión secuencial de BWA (1 thread), mientras que BigBWA y otras herramientas
del estado del arte se quedan alrededor de 66× con el mismo número de cores y también con
respecto a la versión secuencial de BWA (1 thread).

Uno de los objetivos de la comparación de secuencias de proteı́nas es descubrir similarida-
des estructurales o funcionales entre proteı́nas. Biológicamente, proteı́nas similares podrı́an
no mostrar una similaridad clara. Por ejemplo, si la similitud de las secuencias es baja, el
alineamiento de un par de secuencias puede fallar al identificar secuencias biológicamente re-
lacionadas. Sin embargo, la comparación simultánea de varias secuencias a menudo permite
encontrar similitudes que son imposibles de identificar en el caso de un par de secuencias.
Dicho es lo que se conoce como Multiple Sequence Alignment o MSA, en el cual se pre-
tende alinear varias secuencias al mismo tiempo. La mayor parte de implementaciones de
algoritmos que llevan a cabo MSA llevan a problemas de optimización de combinatoria NP
completos. Como parte de esta tesis también se ha llevado a cabo un trabajo en el que se in-
tegra un software para MSA, denominado PASTA, en un entorno Big Data, surgiendo ası́ la
herramienta PASTASpark.

En este caso, PASTA engloba diversas herramientas para llevar a cabo el alineamiento
múltiple. Dichas herramientas están implementadas en diferentes lenguajes de programación,
como por ejemplo, Python, e incluso se realizan llamadas a binarios ejecutables, por lo que es
otro candidato ideal para este nuestros objetivos en esta tesis. Cada una de dichas herramientas
se utiliza en diversas fases. En este caso, el trabajo se ha centrado en paralelizar una fase en
la que interviene el alineador conocido como MAFFT.

PASTA incluye por defecto un modo paralelo, en el que se ejecutan varios procesos al
mismo tiempo, con la caracterı́stica de que dichos procesos sólo pueden ser ejecutados en la
misma máquina. Sin embargo, con PASTASpark, la fase donde interviene MAFFT, que es la

XXII

más costosa computacionalmente, se ejecuta en un cluster de computación empleando Apache
Spark. Los detalles de nuestra propuesta se muestran en el Capı́tulo 5. De todos modos, cabe
mencionar que en este caso una de las fases de PASTA supone un cuello de botella que no per-
mite a PASTASpark escalar de manera adecuada. Debido a eso, los resultados se ven limitados
por la ley de Amdahl, aunque están muy próximos a dicho lı́mite. Por ejemplo, empleando un
cluster en Amazon Web Services, con el conjuntos de datos de entrada más grande del que
se dispone, se baja de las 24 horas de ejecución, mientras que usando la versión original de
PASTA se necesitan varios dı́as y no se consigue completar la ejecución.

Para finalizar este resumen, mencionar que las conclusiones globales obtenidas de todos
los trabajos aquı́ expuestos se encuentran detalladas en el Capı́tulo 6.

Contents

1 Introduction 1
1.1. Motivation . 1
1.2. The MapReduce programming model: Apache Hadoop 5
1.3. Hadoop Limitations and Apache Spark . 8
1.4. Case studies: Natural Language Processing and Genomics 11
1.5. Thesis outline . 22
1.6. List of publications . 22

2 Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters 25
2.1. Abstract . 25
2.2. Introduction . 26
2.3. The Perldoop tool . 27
2.4. Case studies: NLP scripts . 33
2.5. Performance evaluation . 34
2.6. Related work . 37
2.7. Conclusions . 38

3 BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . . 41
3.1. Abstract . 41
3.2. Introduction . 42
3.3. Approach . 42
3.4. Discussion . 44
3.5. Supplementary material . 45

4 SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . . 53

XXIV Contents

4.1. Abstract . 53
4.2. Introduction . 54
4.3. Background . 55
4.4. Related Work . 59
4.5. SparkBWA . 61
4.6. Evaluation . 66
4.7. Conclusions . 78

5 PASTASpark: multiple sequence alignment meets Big Data 79
5.1. Abstract . 79
5.2. Introduction . 80
5.3. Approach . 80
5.4. Results and discussion . 83
5.5. Supplementary Material . 84

6 Conclusions 95
6.1. Future work . 98

Bibliography 101

List of Figures 113

List of Tables 115

CHAPTER 1

INTRODUCTION

1.1. Motivation

The human being has entered in the era of data. According to IBM, every day 2.5 quin-
tillion bytes of data are created, in such a way that 90% of the data all over the world were
created just only in the last two years [1]. This data comes from everywhere: sensors that are
dedicated to gather climate information, posts to social networks, digital pictures and videos,
smartphones GPS signals, etc. But the Internet of Things or the Social Networks are not the
only responsible of this data explosion, science also plays an important role. As an example,
the Large Hadron Collider (LHC) in Geneve (Switzerland), generates about 30 PetaBytes of
data per year [2], and in its first phase, the Square Kilometre Array (SKA) radio telescope
will produce 160 TeraBytes of raw data per second [3]. All this data is what is known as Big
Data.

The task of processing and generating knowledge from this huge amount of information
can be an unaffordable problem. We can summarize the main challenges to deal with Big
Data in the following way:

Data is usually not structured.

The computing time to process and access this information is typically very high.

The memory consumed by scientific applications that make use of this data exceeds by
far the memory that is typically installed on a workstation.

2 Chapter 1. Introduction

Name Description Performance
Sunway TaihuLight National Supercomputing Center in

Wuxi (China). Supercomputer at
the top of the TOP500 list (June
2017).

125.4 PFLOPS
(×1015FLOPS) [7]

FinisTerrae II Galicia Supercomputing Centre
(CESGA) cluster.

328 TFLOPS
(×1012FLOPS) [8]

PlayStation 4 Videogame console by Sony. 1.8 TFLOPS
(×1012FLOPS) [9]

Nexus 5 Android mobile phone. 18 GFLOPS
(×109FLOPS) [9]

Table 1.1: Comparing processing power of different platforms.

To overcome these limitations, Google developed the MapReduce model [4, 5]. MapRe-
duce is a programming model that comes with an associated implementation for processing
and generating big data sets on commodity clusters. In this model, the runtime takes care of:

Partitioning the input data.

Scheduling the program’s execution across a set of machines.

Handling machine failures.

Managing inter-machine communications.

Since the release of the MapReduce model and the birth of its Open Source implementa-
tion, Apache Hadoop [6], the growth of Big Data technologies has been exponential.

On the other hand, nowadays, the High Performance Computing (HPC) community is in-
volved in a race between companies, institutions, and research centres to reach the Exascale
milestone. Exascale refers to supercomputers capable of executing 1018 floating point opera-
tions per second, this is, one EXAFLOP per second. To give some perspective to this number,
some comparison data is displayed in Table 1.1. As the numbers reveal, there is still an order
of magnitude to reach Exascale for the first supercomputer at the TOP500 [7] list.

To reach that performance, future supercomputers will need that data delivery to be fast
and efficient, both from memory and disk, and also across the network and between proces-
sors. This is a difficult task to achieve in big supercomputers, and also in large computa-
tions, like those present in scientific and data analytics problems. Also, Exascale Application
Programming Interfaces (APIs) will need to make easy for the programmer the exploitation

1.1. Motivation 3

of exceptional amounts of parallelism in applications, enabling the processing of significant
amounts of data, and supporting several different architectures, including those based upon
heterogeneous cores or accelerators. These APIs and their implementations will need to care-
fully manage different kinds of memories within each node. Moreover, the need to conserve
energy has led to an increased focus on reducing data motion at all levels of the memory hier-
archy, from low cache levels to main memory, requiring a rethinking of algorithms as well as
of the entire HPC software stack. In addition, Exascale execution software systems will need
to ensure that jobs continue to run despite the occurrence of system failures and other kinds
of hardware or software errors.

Traditional programming interfaces for expressing parallelism (in particular, MPI [10],
OpenMP [11] and OpenACC [12]) are being further developed to achieve some of these re-
quirements. On the other hand, Big Data frameworks (such as Apache Spark [13] or Apache
Hadoop [6]) have already implemented fault tolerance and programmability requirements.
However, it is still unclear which paradigm is a natural fit for expressing computations and
handling data in a broad range of scientific application codes.

At the same time, there is a tension between the need to reduce data motion and the
potential to dynamically schedule and execute tasks. The role of the user in balancing these
is also still being debated. Yet, is there a fundamental difference between HPC and Big Data
or does the difference only reside in the application and software usage? While HPC mostly
focuses on large computational loads, Big Data targets applications that need to handle very
large and complex data sets. These data sets are typically of the order of multiple terabytes
or exabytes in size. Big Data applications are thus very demanding in terms of storage, to
accommodate such a massive amount of data, while HPC is usually thought more in terms of
pure computational needs [14].

At this point, and after this explanation, a comparison between the Big Data and HPC
stacks is needed. A stack based on [15] can be seen in Figure 1.1. In this figure, we can
observe how both ecosystems share some attributes, for example, a notable reliance on open
source software and the x86 hardware. However, as scientific research increasingly depends
on both high-speed computing and data analytics, the potential interoperability of these two
ecosystems is crucial for the future. Also, despite the similarities, they differ markedly in their
foci and technical approaches.

Regarding the HPC ecosystem, commodity clusters (Intel/AMD) and purpose built pro-
cessors (IBM’s BlueGene) that dominated the previous decade, have been augmented with

4 Chapter 1. Introduction

Application Level

Middleware and

Management

System Software

Cluster Hardware Ethernet

Switches

Local Node

Storage
Commodity X86

Racks

Linux OS variant

Virtual Machines and Cloud Services

(optional)

Infiniband +

Ethernet

Switches

SAN + Local

Node Storage

X86 Racks +

GPUs or

Accelerators

HDFS (Hadoop File System)

YARN MESOS

Hadoop

MapReduce
SparkFlume Storm

Mahout, R and User Applications

(High level languages)

Lustre (Parallel

File System)

Batch Scheduler

(such as SLURM)

System

Monitoring

Tools

Performance

and Debugging

(such as PAPI)

Domain-specific Libraries

MPI/OpenMP

+ Accelerator

Tools

Numerical

Libraries

FORTRAN, C, C++ and IDEs

Applications and Community Codes

Linux OS variant

Big Data Ecosystem High Performance Computing Ecosystem

Figure 1.1: Stack comparison between Big Data and HPC ecosystems.

computational accelerators in the form of coprocessors, graphical processing units (GPUs) or
FPGAs. They also include high-speed low-latency networks (such as Infiniband) and Storage
Area Networks (SANs). This hardware ecosystem is optimized for performance, rather than
for minimal cost or energy consumption.

On top of the hardware, Linux provides the operating system, augmented with parallel
file systems (Lustre [16]) and batch schedulers (Torque [17] or SLURM [18]) for parallel job
management. MPI [10] and OpenMP [11] are used for internode and intranode parallelism,
augmented with CUDA [19] or OpenCL [20]. Numerical and domain specific libraries such
as LAPACK [21] and PETSc [22] complete the software stack. Applications are typically
written in Fortran, C or C++.

On the other hand, in the Big Data Ecosystem, clusters are typically based on Ethernet
networks and local storage, which focus in cost and capacity. In this case, on top of the Linux
operating system, HDFS [23] is commonly used, completed with YARN [24] or Mesos [25]

1.2. The MapReduce programming model: Apache Hadoop 5

for job scheduling. In this case, on top of the schedulers, different technologies can be found,
such as Spark or Hadoop MapReduce. Spark includes some libraries for Machine Learning
or Graphs Processing, with some aspects related to numerical computation but more oriented
to statistics than matrix algebra or simulation. Finally, on top of the Big Data stack, user
applications are usually written in high level languages (Perl or Python, for example). This is
another difference, since HPC programs are written in low level languages, which are better
suited for performance optimization.

Despite the fact that both ecosystems share some ideas, philosophy, and even technology,
they are very different. In addition, the barrier between Big Data technologies and classic
High Performance Computing applications is still not clear. In this thesis, we use Big Data
technologies to deal with some scientific problems that are computationally intensive regard-
ing execution time (typical in HPC problems) and, at the same time, have a large input data
size (typical in Big Data), with the objective of improving their execution time, scalability
and efficiency. Conclusions derived from this work can clarify where this barrier stands, or
even prove if this barrier exists at all, and maybe help to solve the key question that in recent
times has arisen among the HPC community: should Big Data be considered part of the High
Performance Computing field?

1.2. The MapReduce programming model: Apache Hadoop

Next, a brief overview of how the MapReduce programming model and Apache Hadoop
work is introduced. In the MapReduce model the computation takes a set of input key/value

pairs, and produces a set of output key/value pairs. The model expresses the computation as
two functions written by the user: map and reduce.

The Map function takes as input a key/value pair and produces an intermediate list of
key/value pairs. The function is called one time per each input key/value pair in the input data.
Then, the intermediate values associated with the same key are grouped together. Sometimes,
data need to be redistributed according to the intermediate keys, in a way that all the values
belonging to the same key are in the same computing node. This is what is known as the
shuffle phase. After that, data reaches the reduce function.

The reduce function, accepts an intermediate key and a list of values for that key. It op-
erates with these values to conform a set of output data. The intermediate values are supplied
to the user’s reduce function via an iterator. This allows the user to handle lists of values that

6 Chapter 1. Introduction

are too large to fit in memory.

By using these two functions from the model, the user should be able to process this
large amount of input data. The map invocations are distributed across multiple machines by
automatically partitioning the input data into a set of splits. The input splits can be processed
in parallel by different machines, or be processed in the same machine. Reduce invocations are
distributed by partitioning the intermediate key space into pieces using a partitioning function.

From this model, the best known Open Source implementation is Apache Hadoop [6].
Apache Hadoop is a framework used for distributed storage and processing of big data sets.
It is written in Java with some native code in C, and it consists mainly of three parts:

1. HDFS: Distributed file system that stores data on local disk of commodity hardware.

2. YARN: Resource management platform responsible for managing computing resources
in clusters, using them for scheduling users applications.

3. Hadoop MapReduce: The implementation of the MapReduce programming model.

Hadoop is mainly known because of the MapReduce model and its distributed filesystem
(HDFS). However, the name is also used for a family of related projects that fall under the
umbrella of its infrastructure for distributed computing and large-scale data processing [26].
This is the so called Hadoop ecosystem. Some examples of these projects are, apart from
the already mentioned HDFS, YARN and Hadoop MapReduce: Apache Pig [27], Apache
Hive [28], HBase [29], etc. However, all of these projects rely on YARN and the HDFS.

The Hadoop Distributed File System (HDFS) is designed to store very large data sets with
reliability, and to stream those data sets with a high bandwidth to user applications [23]. HDFS
stores the file system metadata separated from the data itself and is rack aware. As in other
distributed file systems, like PVFS [30], Lustre [16], or GFS [31, 32], HDFS stores metadata
on one or more dedicated servers, called the NameNodes. Application data are stored on other
machines, called DataNodes. However, a NameNode process and a DataNode can coexist in
the same machine. All servers are fully connected and communicate with each other using
TCP-based protocols. The data stored in the DataNodes is divided in blocks (0 to N blocks
per DataNode) of a certain size (typically 128 or 64 MB) and with a certain replication factor
(the default is 3).

An example of how HDFS works can be seen in Figure 1.2. In this example there are
6 DataNodes and one NameNode. There are 3 files in HDFS (represented in white, red and

1.2. The MapReduce programming model: Apache Hadoop 7

blue), each one of them occupying two blocks, with a replication factor of three. Considering
this configuration, for example, block 1 of the blue file is stored in the first, third and sixth
DataNode, while block two of the same file is stored in DataNodes two, four and five.

Regarding YARN (Yet Another Resource Negociator), it is the Hadoop cluster resource
management system. It was introduced in Hadoop 2 to improve the MapReduce implementa-
tion, but it is general enough to support other distributed computing paradigms [24].

YARN has a flexible model for making resource requests. A request for a set of contain-
ers (processes in the Hadoop terminology) can have different parameters defining the amount
of computer resources required for each container (memory and CPU), as well as locality
constraints for the containers in that request. It provides its services by using two types of
daemons: a Resource Manager (one per cluster) to manage the use of resources across the
cluster, and Node Managers running on all the nodes in the cluster (one per node) to launch
and monitor containers. A container executes an application specific process with a con-
strained set of resources. Depending on how YARN is configured, a container may be a Unix
process or a Linux cgroup. Figure 1.3 is a modified figure from [6], and illustrates how YARN
runs an application.

To execute an application on YARN, a client contacts the Resource Manager and requests
it to run an Application Master Process (step 1 in Figure 1.3). The Resource Manager then
finds a Node Manager that can launch the Application Master in a container (steps 2a and
2b). Precisely what the Application Master does once it is running depends on the application
itself. It could simply run a computation in the container it is running in and return the result
to the client. Or it could request more containers from the Resource Managers (step 3), and
use them to run a distributed computation (steps 4a and 4b).

Finally, locality is critical in ensuring that distributed data processing algorithms use the

NameNode

DataNode 2

122

DataNode 6

1 12

DataNode 1

11 2

DataNode 4

1 12

DataNode 3

12 2

DataNode 5

122

Figure 1.2: Example of how HDFS works.

8 Chapter 1. Introduction

Application

client

client node

ResourceManager

resource manager node

1: submit

YARN

application

NodeManager

2b: launch

2a: start container

node manager node

Container

Application

Master

3: allocate resources (heartbeat)

NodeManager

4b: launch

4a: start container

node manager node

Container

Application

process

Figure 1.3: Example of how YARN works.

cluster bandwidth efficiently, so YARN allows an application to specify locality constraints
for the containers it is requesting. Locality constraints can be used to request a container on a
specific node or rack, or anywhere on the cluster (off-rack) [33].

1.3. Hadoop Limitations and Apache Spark

One of the main ideas from the HDFS is that the most efficient data processing pattern
is a write-once, read-many-times pattern. For this reason, Hadoop shows good performance
with embarrassingly parallel applications requiring a single MapReduce execution (assuming
intermediate results between map and reduce phases are not huge), and even for applications

1.3. Hadoop Limitations and Apache Spark 9

requiring a small number of sequential MapReduce executions [34]. Note that Hadoop can
also efficiently handle jobs composed by one or more map functions by chaining several
mappers followed by a reducer function and, optionally, zero or more map functions, saving
the disk I/O cost between map phases. For more complex workflows, solutions as Apache
Oozie [35] or Cascading [36], among others, should be used.

The main disadvantage of these workflow managers is the loss of performance when
HDFS has to be used to store intermediate data. For example, an iterative algorithm can
be expressed as a sequence of multiple MapReduce jobs. Since different MapReduce jobs
cannot shared data directly, intermediate results have to be written to disk and read again
from HDFS at the beginning of the next iteration, with the consequent reduction in perfor-
mance. It is worth noting that even each iteration of the algorithm could consist of one or
several MapReduce executions. In this case, the degradation in terms of performance is even
more noticeable.

Apache Spark is a cluster computing framework designed to overcome the Hadoop lim-
itations in order to support iterative jobs and interactive analytics, originally developed at
University of California, Berkeley [13], now managed under the umbrella of the Apache Soft-
ware Foundation. Spark extends the MapReduce model to efficiently support more types of
computations (not only map and reduce), including batch applications, interactive queries,
and streaming. One of the main features Spark offers in order to be able to perform this set of
computations, is the ability to store the data in main memory between operations.

Another improvement with respect to Hadoop is the programming language. Programs
developed to run with Hadoop are written in Java. Hadoop can also run programs written in
other languages by using Hadoop Streaming, but some researchers have probed this tool to
perform poorly [37]. On the contrary, Spark offers simple APIs in Python, Java, Scala, SQL,
and even can be used from R. And not only that. It even includes a rich built-in libraries,
for example, for Machine Learning, and also integrates closely with other Big Data tools. In
particular, Spark can be run on Hadoop clusters and access any Hadoop data source [38].

The job topology is, however, very similar. A Spark application, at a high level, consists
of a driver program that launches various parallel operations on a cluster. The driver program
contains the application main function and defines distributed datasets on the cluster, then
applies operations to them. These distributed datasets, commonly named RDDs or Resilient
Distributed Dataset (RDD) [39], are one of the Spark main features. A RDD is simply an
immutable distributed collection of objects. Each RDD is split into multiple partitions, which

10 Chapter 1. Introduction

may be computed on different nodes of the cluster. RDDs can contain any type of Python,
Java, or Scala objects, including user defined classes. RDDs can be created in two ways:
by loading an external dataset (for example, from HDFS), or by distributing a collection of
objects (e.g., a list or set) in the driver program. Once created, RDDs offer two types of
operations: transformations and actions.

Transformations construct a new RDD from a previous one. For example, one common
transformation is filtering data that matches a predicate. Actions, on the other hand, compute
a result based on an RDD, and either return it to the driver program or save it to an exter-
nal storage system (e.g., HDFS). One example of an action is first(), which returns the first
element in an RDD.

Transformations and actions are different because of the way Spark computes RDDs. Al-
though the user can define new RDDs any time, Spark computes them only in a lazy way, that
is, the first time they are used in an action. This approach might seem unusual at first, but
makes a lot of sense when working with Big Data. For instance, consider an example where
the user defined a text file and then filtered the lines that include “Python”. If Spark were to
load and store all the lines in the file as soon as possible, it would waste a lot of storage space,
given that the user then immediately filter out many lines. Instead, once Spark sees the whole
chain of transformations, it can compute just the data needed for its result. This is due the
fact that, in Spark, all the operators in a job are used to construct a DAG (Directed Acyclic
Graph). The DAG is optimized by rearranging and combining operators where possible

To run these kind of operations introduced in the previous paragraphs, driver programs
typically manage a number of processes in the computing nodes called executors. An ex-
ample of how the Driver Program and the Executors are distributed in Spark can be seen in
Figure 1.4.

Finally, Spark’s RDDs are by default recomputed each time the programmer runs an action
on them. If an RDD is going to be reused in multiple actions, the programmer can ask Spark
to persist it using the persist method. There are a number of different places where the data
can be persisted, for example, memory, disk, memory and disk, etc. This place can be set
as an option to the persist method. With the persist method and no option provided, Spark
will store the RDD contents by default in main memory (partitioned across the machines in
the computing cluster), and reuse them in future actions. The behaviour of not persisting by
default may again seem unusual, but, it makes a lot of sense for big datasets: if the RDD is not
going to be reused, there is no reason to waste storage space when Spark could instead stream

1.4. Case studies: Natural Language Processing and Genomics 11

Driver Program

SparkContext Cluster Manager

Worker Node

Executor Cache

Task Task

Worker Node

Executor Cache

Task Task

Figure 1.4: Example of how Spark works.

through the data once and just compute the result. These kind of strategies are also useful
to implement fault tolerance in Spark. Thanks to the operations DAG, if the RDD fragments
stored in one node are lost, they can be rebuild in another node by following the operations
graph.

In conclusion, Spark overcomes most of the problems present in Hadoop. However, and
despite all of its improvements and parallel philosophy, it is still not clear if Spark fits in the
High Performance Computing world.

1.4. Case studies: Natural Language Processing and Genomics

To make progress in the approach between HPC and Big Data technologies, significant
applications from the Genomics and Natural Language Processing fields will be designed and
integrated into the Big Data frameworks, with the aim of boosting performance and improving
scalability.

12 Chapter 1. Introduction

1.4.1. Natural Language Processing

Natural Language Processing (NLP) is a field of computer science, artificial intelligence
and computational linguistics concerned with the interactions between computers and human
(natural) languages. In particular, it is concerned with programming computers to fruitfully
process large natural language corpora. It is considered as one of the more suitable method-
ologies to give a structure and organize the textual information accessible through the Internet.
Linguistic processing of big quantities of text is a complex task that requires the use of several
sub-tasks organized in various inter-related modules that run as a workflow. These modules
are usually needed to carry out more complex tasks [40] such as machine translation.

A common task in NLP is the Named Entity Recognition and Classification (NERC).
NERC is a research line inside NLP in consolidation phase. The objective of this line is to
recognize, identify and classify names inside a text [41, 42, 43]. This process is performed
with the help of a predetermined category list (for example, Person, Place, Organization, etc).
NERC systems that use linguistic grammar-based techniques or statistical models, such as
machine learning, are the state of the art tools. Grammar-based systems typically obtain better
precision, but at the cost of lower recall and months of work by experienced computational
linguists. Statistical NERC systems typically require a large amount of manually annotated
training data. Semi-supervised approaches have been suggested to avoid part of the annotation
effort [44, 45]. Many different classifier types have been used to perform machine-learned
NERC, with conditional random fields being a typical choice [46].

In this thesis, Linguakit NLP modules have been selected as case study [41, 47, 48]. The
NERC module in Linguakit consist of several modules in a pipeline. This NERC system from
Linguakit can be observed in Figure 1.5. In these Figure, all the modules involved since the
begin of the data process are shown. These modules are:

Basic analysis

1. Sentence Segmentation: This module divides the input in grammatical sentences.

2. Tokenizer: Here the sentences are divided into tokens, this is, textual elements
separated by white spaces or punctuation marks.

3. Splitter: The splitter module uses linguistic information to divide those tokens
that, despite of being various linguistic units, they are formally represented as an
unique element. For example, contractions in spanish, “del = de + el”.

1.4. Case studies: Natural Language Processing and Genomics 13

Figure 1.5: NERC system from Linguakit.

NER: Named Entity Recognition

1. Identification: This task consists of identifying as a single unit (or token) those
words or chains of words denoting an entity, e.g. New York, University of San

Diego, Herbert von Karajan, etc. The module is based on a set of language-
independent rules that take into account information on both a large lexicon of
forms and the relative position of words within the sentence.

2. PoS tagging: This module assigns each token of the input text a single PoS tag
provided with morphological information e.g. singular and masculine adjective,

past participle verb, plural and feminine noun, etc. The module consists of a
Bayesian classifier whose features are bigrams of tokens that represent the imme-
diate left and right contexts of the target token.

NEC: Named Entity Classification

14 Chapter 1. Introduction

Le le PP3CSD00
dije decir VMIS1S0

a a SPS00
Marı́a marı́a NP00SP0

el el DA0MS0
martes martes NCMN000

que que PR0CN000
me me PP1CS000

gusta gustar VMIP3S0
el el DA0MS0

cubismo cubismo NCMS000
. . Fp

Table 1.2: Linguakit NERC example.

1. Classification: The last step of the linguistic analysis is the semantic classification
of those entities identified in the previous NER module. Named Entity Classi-
fication (NEC) is the process of classifying entities by means of classes such as
“People”, “Organizations”, “Locations”, or “Miscellaneous”. NEC is a crucial
task for several natural language applications, for example Question Answering
and Information Extraction.

These modules identify and classify the named entities in two phases. First, the identi-
fication of token strings that joins to compose the entities (NER), and then the classification
by using tags that characterize them in a semantic way. An output example of the Linguakit
NERC tool is shown in Table 1.2 for the spanish sentence “Le dije a Marı́a el martes que me

gusta el cubismo”. In the example the first column contains the sentence tokens, the second
column contains what are called lemmas and the third contains the unique tags which identify
the tokens. For example, it identifies that “gusta” is a form of the verb “gustar” and assigns
the corresponding tag “VMIP3S0”, which starts with a “V” because it is a verb.

Despite all the different approaches that can be found in NERC systems from state of the
art tools, all of them lack of the same feature. That is, the capacity to process huge quantities
of text in reasonable time. For example, process the whole Wikipedia in Spanish language
takes about 19 days (more than 450 hours) [49] when using the considered NERC system.
The high execution time proves that one of the biggest problems of these techniques and tools
is their high computational cost and scalability problems. For this reason, NLP modules are

1.4. Case studies: Natural Language Processing and Genomics 15

non-viable for the analysis of big volumes (GigaBytes or TeraBytes) of documents. In this
way, the use of High Performance Computing (HPC) is mandatory, in order to reduce the
execution times, improve the system scalability and approaching bigger problems. However,
state of the art implementations are written in languages that are not well suited for HPC such
as Perl or Python. The reason is that these kind of languages are specially suited to work with
text data, so are a good match to NLP. HPC oriented languages such as C or Fortran are more
oriented to numerical data.

To overcome this limitation, Hadoop provides the Hadoop Streaming tool, which allows
to run a program written in any programming language in Hadoop. However, as was stated
before, this tool does not have a good performance [37]. For this reason, Perldoop [49] has
been developed. The objective in this work was not to develop a powerful tool that allows
to automatically translate any existent Perl code to Java, but a simple and easy-to-use tool
that takes as input Perl codes written for Hadoop Streaming, following a reduced number of
additional programming rules, and produces Hadoop-ready Java codes. In order to do that,
Perldoop uses a system based on tags and templates. Templates is contain certain parts of the
Java code that has no direct translation from Perl, such as class declarations, some auxiliary
functions needed in Java or global variables. Regarding tags, they are used in the Perl code to
indicate Perldoop to perform some type of specific translation or decision. The main benefit
of using this methodology is the ease of use. Note that programmers have to insert tags in
the Perl code and create the templates only once. After that procedure, the Perl code to be
translated can be modified at any time. To obtain a new Java version of the code it is only
necessary to execute Perldoop again, and it will be automatically generated.

A Hadoop cluster installed at the Galicia Supercomputing Center (CESGA), which con-
sists of 64 nodes has been used in the experimental evaluation. With this infrastructure, an
important reduction of the processing time is observed for all the parallel executions with
respect to the sequential case both using Hadoop Streaming and Hadoop. For example, the
original modules require about 19 days (more than 450 hours) to process the whole Wikipedia,
while using Hadoop Streaming this time decreases to bout 16 hours. Despite these important
improvements, the execution times using Hadoop Streaming are still high. However, when us-
ing the Hadoop-ready codes generated by Perldoop, this time is reduced to less than 2 hours.
That is, 8× faster than considering Hadoop Streaming.

More details about the design, implementation and Perldoop performance results can be
found in Chapter 2.

16 Chapter 1. Introduction

1.4.2. Genomics

The first step in a DNA or RNA genomics analysis is always reading a biological sample,
taking the genomic information from the sample into a digital format in a computer with the
aim of analyzing this data. Emerging next-generation sequencing technologies (NGS) have
broken many experimental barriers to genome scale sequencing, facilitating the extraction
of huge quantities of sequences, which will further promote the future growth of biological
databases. In the last years, the available biological data in a digital format has experimented
a big and quick growth. Good examples are the DNA sequence information in the NCBI
GenBank [50] database and the protein sequences in the UniProtKB/TrEMBL [51] database.

According to [52], compared to traditional Sanger capillary-based electrophoresis sys-
tems, NGS technologies provide ultra-high throughput with a two orders of magnitude lower
unit data cost. However, they all share the common intrinsic characteristic of providing short
read length, currently 25–75 base pairs (bp), this is, 25-75 characters, which is substantially
shorter than the Sanger sequencing reads (500–1000 bp) [53].

These short reads, commonly named sequences, are composed of ASCII characters rep-
resenting a nucleotide from the sequence, also known as nucleobases or simply, bases. For
example, in the DNA case, we can find only four possible bases:

A - Adenine

C - Cytosine

G - Guanine

T - Thymine

Computer scientists and biomedical researchers face the challenge of transforming these
short-reads into biological understanding. Consequently, bioinformatics tools need to be scal-
able; that is, they need to deal with an ever growing amount of data. Unfortunately, the amount
of publicly available sequence data grows faster than the single core processor performance.
Thus, modern bioinformatics tools need to take advantage of parallel computing [54].

To give meaning to all this data, according to the GATK [55] best practices from the Broad
Institute [56], a wide number of DNA or RNA analysis pipelines perform a pre-processing
raw data that comes from high throughput ultra sequencers. To be more precise, they say that
“pre-processing starts from raw sequence data and produces analysis-ready BAM files. This

involves alignment to a reference genome”.

1.4. Case studies: Natural Language Processing and Genomics 17

1 2 3 4 5 6
AACGT- -AACGT A-ACGT AACGT------ AA-CGT- -A-A-C-G-T-

ACCGTT ACCGTT ACCGTT -----ACCGTT A-CCGTT A-C-C-G-T-T

Table 1.3: Six different possible alignments for the example sequences.

This pre-processing or alignment is, basically, a way of arranging the sequences of DNA,
RNA, or protein to identify regions of similarity that may be a consequence of functional,
structural, or evolutionary relationships between the sequences [57]. This alignment of raw
data to a reference genome is one of the most time consuming steps in every genomic anal-
ysis, and remains as a bottleneck in nowadays workflows Its computing time is very high in
comparison with the other steps in the selected workflow. More information about the state of
the art algorithms used to perform the alignment phase can be found in [58], [59] or [60].

Short reads alignment

DNA, RNA and protein sequences encode changes in evolution time through mutation.
The simplest kinds of mutation are point mutations and insertions/deletions, also known as
indels. These two types of change are modeled by classical alignment algorithms. As an
illustrative example, a set of possible alignments of two DNA sequences, AACGT and ACCGTT,
are shown in Table 1.3 by writing their bases on top of each other, in a way that, either two
bases are paired, corresponding to presence or absence of a point mutation, or a base is paired
with a gap, corresponding to an insertion or deletion. It is not allowed to pair a gap with a gap,
not because two sequences cannot inherit the same deletion (they can), but because there is no
enough information to infer such a course of evolution from just two sequences. In Table 1.3,
six example alignments that can be generated following these rules are presented [59]. The
question now is, which one of the alignments is the “best”? At first sight, alignment 1 may
seem the best, as it has four matches, while alignment 2 only has one, alignment 3 has two,
and alignments 4 and 6 have no matches. However alignment five also contains four matches,
but it contains three gaps, while alignment 1 only has one gap. There are several algorithms
to calculate what is called the alignment score. Here, we refer to [58], [59] and [60], where
the most common scoring systems are explained in detail.

Putting these two factors together, (the big amount of data generated by sequencers and
the high computational cost required to carry out the alignment), help us to understand why
the development of parallel tools for the alignment process is so important.

18 Chapter 1. Introduction

Most of state of the art aligners exploit parallelism on shared memory systems, so they
have restrictions regarding the number of cores that can be used. Only some of them take
advantage of HPC and Big Data solutions.

BWA [61, 62, 63]: The state of the art tool par excellence regarding sequence alignment
is the Burrows-Wheeler Aligner (BWA). It is included in various GATK best practices
pipelines and it is widely accepted among the bioinformatics and genomics community.
This tool includes thread-level parallelism in shared memory. It is developed in C with
three different algorithms available.

Bowtie [64]: Ultrafast, memory-efficient alignment program for aligning short DNA
sequence reads to large genomes. It was developed at the University of Maryland in
2009. As BWA, includes thread level parallelism.

SOAP [65, 66, 67, 68]: Program developed for efficient gapped and ungapped align-
ment of short oligonucleotides onto reference sequences. It includes GPU support since
version 3.

Halvade [69]: Hadoop-based aligner. It includes a variant detection phase which is the
next stage after the sequence alignment in some DNA sequencing workflows.

SEAL [70]: Pydoop [71], based aligner. It follows the MapReduce model, and allows
users to write their programs in Python, calling BWA methods by means of a wrapper.

CUSHAW [72, 73, 74]: CUDA compatible short read alignment algorithm for multiple
GPUs sharing a single host. This aligner is designed based on the Burrows-Wheeler
transform (BWT) and written using CUDA C++ parallel programming language.

pBWA [75]: MPI implementation of BWA.

In this work, BWA has been used as the core of two alignment tools developed using
Big Data technologies. The first one is BigBWA [76], which takes advantage of Hadoop as
Big Data technology to increase the performance of BWA. The main advantages of our tool
are the following. First, the alignment process is performed in parallel using a tested and
scalable technology, which reduces the execution times dramatically. Second, BigBWA is
fault tolerant, exploiting the fault tolerance capabilities of the underlying Big Data technology

1.4. Case studies: Natural Language Processing and Genomics 19

on which it is based. And finally, no modifications to BWA are required to use BigBWA. As
a consequence, any release of BWA (future or legacy) will be compatible with BigBWA.

Hadoop applications are typically developed in Java, but BWA is implemented in C. To
overcome this issue BigBWA uses the Java Native Interface (JNI) [77], which allows the
incorporation of native code written in programming languages such as C and C++, as well as
code written in Java. Two independent software layers were created in BigBWA. The first one
corresponds to the BWA software package, while the other is, strictly speaking, our tool. This
design avoids any modification of the BWA source code, which assures the compatibility of
BigBWA with any BWA version.

In order to validate our tool several experiments have been carried out on a cluster de-
ployed in Amazon Web Services. Input data correspond to human DNA sequences from the
1000 Genomes project. Results from these experiments can be observed in Chapter 3, here,
let’s illustrate the benefits of BigBWA with the following example. The Illumina HiSeqXT M

is able to generate 6 billion (6×109) reads. It means more than 40 days to perform the align-
ment phase onto a reference genome with the sequential version of BWA (1 thread). This
time can be reduced to 5 days by using the multi-thread BWA version, and less than one day
by running BigBWA on a small cluster. In the case of a medium-size cluster, when using
BigBWA, this time is reduced to less than 5 hours, it is, 192× faster than BWA single-thread.
At the same time, it is faster than other state of the art tools.

Regarding the second alignment tool developed in this thesis, we have developed the soft-
ware SparkBWA [78]. SparkBWA follows the same philosophy than BigBWA, but the con-
sidered Big Data technology is Spark instead of Hadoop. SparkBWA was designed to meet
three requirements. First, SparkBWA should outperform BWA and other BWA-based align-
ers both in terms of performance and scalability. The second requirement is related to keep
the compatibility of SparkBWA with future and legacy versions of BWA. Since BWA is con-
stantly evolving to include new functionalities and algorithms, it is important for SparkBWA
to be agnostic regarding the BWA version. This is an important difference with respect to
other existent tools based on BWA, which require modifications of the BWA source code.
Finally, NGS professionals demand solutions to perform sequence alignments efficiently in
such a way that the implementation details are completely hidden to them. For this reason
SparkBWA provides a simple and flexible API to handle all the aspects related to the align-
ment process. In this way, bioinformaticians only need to focus on the scientific problem to
deal with.

20 Chapter 1. Introduction

SparkBWA has been evaluated both in terms of performance, scalability and memory
consumption, and a thorough comparison between SparkBWA and several state-of-art BWA-
based aligners is also provided. Those tools take advantage of different parallel approaches
as Pthreads, MPI, and Hadoop to improve the performance of BWA. Performance results
demonstrate the benefits of our proposal. The evaluation shows that SparkBWA is almost
twice faster than other state of the art tools. More precisely, it is 1.7× faster than SEAL, 1.4×
faster than BigBWA or Halvade, and 1.25× faster than pBWA. SparkBWA reachs a speedup
of 86× when using 128 cores regarding the BWA sequential version. Details about the design,
implementation and performance results are shown in Chapter 4.

Multiple sequence alignment

The goal of protein sequence comparison is to discover structural or functional similarities
among proteins. Biologically similar proteins may not exhibit a strong sequence similarity, but
we would still like to recognize resemblance even when the sequences share only weak simi-
larities. If the sequence similarity is weak, pairwise alignment can fail to identify biologically
related sequences because weak pairwise similarities may fail statistical tests for significance.
However, simultaneous comparison of many sequences often allows one to find similarities
that are invisible in pairwise sequence comparison [60]. This is whats is called Multiple Se-
quence Alignment (MSA). MSA is an extension of the pairwise alignment to incorporate more
than two sequences at a time. In many cases, the input set of query sequences are assumed
to have an evolutionary relationship by which they share a lineage and are descended from a
common ancestor. Multiple sequence alignments are computationally difficult to produce and
most formulations of the problem lead to NP-complete combinatorial optimization problems.
In this way, MSA is essential in order to predict the structure and function of proteins and
RNAs, estimate phylogeny, and other common tasks in sequence analysis.

PASTA [79] is a tool, based on SATé [80], which produces highly accurate alignments,
improving the accuracy and scalability of other state-of-art methods. PASTA is based on a
workflow composed of several steps. During each phase, an external tool is called to perform
different operations such as estimating an initial alignment and tree, computing MSAs on
subsets of the original sequence set, or estimating the maximum likehood tree on a previously
obtained MSA. Note that computing the MSAs is the most time consuming phase, implying
in some cases over 70% of the total execution time.

PASTA is a multithreaded application that only supports shared memory computers. In

1.4. Case studies: Natural Language Processing and Genomics 21

this way, PASTA is limited to process small or medium size input datasets, because the mem-
ory and time requirements of large datasets exceed the computing power of any shared mem-
ory system. In this thesis we introduce PASTASpark [81], an extension to PASTA that allows
to execute it on a distributed memory cluster making use of Apache Spark.

We have used the Spark Python API (known as PySpark) to implement PASTASpark. The
design of PASTASpark minimizes the changes in the original PASTA code. In fact, the same
software can be used to run the unmodified PASTA on a multicore machine or PASTASpark
on a cluster.

Regarding the performance results, it is important to remark here that only the most time
consuming PASTA phase has been parallelized. The other phases are executed in the Spark
driver. With this factor in mind, the speedup obtained in the CESGA Big Data cluster with
64 cores is 10.5× with respect to the single threaded PASTA. This number seems to be small
at first sight, but, actually, it is very close to the upper limit predicted by the Amdahl’s law.
Our solution is able to process a 200K sequences dataset in less than 24 hours. Considering
the original PASTA tool it was not possible to complete this process because of memory
restrictions. More details about our approach can be found in Chapter 5.

Some of the state of the art tools to perform MSA using a parallel approach are presented
below. To the best of our knowledge, there are no other tools that perform MSA by using Big
Data technologies.

MAFFT [82]: MSA program for amino acid or nucleotide sequences. The software
is named after the acronym Multiple Alignment using Fast Fourier. Is written in C
language and allows multiple threads.

MSAProbs [83]: Tool to perform MSA for protein sequences. It is based on a com-
bination of pair hidden Markov models and partition functions. It is developed in C++
and uses OpenMP to parallelize at thread level with a shared memory approach.

MSAProbs-MPI [84]: MPI implementation of MSAProbs. It implements a distributed
memory approach to MSAProbs by using MPI. In this way, it comes with a two-levels
parallelism. One in distributed memory by using MPI, and other one in shared memory
by using OpenMP.

QuickProbs [85]: GPU based implementation of MSAProbs by using OpenCL.

22 Chapter 1. Introduction

1.5. Thesis outline

In the following chapters we provide the key articles that represent the main body of work
for this thesis. In all these articles, the author of the thesis has been the main contributor.
These articles have been either published in JCR journals or in high quality international con-
ferences. The selection of publications has been made to delve into the main points mentioned
in this introduction, and to have a more complete representation of the work carried out dur-
ing this thesis. In Section 1.6, a full compendium of the journal and conference publications
related to this thesis is presented.

In Chapter 2 we introduce Perldoop, a new tool developed in order to automatically trans-
late Perl scripts into Hadoop ready Java codes. Our solution is very suitable for Natural
Language Processing applications that are written in Perl code. In this way, Perl NLP codes
can benefit from the parallel improvements that Hadoop provides. Results prove how using
Perldoop the execution times are far better than using Hadoop Streaming with the original
Perl codes.

In Chapter 3 we introduce BigBWA, a tool to align raw genomic sequences by using
the state of the art software BWA. BigBWA uses Hadoop, HDFS and the MapReduce pro-
gramming model in order to speed up the alignment process. By using BigBWA important
improvements regarding the computation times are observed, while the correctness results
compared with the original BWA are almost identical.

An evolution from BigBWA is SparkBWA, which is presented in Chapter 4. SparkBWA
presents noticeable improvements in terms of performance and scalability regarding BigBWA
and other state of the art tools. Also, it provides a simple and flexible API to handle all the
aspects related to the alignment process from the Spark shell and uses Spark native functions
to handle the input data.

We introduce PASTASpark in Chapter 5. PASTASpark is an efficient and parallel version
of PASTA that uses Spark as Big Data engine. Note that only the alignment step runs into the
Spark executors, which is the the most time consuming part in PASTA.

Finally, conclusions future work and some ideas of how the Big Data and the HPC world
can converge are presented in Chapter 6.

1.6. List of publications

Next a list of publications derived from the work developed in this thesis is shown:

1.6. List of publications 23

Articles in peer reviewed journals:

P. Gamallo, J. C. Pichel, M. Garcia, J. M. Abuı́n, and T. F. Pena, “Análisis morfos-
intáctico y clasificación de entidades nombradas en un entorno Big Data,” Procesamiento

del Lenguaje Natural, vol. 53, pp. 17–24, 2014

J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “BigBWA: Approaching the Bur-
rows–Wheeler Aligner to Big Data Technologies,” Bioinformatics, vol. 31, no. 24, pp.
4003–4005, 2015
Impact factor (JCR 2015): 5.766. Decil 1 Q1.
Category: MATHEMATICAL & COMPUTATIONAL BIOLOGY. Rank: 3/56.

J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “SparkBWA: speeding up the align-
ment of high-throughput DNA sequencing data,” PloS one, vol. 11, no. 5, p. e0155461,
2016
Impact factor (JCR 2016): 2.806. Q1.
Category: MULTIDISCIPLINARY SCIENCES. Rank: 15/64.

J. M. Abuı́n, T. F. Pena, and J. C. Pichel, “PASTASpark: multiple sequence alignment
meets Big Data,” Bioinformatics

Impact factor (JCR 2016): 7.307. Decil 1 Q1.
Category: MATHEMATICAL & COMPUTATIONAL BIOLOGY. Rank: 2/57.

Articles published in international conferences:

J. M. Abuı́n, J. C. Pichel, T. F. Pena, P. Gamallo, and M. Garcia, “Perldoop: Efficient
execution of Perl scripts on Hadoop clusters,” in IEEE International Conference on Big

Data, 2014, pp. 766–771

CHAPTER 2

PERLDOOP: EFFICIENT EXECUTION OF

PERL SCRIPTS ON HADOOP CLUSTERS

Following is a reproduction of an article of which the author of this thesis is a main contrib-
utor. This is a verbatim reproduction, and the original can be found online with the following
information:

J. M. Abuı́n, J. C. Pichel, T. F. Pena, P. Gamallo, and M. Garcia, “Perldoop: Efficient
execution of Perl scripts on Hadoop clusters,” in IEEE International Conference on Big

Data, 2014, pp. 766–771

2.1. Abstract

Hadoop is one of the most important implementations of the MapReduce programming
model. It is written in Java and most of the programs that run on Hadoop are also written in this
language. Hadoop also provides an utility to execute applications written in other languages,
known as Hadoop Streaming. However, the ease of use provided by Hadoop Streaming comes
at the expense of a noticeable degradation in the performance.

In this work, we introduce Perldoop, a new tool that automatically translates Hadoop-
ready Perl scripts into its Java counterparts, which can be directly executed on Hadoop while
improving their performance significantly. We have tested our tool using several Natural
Language Processing (NLP) modules, which consist of hundreds of regular expressions, but

26 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

Perldoop could be used with any Perl code ready to be executed with Hadoop Streaming.

Performance results show that Java codes generated using Perldoop execute up to 12x
faster than the original Perl modules using Hadoop Streaming. In this way, the new NLP
modules are able to process the whole Wikipedia in less than 2 hours using a Hadoop cluster
with 64 nodes.

2.2. Introduction

In the modern digital society, it is estimated that each day are created around 2.5 quintil-
lion bytes of data (2.5 Exabytes), in such a way that 90% of the data all over the world were
created just only in the last two years [1]. These data come from all type of sources: sensors
used to obtain information on the climate, publications in social networks, blogs, digital im-
ages and video, etc. For instance, Twitter generates about 8 Terabytes of data per day, while
Facebook captures about 500 Terabytes. This is what is known as Big Data. One of the main
characteristics of this amount of information is the fact that, in many cases, is not structured.

The MapReduce framework has become the de-facto standard for parallel processing of
Big Data and has gained a wide adoption in both industry and research fields. One of the
most successful open-source implementations based on Google’s MapReduce [5] program-
ming model is Hadoop [6], which is implemented using Java. In this model, the input and
output of a MapReduce computation is a list of (key, value) pairs. Users only need to imple-
ment Map and Reduce functions. Each map produce zero or more intermediate (key, value)

pairs by consuming one (key, value) pair. After this, the runtime groups automatically these
intermediate (key, value) pairs into buckets representing reduce tasks. Reduce functions take
an intermediate key and a list of values as input and produce zero or more output results.

Even though code developing in Hadoop is largely simplified with its characteristics as
the automatic input splitting, task scheduling or fault tolerance mechanism, to write a Java
MapReduce program is not straightforward. Besides, in some research areas, Java is not
normally employed, and programmers are more familiar with other high level programming
languages like Perl or Python. For example, Natural Language Processing (NLP) and Bioin-
formatics researchers are used to write code in Perl due to its unique ability to process text
using regular expressions. These researchers have found in Hadoop Streaming the way to
easily analyze big volumes (Gigabytes or even Terabytes) of textual information. However,
important degradations in the performance were detected using Hadoop Streaming with re-

2.3. The Perldoop tool 27

spect to Hadoop Java codes [37]. Only for computational intensive jobs whose input/output
size is small, the performance of Hadoop Streaming is sometimes better because of using a
more efficient programming language.

For the reasons detailed above, in this paper we introduce Perldoop, a new tool that
automatically translates Perl scripts prepared to be executed using Hadoop Streaming into
Hadoop-ready Java codes. Our tool has been tested using several NLP modules as input,
which consist of hundreds of regular expressions. In particular, three linguistic modules were
considered: Name Entity Recognition (NER), PoS-Tagging and Named Entity Classification
(NEC).

Performance tests were carried out on a 64 nodes Hadoop cluster. The results show that
the automatically generated Java codes execute up to 12× faster than the original Perl modules
using Hadoop Streaming. In this way, the new NLP modules are able to process the whole
Wikipedia in less than 2 hours.

2.3. The Perldoop tool

As it was stated in the introduction, our objective is to translate Hadoop Streaming codes
written in Perl to its Java equivalents, in order to take advantage of the higher performance
of Java codes in Hadoop [37]. The general case of automatically translating an arbitrary Perl
code into its Java equivalent is a very hard problem, due to the characteristics of both lan-
guages. One of the main difficulties to create a general source-to-source translator is that Perl
has a Turing-complete grammar in such a way that parsing can be affected by run-time code
executed during the compile phase. Therefore, Perl cannot be parsed by a straight Lex/Yacc
lexer/parser combination. Instead, the interpreter implements its own lexer, which coordinates
with a modified GNU Bison parser to resolve ambiguities in the language [87, 88].

Some efforts have been done to integrate (not to translate) Perl into Java code. This is
the case of the Java-Perl Library (JPL) [89], which allows to invoke Perl methods inside a
Java program. We discard this solution because the performance obtained by JPL codes is
equivalent to the one obtained by using directly Perl codes and Hadoop Streaming.

On the other hand, we cannot forget that Perl and Java are two very different languages.
There are a lot of differences between them, but the following are the most relevant to our
case:

Variable declaration: Programmers do not have to declare and establish the variable

28 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

type in Perl, while that is mandatory in Java.

Array size and accesses: If the programmers want to access a non existent array posi-
tion in Perl, the array is expanded if it is a write operation, and positions in the middle
are set to undef, or, in the case of reading, it returns undef [90]. However, Java produces
an execution error.

Boolean values: Perl does not have boolean values such as “True” and “False”, which
can be assigned to variables. Instead, it can handle another variables as booleans. For
example, the strings “” and “0” are considered as “False”, and also the integer and real
values 0 and 0.0 [90]. Java uses boolean variables, and it cannot process integers, real
or strings as booleans like Perl.

Due to all the aforementioned difficulties, our objective in this work was not to develop a
powerful tool that allows to automatically translate any existent Perl code to Java, but a simple
and easy-to-use tool that takes as input Perl codes written for Hadoop Streaming, following
a reduced number of additional programming rules, and produces Hadoop-ready Java codes.
We have called this tool Perldoop, and it was developed using Python.

2.3.1. How it works

Perldoop uses file templates and tags, as it is shown in Figure 2.1. The main goal of the
templates is to contain certain parts of the Java code that has no direct translation from Perl,
such as class declarations, some auxiliary functions needed in Java or global variables. In the
near future, and as Perldoop evolves, we expect that templates will not be necessary.

The programmer must indicate the position to insert the translated code into the file tem-
plate using the next tags:

//<java><start> and //<java><end>

In the same way, the Perl code to be translated needs to be surrounded by the following
tags:

#<perl><start> and #<perl><end>

The translation process can be summarized in these steps:

2.3. The Perldoop tool 29

Class declaration

Auxiliary functions

Java File

Template

Perl File to

Translate

Class declaration

Auxiliary functions

Resulting

Java File

//<java><start>

//<java><end>

//<java><start>

Java code translated

from Perl

//<java><end>

Perl code

#<perl><start>

Perl code to translate

#<perl><end>

Perl code

Figure 2.1: Use of templates and tags with Perldoop.

1. The programmer tags the Perl file and creates the Java template, including the class
declaration and constructor.

2. The Perldoop tool is executed to generate the new Java code.

The main benefit of using this methodology is the simplicity of use. Note that program-
mers have to insert the labels in the Perl code and create the templates only once. After that
procedure, the Perl code to be translated can be modified at any time. To obtain a new Java
version of the code it is only necessary to execute Perldoop again, and it will be automatically
generated.

Regarding the limitations of Perldoop, the main one is that programmers have to tag the
Perl code and make the corresponding Java template. In addition, there are a few tips or rules
that the programmer should follow in order to guarantee the correct translation when using
Perldoop.

2.3.2. Programming rules

Next we detail the programming rules that the Perl codes should follow to assure the
correctness of the Java codes automatically generated by Perldoop:

30 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

1. Ordered conditional blocks. It means that the conditional expression should appear
before the sentences to be executed if the condition is fulfilled. Use:

if(condition){

sentences;

}

instead of: sentences if(condition);

2. Perform string concatenations with the “.” operator. For example:

$variable = $var1." ".$var2;

3. Restrict the access to array positions not previously allocated.

4. Use a different name for each variable. Perl allows:

my $feat; # variable

my @feat; # array

while in Java the programmer has to declare two different variables.

5. In Perl, the programmer can do the following using an integer variable: if($variable)

Java only allows this expression if the variable is a boolean. Therefore, the expression
should be:

if($variable!=0)

A similar situation arises when using hashes in Perl.

6. Declare and initialize the variables with the corresponding label, which includes the
data type and class (variable, array, etc.). For example:

#<var><string>

#<array><integer>

#<arraylist><string>

2.3. The Perldoop tool 31

#!/usr/bin/perl -w

#<perl><start>

my $line; #<var><string>
my @words; #<array><string>
my $key; #<var><string>
my $valueNum = "1"; #<var><string>
my $val; #<var><string>

while ($line = <STDIN>) { #<map>
chomp ($line);
@words = split (" ",$line);
foreach my $w (@words) { #<var><string>

$key = $w."\t";
$val = $valueNum."\n";
print $key.$val;

}

}

#<perl><end>

import java.io.IOException;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

public static class WordCountMap extends Mapper<

Object, Text, Text, Text>{

@Override

public void map(Object incomingKey , Text

value,

Context context) throws IOException ,

InterruptedException {

try{

//<java><start>
String line;

String[] words;

String key;

String valueNum = "1";

String val;

line = value.toString();

line = line.trim();

words = line.split(" ");

for (String w : words) {

key = w+;

val = valueNum;

context.write(new Text(key),new Text(

val));

}

//<java><end>

}

catch(Exception e){

System.out.println(e.toString());

}

}

}

Figure 2.2: WordCount mapper example using Perl (left) and its equivalent Java code gener-
ated using Perldoop (right).

In addition, we must take into account that Boolean values are not available in Perl. The
next label is used to identify a boolean variable:

#<var><boolean>

Additionally, programmers should also include a label to indicate if the Perl code corre-
sponds to a mapper (<map>) or a reducer (<reduce>).

As we have commented previously, Perl is well-known for its unrivaled ability to process
text using very powerful features such as regular expressions. The native Java support for
regular expressions is not as good as the provided by Perl. A list of the main differences can
be found in [91]. For this reason, in order to improve the handle of regular expressions in Java,
Perldoop takes advantage of the jregex library [92]. This library uses Perl 5.6 regex syntax,
including lookahead/lookbehind assertions and it holds a BSD license.

32 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

#!/usr/bin/perl -w

#<perl><start>

my $count = 0; #<var><integer>
my $value; #<var><integer>
my $newkey; #<var><string>
my $oldkey; #<var><string><null>
my $line; #<var><string>
my @keyValue; #<var><string>

while ($line = <STDIN>) { #<reduce>
chomp ($line);
$keyValue = split ("\t",$line);

$newkey = $keyValue[0];
$value = $keyValue[1];

if (!(defined($oldkey))) {

$oldkey = $newkey;
$count = $value;

}

else {

if ($oldkey eq $newkey) {

$count = $count + $value;
}

else {

my $returnKey = $oldkey."\t";#<var><string>
my $returnValue = $count."\n";#<var><string>
print $returnKey.$returnValue;
$oldkey = $newkey;
$count = $value;

}

}

}

my $returnKey = $oldkey."\t"; #<var><string>
my $returnValue = $count."\n"; #<var><string>
print $returnKey.$returnValue;

#<perl><end>

import java.io.IOException;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

public static class WordCountReducer extends
Reducer<Text, Text, Text, Text> {

int count = 0;

@Override

public void reduce(Text key, Iterable<Text>

values,

Context context) throws IOException ,

InterruptedException {

//<java><start>
int value;

String newkey;

String oldkey = null;
String line;

for (Text val : values) {

newkey = key.toString();

value = Integer.parseInt(val.toString()

);

if (!(oldkey!= null)) {

oldkey = newkey;

count = value;

}

else{
if (oldkey.equals(newkey)) {

count = count + value;

}

else{
String returnKey = oldkey;

String returnValue = String.valueOf(

count);

context.write(new Text(returnKey),

new Text(returnValue));

oldkey = newkey;

count = value;

}

}

}

String returnKey = oldkey;

String returnValue = String.valueOf(count);

context.write(new Text(returnKey),new Text(

returnValue));

//<java><end>

}

}

Figure 2.3: WordCount reducer example using Perl (left) and its equivalent Java code gener-
ated using Perldoop (right).

2.3.3. Example: WordCount in Perl

Next we present, for illustrating purposes, an example of the use of Perldoop. The goal is
to translate a simple Perl script into a Hadoop-ready Java class. In particular, we have selected
the Perl version of the WordCount, which counts the number of occurrences of each word in
a text document. This code is a typical example used to test a Hadoop infrastructure.

Figures 2.2 and 2.3 show, to the left, the Perl code of the WordCount mapper and reducer,

2.4. Case studies: NLP scripts 33

respectively. Note that these codes have been tagged following the programming tips detailed
above. Next, the programmer has to create the Java templates with the class declaration where
the translated codes will be inserted. Note that templates correspond to the Java code not
included between <java><start> and <java><end>. After this step, Perldoop is executed.
The resulting Hadoop-ready Java codes are displayed to yhe right of Figures 2.2 and 2.3.
We must highlight that Perldoop can be applied to any Perl code ready to be executed with
Hadoop Streaming.

2.4. Case studies: NLP scripts

Natural Language Processing (NLP) is considered as one of the methodologies more
suited to structure and organize the textual information accessible through Internet. Linguistic
processing of large amount of text is a complex task that requires the use of several subtasks
organized in interconnected modules. Most of the existent NLP modules are programmed
using Perl due to its unique ability to process text using regular expressions. One of the main
problems found by the researchers in the NLP area is the high computational cost of their
tools, which makes them impractical for the analysis of big volumes (Gigabytes or even Ter-
abytes) of documents. As a consequence, the use of parallelism and Big Data technologies is
mandatory in order to overcome these limitations.

Perldoop has been tested using several NLP modules. In particular, we have used a set of
linguistic modules [93, 41]. These modules are written in Perl, and perform accurate linguistic
annotation on large amounts of text corpora. The whole architecture consists of a pipeline in
which these modules are chained, in such a way that the output of each module feeds directly
the input of the next one. The text is linguistically annotated at increasingly complex level of
analysis, i.e. sentence segmentation, tokenization, word splitting, Named Entity Recognition
(NER), Part-of-Speech (PoS) tagging, and Named Entity Classification (NEC). The analysis
chain has more than 150 regular expressions. In this section, we will briefly describe the last
three processes in the analysis chain: NER, PoS-tagging, and NEC. These modules have been
integrated into a Hadoop infrastructure using Perldoop. Note that these modules are suited to
be used in more complex and higher level linguistic applications such as machine translation,
information retrieval, question answering, or even new intelligent systems for technological
surveillance and monitoring.

Named Entity Recognition (NER): This task consists of identifying as a single unit (or
token) those words or chains of words denoting an entity, e.g. New York, University

34 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

of San Diego, Herbert von Karajan, etc. The module is based on a set of language-
independent rules that take into account information on both a large lexicon of forms
and the relative position of words within the sentence.

PoS-Tagging: This module assigns each token of the input text a single PoS tag provided
with morphological information e.g. singular and masculine adjective, past participle

verb, plural and feminine noun, etc. The module consists of a Bayesian classifier whose
features are bigrams of tokens which represent the immediate left and right contexts of
the target token [93][94]. The module makes use of the same tagset and lexicon as
FreeLing, a well-known suite of multilingual linguistic tools [95].

Named Entity Classification (NEC): The last step of the linguistic analysis is the se-
mantic classification of those entities identified in the previous NER step. Named En-
tity Classification (NEC) is the process of classifying entities by means of classes such
as “People”, “Organizations”, “Locations”, or “Miscellaneous”. NEC is a crucial task
for several natural language applications, namely Question Answering and Information
Extraction. The NEC module relies on a distant-supervised strategy and consists of two
tasks. First, large resources (e.g. gazeetters of persons, locations, and organizations) are
automatically generated with the aid of encyclopaedic data stored in databases such as
FreeBase [96] and DBpedia [97]. Second, a set of disambiguation rules are applied on
previously identified entities, in order to solve both ambiguous and unknown entities.
This module was described in [41] and reached state-of-the-art precision on different
test corpora.

2.5. Performance evaluation

The experiments shown in this section were performed on a Hadoop cluster installed at
the Galicia Supercomputing Center (CESGA), which consists of 64 nodes. Each node has an
Intel Xeon E5520 processor and 1 GB of RAM memory. The Hadoop version is the 1.1.2,
while the Java and Perl versions are 1.7.0 and 5.10.1 respectively. The performance results for
the NLP Perl modules considered in the work (NER, Tagger and NEC) were obtained using
the Wikipedia in plain text (file size of 2.1 GB) as input. The block size was 128 MB.

As a first approach, we have integrated the sequential NLP Perl modules into a Hadoop
infrastructure using the Hadoop Streaming tool. Afterwards, the same Perl codes were auto-

2.5. Performance evaluation 35

1 17 32 64

1

10

100
58.4

6.7

3.8

2

35.5

2.4

1.3

0.7

Number of nodes

Ti
m

e
(H

ou
rs

)

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64
1

10

100

500 456.4

54.6
29.9

15.4

84.1

4.9
2.7

1.4

Number of nodes
Ti

m
e

(H
ou

rs
)

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64
1

10

100

500 457.4

61.7

30.7

15.5

84.2

5.1

2.7
1.5

Number of nodes

Ti
m

e
(H

ou
rs

)

Perldoop + Hadoop
Perl + Hadoop Streaming

Figure 2.4: Execution time of the NER (top left), Tagger (top right) and NEC (bottom) mod-
ules on a Hadoop cluster (log scale).

matically converted into Hadoop-ready Java codes using the Perldoop tool. A performance
comparison of both approaches is shown next. Note that in this particular case only mappers
were generated because reducers are not necessary.

Figures 2.4 shows the execution times of the NER, Tagger and NEC modules on the cluster
using both, Hadoop Streaming and the new automatically generated Java codes with Hadoop
(Perldoop + Hadoop in the figures). Different number of nodes were considered. Note that 17
nodes were used instead of 16 because, for the latter, the split size was bigger than the block
size. An important reduction of the processing time is observed for all the parallel executions
with respect to the sequential case, both using Hadoop Streaming and Hadoop. For example,
the original Tagger and NEC modules require about 19 days (more than 450 hours) to process
the whole Wikipedia, while using Hadoop Streaming this time reduces to less than 16 hours

36 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

1 17 32 64
0

2

4

6

8

10

12

1.
6 2.

7 3 3

5.
4

10
.9

11
.1

11
.1

5.
4

12
.1

11
.3

10
.7

Number of nodes

Sp
ee

du
p

NER Tagger NEC

Figure 2.5: Performance improvement of the Java modules generated by Perldoop using
Hadoop with respect to the use of Perl and Hadoop Streaming.

using 64 nodes. Despite these important improvements, the execution times using Hadoop
Streaming are still too high.

Java codes generated by Perldoop using one node behave better than their Perl counter-
parts, but the processing times are also very high. Considering the parallel executions, the
performance of the new Java modules clearly outperforms the Perl ones, reducing the pro-
cessing times to less than 2 hours for all the NLP modules when using 64 nodes.

Figure 2.5 shows the speedups obtained by the Perldoop generated Java modules using
Hadoop with respect to the original Perl codes using Hadoop Streaming. The performance
gains range from 1.6× to 12.1×. For parallel executions, we must highlight that the Tagger
and NEC modules process the Wikipedia, at least, 10× faster than using Hadoop Streaming.
The worst behavior is observed for the NER module, which is the NLP module with low
computational cost. Despite of that, speedups up to 3× are reached. These results confirm
the important performance differences between using Java codes with Hadoop, and the Perl
modules with Hadoop Streaming.

But, in addition to decrease the processing times, the scalability of the new NLP modules

2.6. Related work 37

1 17 32 64

1

10

100

1x

8.7x

15.2x

28x

1x

14.5x

27.9x

51.2x

Number of nodes

Sp
ee

du
p

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64

1

10

100

1x

8.4x

15.3x

29.6x

1x

16.8x

31.3x

60.8x

Number of nodes
Sp

ee
du

p

Perldoop + Hadoop
Perl + Hadoop Streaming

1 17 32 64

1

10

100

1x

7.4x

14.9x

29.4x

1x

16.5x

31.1x

57.9x

Number of nodes

Sp
ee

du
p

Perldoop + Hadoop
Perl + Hadoop Streaming

Figure 2.6: Speedup with respect to the sequential version in Java and Perl for the NER (top
left), Tagger (top right) and NEC (bottom) modules (log scale).

also improves when using Hadoop. Figure 2.6 shows the speedup of the Java and Perl versions
of the modules when using Hadoop and Hadoop Streaming. While the speedups observed with
Hadoop Streaming are far from the ideal case, the new Java modules generated by Perldoop
are closer to it. For example, considering 64 nodes, the speedups of the NER, Tagger and
NEC modules are 51.2×, 60.8× and 57.9× respectively.

2.6. Related work

With respect to the Hadoop performance, several studies have compared Hadoop Stream-
ing with pure Hadoop Java codes and probed that Hadoop Streaming degrades the perfor-
mance a lot for data intensive jobs [37]. Other authors proposed improvements to the Hadoop

38 Chapter 2. Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters

Streaming code [98] or developed their own MapReduce framework on Hadoop [99]. Al-
ternatively, in [71] a Python based programming model for MapReduce similar to the Java
one is presented, which provides a Python API for both the MapReduce and the distributed
file system using Hadoop Pipes. In any case, despite the improvement gained over Hadoop
Streaming, Java codes still have a better performance in Hadoop.

In the last few years, some work has been carried out to use Big Data technologies (mainly
the MapReduce programming models) to deal with some aspect of NLP. In statistical transla-
tion, MapReduce has been used in [100] and [101]. In [102], the author uses Hadoop to build
word co-occurrence matrices from large corpora, whilst Pantel et al. [103] use the MapRe-
duce framework for computing the pairwise semantic similarity between words and in [104]
the authors use it for paraphrase acquisition. Most of these works developed ad-hoc solutions
adapted to the MapReduce paradigm, using Java in order to get the best performance.

Other authors proposed to adapt existing codes, written in scripting languages like Python,
to the MapReduce framework. So, in [105], Hadoop Pipes and SWIG [106] have been used to
integrate NLTK (Natural Language Toolkit) [107], which is written in Python, into Hadoop.
Hadoop Pipes provides slightly better performance than Streaming, but it is worse than Java.
On the other hand, Attardi et al. [108], present a suite of tools for text analytics based on the
software architecture paradigm of data pipelines, using a modified version of Hadoop Stream-
ing that allows them to have an ordered output. Unlike those works, the solution presented
in this paper uses previously developed Perl codes, which effortlessly are translated into Java
code ready to be executed in Hadoop. So, it combines the expressiveness and power of Perl
regular expressions with the good performance of Java codes running in Hadoop.

2.7. Conclusions

Hadoop is the most important implementation of the MapReduce programming model. It
provides an utility to execute applications written in languages different from Java, known as
Hadoop Streaming. However, the ease of use provided by Hadoop Streaming comes at the
expense of noticeable degradations in the performance.

In this work, we introduce Perldoop, a new tool that automatically translates Hadoop
Streaming scripts written in Perl into Hadoop-ready Java codes. Perldoop is a simple and easy-
to-use tool that takes as input Perl codes written following a reduced number of programming
rules, and produce Hadoop-ready Java codes. To the best of our knowledge, this is the first
tool to deal with this problem.

2.7. Conclusions 39

Perl is well-known for its unrivaled ability to process text using very powerful features like
regular expressions. For this reason, a lot of Natural Language Processing (NLP) applications
have been developed using this language. We have tested our tool using several NLP modules
that perform accurate linguistic annotation on large amounts of text corpora. In particular,
the linguistic modules considered in this work carry out the following tasks: Named Entity
Recognition (NER), Part-of-Speech (PoS) tagging, and Named Entity Classification (NEC).
These modules were automatically translated into Hadoop-ready Java codes using Perldoop.

A performance comparison using the original Perl scripts with Hadoop Streaming, and the
new Java codes with Hadoop was performed on a cluster. An important decrease in the pro-
cessing times was observed with respect to the sequential case, both using Hadoop Streaming
and Hadoop. However, the performance of the new Java modules clearly outperforms the Perl
ones, reaching speedups up to 12×. We must highlight that the new Java modules reduce
the time required to process the whole Spanish Wikipedia to less than 2 hours when using 64
nodes, demonstrating the benefits of using Perldoop.

CHAPTER 3

BIGBWA: APPROACHING THE

BURROWS-WHEELER ALIGNER TO BIG

DATA TECHNOLOGIES

Following is a reproduction of an article of which the author of this thesis is a main con-
tributor. This is a verbatim reproduction, and the original can be found online under the
following DOI: 10.1093/bioinformatics/btv506, or with this information:

J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “BigBWA: Approaching the Bur-
rows–Wheeler Aligner to Big Data Technologies,” Bioinformatics, vol. 31, no. 24, pp.
4003–4005, 2015

3.1. Abstract

BigBWA is a new tool that uses the Big Data technology Hadoop to boost the performance
of the Burrows-Wheeler Aligner (BWA). Important reductions in the execution times were
observed when using this tool. In addition, BigBWA is fault tolerant and it does not require
any modification of the original BWA source code.

42 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

All the datasets were extracted from the 1000 Genomes Project [109].
Tag Name Number of reads Read length Size
D1 NA12750/ERR000589 12×106 51 bp 3.9 GB
D2 HG00096/SRR062634 24.1×106 100 bp 13.4 GB
D3 150140/SRR642648 98.8×106 100 bp 54.7 GB

Table 3.1: Main characteristics of the input datasets.

3.2. Introduction

Burrows-Wheeler Aligner (BWA) is a very popular software for mapping sequence reads
to a large reference genome. It consists of three algorithms: BWA-backtrack [61], BWA-
SW [62] and BWA-MEM [63]. The first algorithm is designed for short Illumina sequence
reads up to 100bp, while the others are focused on longer reads. BWA-MEM, which is the
latest, is preferred over BWA-SW for 70bp or longer reads as it is faster and more accurate.
In addition, BWA-MEM has shown better performance than other several state-of-art read
aligners for mapping 100bp or longer reads.

Sequence alignment is a very time-consuming process. This problem becomes even more
noticeable as millions and billions of reads need to be aligned. For instance, new sequencing
technologies, such as Illumina HiSeqX® Ten, generate up to 6 billion reads per run, requiring
more than 4 days to be processed by BWA on a single 16-core machine. Therefore, NGS
professionals demand scalable solutions to boost the performance of the aligners in order to
obtain the results in reasonable time.

In this paper we introduce BigBWA, a new tool that takes advantage of Hadoop as Big
Data technology to increase the performance of BWA. The main advantages of our tool are
the following. First, the alignment process is performed in parallel using a tested and scal-
able technology, which reduces the execution times dramatically. Second, BigBWA is fault
tolerant, exploiting the fault tolerance capabilities of the underlying Big Data technology on
which it is based. And finally, no modifications to BWA are required to use BigBWA. As a
consequence, any release of BWA (future or legacy) will be compatible with BigBWA.

3.3. Approach

BigBWA uses Hadoop as Big Data technology. Hadoop is the most successful open-
source implementation of the MapReduce programming model introduced by Google [5].
Hadoop applications are typically developed in Java, but BWA is implemented in C. To over-
come this issue BigBWA takes advantage of the Java Native Interface (JNI) [77], which allows

3.3. Approach 43

the incorporation of native code written in programming languages such as C and C++, as well
as code written in Java. Two independent software layers were created in BigBWA. The first
one corresponds to the BWA software package, while the other is, strictly speaking, our tool.
This design avoids any modification of the BWA source code, which assures the compatibility
of BigBWA with any BWA version.

The complete BigBWA workflow consists of four steps: convert the fastq input files to a
Hadoop compatible format, copy the input data to the Hadoop cluster (HDFS), perform the
alignment, and copy the output back from HDFS to the local filesystem. For more derails,
refer to the Supplementary Material.

Regarding the alignment process, BigBWA divides the computation into Map and Reduce
phases. In the Map phase, BigBWA splits the reads into subsets, mapping each subset to a
mapper process. Each mapper is responsible for applying the considered BWA algorithm us-
ing as input the reads assigned by BigBWA. Mappers are processed concurrently, speeding up
the alignment process. In case any of the mappers fails, BigBWA would automatically launch
another identical mapper process to replace the faulty one. At the end, BigBWA generates one
output file per mapper. In the reducer phase those files are merged into one unique solution.
Note that users could choose to skip the reduction phase.

Highlighted the best tool for a particular number of cores. For fair comparison with the other tools, BigBWA obtains
these results using BWA version 0.5.10. Tool versions: pBWA 0.5.9 and SEAL 0.4.0.

Dataset Tool
Execution time (minutes) Speedup

Number of cores Number of cores
1 4 8 16 32 64 4 8 16 32 64

D1

SEAL
148.5

55.7 ± 1.6 28.3 ± 1.0 22.2 ± 0.6 11.1 ± 0.1 5.7 ± 0.0 2.7 5.2 6.7 13.4 26.0
pBWA 42.0 ± 0.7 25.3 ± 1.1 17.7 ± 0.5 9.2 ± 0.1 5.1 ± 0.1 3.5 5.9 8.4 16.1 29.1
BigBWA 42.4 ± 0.9 23.8 ± 0.7 15.4 ± 0.4 8.5 ± 0.2 4.5 ± 0.1 3.5 6.2 9.6 17.3 33.0

D2

SEAL
556.9

186.5 ± 1.7 92.6 ± 0.8 68.1 ± 1.9 35.4 ± 0.7 18.5 ± 0.3 2.9 6.0 8.2 15.7 30.1
pBWA 155.0 ± 0.4 94.5 ± 1.6 61.2 ± 1.5 32.7 ± 0.4 17.1 ± 0.3 3.6 5.9 9.0 17.0 32.6
BigBWA 152.0 ± 0.3 82.3 ± 1.6 57.2 ± 0.8 30.3 ± 0.5 15.3 ± 0.1 3.7 6.8 9.7 18.3 36.4

Table 3.2: Comparison of the performance for the BWA-backtrack algorithm.

Highlighted the best tool for a particular number of cores. These results were obtained using BWA version 0.7.12.

Dataset Tool
Execution time (minutes) Speedup

Number of cores Number of cores
1 4 8 16 32 64 4 8 16 32 64

D1

BWA-Threads
106.6

27.6 ± 0.1 14.3 ± 0.1 10.9 ± 0.0 – – 3.9 7.4 9.8 – –
BigBWA (hybrid) 29.6 ± 0.2 15.1 ± 0.3 11.8 ± 0.1 6.8 ± 0.3 3.6 ± 0.1 3.6 7.0 9.0 15.7 29.6
BigBWA 29.1 ± 0.3 15.7 ± 0.1 7.9 ± 0.1 4.5 ± 0.1 3.0 ± 0.1 3.7 6.8 13.4 23.5 35.5

D2

BWA-Threads
258.0

66.0 ± 0.1 33.7 ± 0.1 24.9 ± 0.0 – – 3.9 7.6 10.4 – –
BigBWA (hybrid) 69.6 ± 1.3 36.4 ± 0.6 24.5 ± 0.5 15.3 ± 0.1 8.8 ± 0.1 3.7 7.1 10.5 16.8 29.3
BigBWA 69.1 ± 1.4 37.5 ± 0.4 20.7 ± 0.5 10.9 ± 0.3 7.2 ± 0.3 3.7 6.9 12.5 23.6 35.8

D3

BWA-Threads
3208.6

816.8 ± 2.5 408.1 ± 1.7 333.3 ± 0.3 – – 3.9 7.9 9.6 – –
BigBWA (hybrid) 828.8 ± 9.5 431.1 ± 9.0 221.9 ± 4.0 183.3 ± 2.2 107.2 ± 0.8 3.9 7.4 14.5 17.5 29.9
BigBWA 848.8 ± 13.6 444.9 ± 8.2 229.2 ± 5.1 120.1 ± 1.4 87.8 ± 0.2 3.8 7.2 14.0 26.7 36.6

Table 3.3: Comparison of the performance for the BWA-MEM algorithm.

44 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

Similar approaches to BigBWA are SEAL [70] and pBWA [75]. SEAL uses Pydoop [71],
a Python implementation of the MapReduce programming model that runs on the top of
Hadoop. It allows users to write their programs in Python, calling BWA methods by means
of a wrapper. As we will show in the next section, using Pydoop introduces an overhead
as compared to using JNI. pBWA uses a standard parallel programming paradigm as MPI to
parallelize BWA. Unlike BigBWA, pBWA lacks fault tolerant mechanisms. There are another
important differences between these tools and BigBWA. First, SEAL and pBWA only work
with a particular modified version of BWA, while BigBWA works directly with the origi-
nal BWA implementation. Therefore, no modifications to the BWA source code is required
by BigBWA, keeping the compatibility with future and legacy BWA versions. Second, both
SEAL and pBWA are based on BWA 0.5 version, which does not include the new BWA-
MEM algorithm. Therefore, to the best of our knowledge, BigBWA is the first tool to handle
the parallelization of the BWA-MEM algorithm using Big Data technologies.

BWA has its own parallel implementation, but it only supports shared memory machines.
For this reason, scalability is limited by the number of threads (cores) available in one comput-
ing node. BigBWA, however, can be executed on clusters consisting of hundreds of computing
nodes.

3.4. Discussion

Performance: BigBWA was tested using data from the 1000 Genomes Project [109] (see
Table 3.1 for details). Measurements were performed on a 5-node AWS cluster with 16 cores
per node (Intel Xeon E5-2670 at 2.5GHz CPUs), running Hadoop 2.6.0. Detailed information
about the experimental setup is provided in the Supplementary Material. Performance results
for BigBWA and the other evaluated tools only take into consideration the alignment process
time, which was calculated as the average of five runs per data point after one warm-up execu-
tion. Table 3.2 shows a comparison with SEAL and pBWA for the BWA-backtrack algorithm.
In this case, BigBWA clearly outperforms these tools, especially when the number of cores
used is high. In this way, speedups of 36.4× were reached with respect to the sequential case
(using the original BWA tool as reference). It can also be observed that the scalability of
SEAL is worse, caused by the overhead introduced by Pydoop with respect to the use of JNI.

Performance of BWA-MEM is shown in Table 3.3. It was measured using only BWA
(threaded version) and BigBWA, because SEAL and pBWA do not support this algorithm.
We have also included results for a hybrid version that uses BigBWA in such a way that

3.5. Supplementary material 45

each mapper processes the inputs using BWA with 2 threads. Results show that, with a small
number of cores, BWA behaves slightly better than BigBWA. Note that BWA is limited to
execute on just one cluster node and, therefore, we cannot provide results using more than
16 cores. Considering 16 cores, BigBWA is always the best solution but, due to the memory
assigned per map task in our cluster configuration, only 13 concurrent tasks can be executed
on one node. In this way, BigBWA always distributes the tasks between 2 nodes when using
16 cores. In addition, BigBWA shows good behavior in terms of scalability for all the datasets
considered, executing up to 36.6× faster than the sequential case. Additional performance
results are shown in the Supplementary Material.

Correctness: We verified the correctness of BigBWA by comparing its output file with the one
generated by BWA. Differences range from 0.06% to 1% on uniquely mapped reads (mapping
quality greater than zero), similarly to the differences shown by the threaded version of BWA
with respect to the sequential case.

3.5. Supplementary material

3.5.1. BigBWA in more detail

BigBWA was designed as two independent software layers. The first one corresponds
to the BWA software package, while the other is, strictly speaking, our tool. As we explain
next, this design allows BigBWA to be version-agnostic regarding BWA, which assures the
compatibility of BigBWA with any BWA version.

BigBWA relies on Hadoop as Big Data technology, which is the most successful open-
source implementation of the MapReduce programming model introduced by Google [5].
Hadoop applications are typically developed in Java, but BWA is implemented in C. To over-
come this issue, BigBWA takes advantage of the Java Native Interface (JNI) [77], which al-
lows the incorporation of native code written in programming languages such as C and C++,
as well as code written in Java. JNI is a mature and very commonly used technology. Actually,
Hadoop itself uses JNI in some parts, since Hadoop core libraries are written in native code for
performance reasons, and the programmer interacts with the Hadoop abstraction layer using
Java.

To call the BWA methods using JNI from Hadoop Java code, it is necessary to create
a shared library with the BWA source code (libbwa.so). No modifications to the original
BWA source code are required to create this library, only the -fPIC flag must be included in

46 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

the BWA Makefile with the aim of generating position-independent code. In this way, the
final BigBWA user does not need to worry about anything else about the JNI process.

Our JNI wrapper makes only calls to the main function of BWA. In this way, BigBWA
parses all the input parameters required by BWA and, afterwards, passes the arguments to the
BWA main function using the shared library libbwa.so. Using this simple approximation,
no modifications to BWA are necessary and, as a consequence, future or legacy releases of
BWA will be compatible with BigBWA. Only in case that BWA changes its input options/pa-
rameters among versions, BigBWA should modify the JNI wrapper. Therefore, BigBWA is
completely agnostic of the internals of BWA.

Workflow

The complete BigBWA workflow can be summarized in the following steps:

1. Convert the input files to a Hadoop compatible format.

2. Copy the preprocessed input data to Hadoop HDFS.

3. Perform the alignment using BigBWA (Map and Reduce tasks).

4. Copy the output back to the local filesystem.

Step 1: Input files for BWA (and, by extension, for BigBWA) are in the fastq [110] format.
The input data can be single (one entry file) or paired (two entry files). In the fastq format,
each four lines from a file are considered as one read. On the other hand, Hadoop, by default,
interprets each line of the input file as an individual entry for a mapper task. Therefore, it is
necessary to preprocess the input files in such a way that one read (four lines in the original
format) corresponds to one line in the Hadoop input file. Two Python scripts are provided
with the BigBWA source code to preprocess the input fastq files:

Fq2FqBigData.py - This script is used to adapt the input to run BigBWA with single
reads. It takes as input one fastq file and produces the equivalent file with one read per
line.

Fq2FqBigDataPaired.py - This script is used to adapt the input to run BigBWA with
paired reads. It takes as input two fastq files and produces one equivalent file with one
paired read per line.

3.5. Supplementary material 47

Step 2: Afterwards the preprocessed input files should be copied to Hadoop HDFS. This can
be easily done using the CLI provided by Hadoop.

Step 3: BigBWA divides the computation into Map and Reduce phases. In the Map phase,
BigBWA splits the reads into subsets, mapping each subset to a mapper process (data is read
using HDFS). Each mapper is responsible for applying the considered BWA algorithm using
as input the reads assigned by BigBWA. Note that mappers call BWA using the JNI wrapper
commented above. Mappers are processed concurrently, speeding up the alignment process.
In case any of the mappers fails, BigBWA would automatically launch another identical map-
per process to replace the faulty one. At the end, BigBWA generates one output file per
mapper. In the reducer phase those files are merged into one unique solution. Note that this
phase is optional in such a way that users could choose to skip the reducer stage. In that case
one output file per mapper would be generated.

Step 4: Copy back the output file/files from HDFS to the local filesytem, using again the
Haddop CLI comands.

A complete tutorial is provided in the BigBWA GitHub repository: https://github.com/
citiususc/BigBWA

3.5.2. Experimental setup

In order to test BigBWA we set up a Hadoop virtual cluster in Amazon EC2 [111]. Ama-
zon gives their users the possibility of running a wide variety of virtual machines in their EC2
infrastructure. In our case, the virtual cluster consists of 5 nodes of the r3.4xlarge instance
type. This kind of EC2 instances has the following characteristics:

CPU: Intel Xeon E5-2670 v2 (Ivy Bridge microarchitecture)

Cores per node: 16

RAM Memory per node: 122 GB

Disk: Each node has a 500 GB SSD General Purpose disk

https://github.com/citiususc/BigBWA
https://github.com/citiususc/BigBWA

48 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

Master node

Hardware

Processes
ResourceManager

NameNode

Computing node

Hardware

Processes
DataNode

NodeManager

Computing node

Hardware

Processes
DataNode

NodeManager

16 cores

Intel Xeon E5-2670 v2

122 GB RAM

500 GB SSD Disk

16 cores

Intel Xeon E5-2670 v2

122 GB RAM

500 GB SSD Disk (HDFS)

16 cores

Intel Xeon E5-2670 v2

122 GB RAM

500 GB SSD Disk (HDFS)

Computing node

Hardware

Processes
DataNode

NodeManager

16 cores

Intel Xeon E5-2670 v2

122 GB RAM

500 GB SSD Disk (HDFS)

Computing node

Hardware

Processes
DataNode

NodeManager

16 cores

Intel Xeon E5-2670 v2

122 GB RAM

500 GB SSD Disk (HDFS)

Figure 3.1: Structure of the Hadoop cluster used in the tests.

According to the specifications provided by Amazon 1, the network performance of the r3.4xlarge
instances is ”high”. The theoretical bandwidth value is 1 Gbps, but experiments show that the
actual bandwidth is between 100 Mbps and 1.86 Gbps2.

An overview of the experimental setup running Hadoop 2.6.0 is shown in Figure 3.1.

Master node

One of these instances plays the role of Master node. This node is used to launch the
Hadoop jobs and also to manage the Hadoop Distributed File System (HDFS). The Hadoop
processes running on this node are the HDFS NameNode and the YARN Resource Manager.
Additionally, the Master node allows the other (computing) nodes to access the reference
genome index (5 GB) by means of NFS (Network File System).

Computing nodes

The remainder nodes are the Computing nodes, which perform the map and reduction
operations. The cluster has a total of 64 computing cores (4 nodes) and 488 GB of memory

1http://aws.amazon.com/ec2/instance-types/
2http://www.aerospike.com/blog/boosting-amazon-ec2-network-for-high-throughput/

3.5. Supplementary material 49

dedicated to computing. The Hadoop processes running on each of these nodes are the HDFS
DataNode and the YARN NodeManager. Only the computing nodes are included in HDFS, so
the filesystem has a total size of 2 TB. The block size specified by the Hadoop configuration
files is 128 MB.

Memory requirements and scalability

One of the most important configuration parameters that influence the behavior of a Hadoop
cluster is the memory assigned to the map and reduce tasks. In particular, those values are
specified using mapreduce.map.memory.mb and mapreduce.reduce.memory.mb respec-
tively. We have evaluated the memory requirements of the map/reduce tasks generated by
BigBWA. Our experiments show that the average memory consumed per map/reduce task is
7.6 GB (ranging from 6 GB to 8.5 GB). For this reason both mapreduce.map.memory.mb

and mapreduce.reduce.memory.mb are 9 GB in our cluster. Note that, for example, BWA
uses a maximum of 5.5 GB and 8.8 GB for the sequential and 16-cores executions respec-
tively. All these values were obtained using the datasets detailed in Table 3.4.

Another important observation is that there is no relation between the memory used by
BigBWA and the input dataset size. Each map of BigBWA process one split of the input data,
which consists of one or several HDFS blocks (128 MB per block in our cluster configuration).
A map operates with one block at a time, processing line per line of the block in such a way
that it is not necessary to keep all the data in memory. In this way, the memory consumed by a
map task does not depend on the input data size. However, this is not the case of the reference
index, which all the map tasks should keep in memory during their execution.

The fact that the memory needed for map (or reduce) tasks is assigned a priori could limit
the scalability of a Hadoop application. For example, BigBWA runs on a cluster with 122
GB of memory per node, that is, 7.625 GB per core. As 9 GB are assigned per map/reduce
task, BigBWA is not able to use all the 16 cores of the node. A maximum of 13 tasks can be
concurrently executed on one node. Therefore, BigBWA distributes the tasks between 2 nodes
for 16 cores executions, and among 3 and 5 nodes when using 32 and 64 cores respectively.
Note that in the 64 cores case the master node is configured also as computing node. Add the
master node as a computing node is very simple, and it only requires to change some Hadoop
configuration parameters and reboot the YARN daemons.

50 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

All the datasets were extracted from the 1000 Genomes Project [109].

Tag Name Number of reads Read length Size
D1 NA12750/ERR000589 12×106 51 bp 3.9 GB
D2 HG00096/SRR062634 24.1×106 100 bp 13.4 GB
D3 150140/SRR642648 98.8×106 100 bp 54.7 GB

Table 3.4: Main characteristics of the input datasets.

Highlighted the best tool for a particular number of cores. For fair comparison with the other tools,
BigBWA obtains these results using BWA version 0.5.10. Tool versions: pBWA 0.5.9 and SEAL 0.4.0.

Dataset Tool
Pairs aligned/second Speedup

Number of cores Number of cores
1 4 8 16 32 64 4 8 16 32 64

D1

SEAL
135

359 707 901 1,802 3,509 2.7 5.2 6.7 13.4 26.0
pBWA 476 791 1,130 2,174 3,922 3.5 5.9 8.4 16.1 29.1
BigBWA 472 840 1,299 2,353 4,444 3.5 6.2 9.6 17.3 33.0

D2

SEAL
721

2,154 4,338 5,898 11,347 21,712 2.9 6.0 8.2 15.7 30.1
pBWA 2,591 4,250 6,563 12,283 23,489 3.6 5.9 9.0 17.0 32.6
BigBWA 2,643 4,881 7,022 13,256 26,253 3.7 6.8 9.7 18.3 36.4

Table 3.5: Comparison of the performance (pairs aligned/second) for the BWA-backtrack
algorithm.

Highlighted the best tool for a particular number of cores. These results were obtained using BWA version 0.7.12.

Dataset Tool
Pairs aligned/second Speedup

Number of cores Number of cores
1 4 8 16 32 64 4 8 16 32 64

D1

BWA-Threads
188

725 1,399 1,835 – – 3.9 7.4 9.8 – –
BigBWA (hybrid) 676 1,325 1,695 2,941 5,556 3.6 7.0 9.0 15.7 29.6
BigBWA 687 1,274 2,532 4,444 6,667 3.7 6.8 13.4 23.5 35.5

D2

BWA-Threads
1,557

6,086 11,919 16,131 – – 3.9 7.6 10.4 – –
BigBWA (hybrid) 5,771 11,035 16,395 26,253 45,644 3.7 7.1 10.5 16.8 29.3
BigBWA 5,813 10,711 19,404 36,850 55,787 3.7 6.9 12.5 23.6 35.8

D3

BWA-Threads
513

2,016 4,035 4,940 – – 3.9 7.9 9.6 – –
BigBWA (hybrid) 1,987 3,820 7,421 8,983 15,361 3.9 7.4 14.5 17.5 29.9
BigBWA 1,940 3,701 7,184 13,711 18,755 3.8 7.2 14.0 26.7 36.6

Table 3.6: Comparison of the performance (pairs aligned/second) for the BWA-MEM algo-
rithm.

3.5.3. Additional performance results

Next we will include additional performance results to illustrate the benefits of BigBWA
with respect to other existent tools. All the measurements were carried out using three datasets
extracted from the 1000 Genomes Project [109] (see Table 3.4 for details). Performance
results and comparisons with other similar software only take into consideration the alignment

3.5. Supplementary material 51

process time (third step of the workflow in the case of BigBWA). Data values were calculated
as the average of five runs.

First, we present the performance of BigBWA expressed in terms of the number of pairs
aligned per second, which allows the readers to interpret more easily the scalability across
both dataset and cluster size. Results are shown in Tables 3.5 and 3.6 for BWA-backtrack
and BWA-MEM algorithms respectively (note that both tables correspond to the same results
displayed in Tables 3.2 and 3.3 of the paper). According to the results for the BWA-backtrack
algorithm, BigBWA obtain the best results overall and it is capable of aligning more than
26,000 pairs per second when using 64 cores. It can also be observed that, while speedups
follow the same trend, the absolute numbers are completely different for both datasets. For
instance, BigBWA processes about 2,300 or 13,200 pairs depending on the considered dataset
when using 16 cores. The same behavior is observed for pBWA and SEAL. Therefore, per-
formance is highly dependent on the considered dataset.

Results of the BWA-MEM algorithm are detailed in Table 3.6. Comparisons were per-
formed using only BWA (threaded version) and BigBWA, because SEAL and pBWA do not
support this algorithm. We have also included results for a hybrid version that uses BigBWA
in such a way that each mapper processes the inputs using BWA with 2 threads. BWA behaves
slightly better than BigBWA for small number of cores, but it is limited to execute on just one
cluster node (that is, using a maximum of 16 cores). BigBWA clearly outperforms BWA from
16 cores on, aligning more than 55,000 pairs per second in the best case (D2 dataset and 64
cores). For this algorithm we have also detected the same dependence of the performance
with the dataset. In addition, larger data size is not equivalent to higher performance. In this
way, best performance overall is always measured for D2, which is the medium size dataset,
independently of the considered tool.

Finally, Figure 3.2 summarizes the average speedups using different number of cores for
all the analyzed tools and algorithms with respect to BWA (sequential execution). BigBWA
shows the best scalability among all the considered tools for both algorithms. We must high-
light speedups of 34.7× and 36× with 64 cores for BWA-backtrack and BWA-MEM algo-
rithms respectively. The efficiency of BigBWA, measured as the speedup and number of cores
ratio, ranges from 0.54 (BWA-backtrack and 64 cores) to 0.93 (BWA-MEM and 4 cores).

52 Chapter 3. BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data. . .

4 8 16 32 64
0

10

20

30

40

50

60

70

No. of cores

S
p

e
e

d
u

p

Ideal

SEAL

pBWA

BigBWA

4 8 16 32 64
0

10

20

30

40

50

60

70

No. of cores

S
p

e
e

d
u

p

Ideal

BWA

BigBWA (hybrid)

BigBWA

Figure 3.2: Average speedups for BWA-backtrack (left) and BWA-MEM (right) algorithms.

3.5.4. Related work

In addition to pBWA [71] and SEAL [70], which have been considered in the paper, we can
find in the literature another interesting tools based on BWA. For example, BarraCUDA [112]
takes advantage of the computing power of the GPUs to improve the performance of BWA
using CUDA. This tool requires the modification of the BWT (Burrows Wheeler Transform)
alignment core of BWA to exploit the massive parallelism of GPUs. Unlike BigBWA which
supports all the algorithms included in BWA (that is, BWA-bactrack, BWA-SW and BWA-
MEM), BarraCUDA only includes an implementation of the BWA-backtrack algorithm for
short reads. It shows improvements up to 2× with respect to the threaded version of BWA. It is
worth to mention that due to some changes in the BWT data structure of most recent versions
of BWA, BarraCUDA is only compatible with BWTs generated with BWA versions 0.5.x.
Another important aligners (not based on BWA) that make use of GPUs are: CUSHAW [72],
SOAP3 [67] and SOAP3-dp [68].

Some researchers has focused on the new Intel Many Integrated Core (MIC) coproces-
sor technology. For example, in a recent work the authors introduced mBWA [113], which
is an implementation of the BWA-backtrack algorithm for the Intel Xeon Phi coprocessor.
mBWA allows to perform simultaneously the alignment process in both CPU and coproces-
sor, reaching speedups of 5× with respect to BWA. Another solution for the MIC coproces-
sors can be found in [114]. Another aligner that takes advantage of the MIC architecture is
MICA [115]. Authors claim that it is 5× faster than threaded BWA using 6 cores. Note that,
unlike BigBWA, this tool is not based on BWA.

CHAPTER 4

SPARKBWA: SPEEDING UP THE

ALIGNMENT OF HIGH-THROUGHPUT DNA
SEQUENCING DATA

Following is a reproduction of an article of which the author of this thesis is a main con-
tributor. This is a verbatim reproduction, and the original can be found online under the
following DOI: 10.1371/journal.pone.0155461, or with this information:

J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “SparkBWA: speeding up the align-
ment of high-throughput DNA sequencing data,” PloS one, vol. 11, no. 5, p. e0155461,
2016

4.1. Abstract

Next-generation sequencing (NGS) technologies have led to a huge amount of genomic
data that need to be analyzed and interpreted. This fact has a huge impact on the DNA se-
quence alignment process, which nowadays requires the mapping of billions of small DNA
sequences onto a reference genome. In this way, sequence alignment remains the most time-
consuming stage in the sequence analysis workflow. To deal with this issue, state of the art
aligners take advantage of parallelization strategies. However, the existent solutions show lim-
ited scalability and have a complex implementation. In this work we introduce SparkBWA,

54 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

a new tool that exploits the capabilities of a big data technology as Spark to boost the per-
formance of one of the most widely adopted aligner, the Burrows-Wheeler Aligner (BWA).
The design of SparkBWA uses two independent software layers in such a way that no modi-
fications to the original BWA source code are required, which assures its compatibility with
any BWA version (future or legacy). SparkBWA is evaluated in different scenarios showing
noticeable results in terms of performance and scalability. A comparison to other parallel
BWA-based aligners validates the benefits of our approach. Finally, an intuitive and flexible
API is provided to NGS professionals in order to facilitate the acceptance and adoption of
the new tool. The source code of the software described in this paper is publicly available at
https://github.com/citiususc/SparkBWA, with a GPL3 license.

4.2. Introduction

The history of modern DNA sequencing starts more than thirty-five years ago. These
years have seen amazing growth in DNA sequencing capacity and speed, especially after the
appearance of next-generation sequencing (NGS) and massive parallel sequencing in general.
NGS has led to an unparalleled explosion in the amount of sequencing data available. For
instance, new sequencing technologies, such as Illumina HiSeqX™ Ten, generate up to 6
billion sequence reads per run. Mapping these data onto a reference genome is often the first
step in the sequence analysis workflow. This process is very time-consuming and, although
state-of-art aligners were developed to efficiently deal with large amount of DNA sequences,
the alignment process still remains a bottleneck in bioinformatics analyses. In addition, NGS
platforms are evolving very quickly, pushing the sequencing capacity to unprecedented levels.

To address this challenge we propose to take advantage of parallel architectures using
big data technologies in order to boost performance and improve scalability of the sequence
aligners. In this way, it will be possible to process huge amounts of sequencing data within a
reasonable time. In particular, Apache Spark [13] has been considered as the big data frame-
work in this work. Spark is a cluster computing framework which supports both in-memory
and on-disk computations in a fault tolerant manner using distributed memory abstractions
known as Resilient Distributed Datasets (RDDs). An RDD can be explicitly cached in mem-
ory across cluster nodes and reused in multiple MapReduce-like parallel operations.

In this paper we introduce SparkBWA, a new tool that integrates the Burrows-Wheeler
aligner (BWA) [61] into the Spark framework. BWA is one of the most widely used align-

https://github.com/citiususc/SparkBWA

4.3. Background 55

ment tools for mapping sequence reads to a large reference genome. It consists of three
different algorithms for aligning short reads. SparkBWA was designed to meet three require-
ments. First, SparkBWA should outperform BWA and other BWA-based aligners both in
terms of performance and scalability. Note that BWA has its own parallel implementation
for shared-memory systems. The second requirement is related to keep the compatibility of
SparkBWA with future and legacy versions of BWA. Since BWA is constantly evolving to
include new functionalities and algorithms, it is important for SparkBWA to be agnostic re-
garding the BWA version. This is an important difference with respect to other existent tools
based on BWA, which require modifications of the BWA source code. Finally, NGS profes-
sionals demand solutions to perform sequence alignments efficiently in such a way that the
implementation details are completely hidden to them. For this reason SparkBWA provides a
simple and flexible API to handle all the aspects related to the alignment process. In this way,
bioinformaticians only need to focus on the scientific problem to deal with.

SparkBWA has been evaluated both in terms of performance and memory consumption,
and a thorough comparison between SparkBWA and several state-of-art BWA-based aligners
is also provided. Those tools take advantage of different parallel approaches as Pthreads,
MPI, and Hadoop to improve the performance of BWA. Performance results demonstrate the
benefits of our proposal.

This work is structured as follows: Section 4.3 explains the background of the paper.
Section 4.4 discusses the related work. Section 4.5 details the design of SparkBWA and intro-
duces its API. Section 4.6 presents the experiments carried out to evaluate the behavior and
performance of our proposal together with a comparison to other BWA-based tools. Finally,
the main conclusions derived from the work are explained in Section 4.7.

4.3. Background

4.3.1. MapReduce programming model

MapReduce [4] is a programming model introduced by Google for processing and gener-
ating large data sets on a huge number of computing nodes. A MapReduce program execution
is divided into two phases: map and reduce. In this model, the input and output of a MapRe-
duce computation is a list of key-value pairs. Users only need to focus on implementing map
and reduce functions. In the map phase, map workers take as input a list of key-value pairs
and generate a set of intermediate output key-value pairs, which are stored in the intermediate

56 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

storage (i.e., files or in-memory buffers). The reduce function processes each intermediate
key and its associated list of values to produce a final dataset of key-value pairs. In this way,
map workers achieve data parallelism, while reduce workers perform parallel reduction. Note
that parallelization, resource management, fault tolerance and other related issues are handled
by the MapReduce runtime.

Apache Hadoop [6] is the most successful open-source implementation of the MapReduce
programming model. Hadoop consists, basically, of three layers: a data storage layer (HDFS
– Hadoop Distributed File System [23]), a resource manager layer (YARN – Yet Another
Resource Negociator [24]), and a data processing layer (Hadoop MapReduce Framework).
HDFS is a block-oriented file system based on the idea that the most efficient data processing
pattern is a write-once, read-many-times pattern. For this reason, Hadoop shows good per-
formance with embarrassingly parallel applications requiring a single MapReduce execution
(assuming intermediate results between map and reduce phases are not huge), and even for
applications requiring a small number of sequential MapReduce executions [34]. Note that
Hadoop can also efficiently handle jobs composed by one or more map functions by chaining
several mappers followed by a reducer function and, optionally, zero or more map functions,
saving the disk I/O cost between map phases. For more complex workflows, solutions as
Apache Oozie [35] or Cascading [36], among others, should be used.

The main disadvantage of these workflow managers is the loss of performance when
HDFS has to be used to store intermediate data. For example, an iterative algorithm can
be expressed as a sequence of multiple MapReduce jobs. Since different MapReduce jobs
cannot shared data directly, intermediate results have to be written to disk and read again
from HDFS at the beginning of the next iteration, with the consequent reduction in perfor-
mance. It is worth noting that even each iteration of the algorithm could consist of one or
several MapReduce executions. In this case, the degradation in terms of performance is even
more noticeable.

4.3.2. Apache Spark

Apache Spark is a cluster computing framework designed to overcome the Hadoop lim-
itations in order to support iterative jobs and interactive analytics, originally developed at
University of California, Berkeley [13], now managed under the umbrella of the Apache Soft-
ware Foundation. Spark uses a master/slave architecture with one central coordinator (driver)
and many distributed workers (executors). It supports both in-memory and on-disk compu-

4.3. Background 57

tations in a fault tolerant manner by introducing the idea of Resilient Distributed Datasets
(RDDs) [39]. An RDD represents a read-only collection of objects partitioned across the
cluster nodes that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in
memory across machines and reuse it in multiple MapReduce-like parallel operations. By
using RDDs, programmers can perform iterative operations on their data without writing in-
termediary results to disk. In this way, Spark is well-suited, for example, to machine learning
algorithms.

RDDs can be created by distributing a collection of objects (e.g., a list or set) or by loading
an external dataset from any storage source supported by Hadoop, including the local file
system, HDFS, Cassandra [116], HBase [29], Parquet [117], etc. On created RDDs, Spark
supports two types of parallel operations: transformations and actions. Transformations are
operations on RDDs that return a new RDD, such as map, filter, join, groupByKey, etc. The
resulting RDD will be stored in memory by default, but Spark also supports the option of
writing RDDs to disk whenever necessary. On the other hand, actions are operations that kick
off a computation, returning a result to the driver program or writing it to storage. Examples
are collect, count, take, etc. Note that transformations on RDDs are lazily evaluated, meaning
that Spark will not begin to execute until it sees an action.

A Spark application, at a high level, consists of a driver program which contains the
application’s main function and defines RDDs on the cluster, then applies transformations
and actions to them. A Spark program implicitly creates, from defined transformations and
actions over RDDs, a logical directed acyclic graph (DAG) of operations, which is converted
by the driver into a physical execution plan. This plan is then optimized, e.g., merging several
map transformations, and individual tasks are bundled up and prepared to be sent to the cluster.
The driver connects to the cluster through a SparkContext. An executor or worker process is
in charge of effectively running the tasks on each node of the cluster.

Apache Spark provides both Python and Scala interactive shells, which let the user interact
with data that is distributed on disk or in memory across many machines. Apart from running
interactively, Spark can also be linked into applications in either Java, Scala, or Python. Fi-
nally, we must highlight that Spark can run in local mode, in standalone mode on a cluster, or
using a cluster manager such as Mesos [25] or YARN [24].

58 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

1 @ERR000589.41 EAS139_45:5:1:2:111/1
2 CTTTCCTCCCTGCTTTCCTGGCCCCACCATTTCCAGGGAACATCTTGTCAT
3 +
4 3IIIIIIIIIIIII >1IIIFF9BG08E00I%IG+&?(4)%00646.C1#&(
5 @ERR000589.42 EAS139_45:5:1:2:1293/1
6 AGTTGTTAAAATCCAAGCCAATTAAGATAGTCTTATCTTTTTAAAAGAAAT
7 +
8 IIIIIGII.AIIII=?I9G-/II=+I=4?761BA2C9I+5A711+&>1$/I

Figure 4.1: FASTQ file format example.

4.3.3. Burrows-Wheeler aligner (BWA)

Burrows-Wheeler aligner (BWA) is a very popular open-source software for mapping
sequence reads to a large reference genome. In particular, it consists of three different al-
gorithms: BWA-backtrack [61], BWA-SW [62] and BWA-MEM [63]. The first algorithm is
designed for short Illumina sequence reads up to 100bp (base pairs), while the others are fo-
cused on longer reads. BWA-MEM, which is the latest, is preferred over BWA-SW for 70bp
or longer reads as it is faster and more accurate. In addition, BWA-MEM has shown better
performance than other several state-of-art read aligners for mapping 100bp or longer reads.

As we have previously noted, sequence alignment is a very time-consuming process. For
this reason BWA has its own parallel implementation, but it only supports shared memory
machines. Therefore, scalability is limited by the number of threads (cores) and memory
available in just one computing node.

Although BWA can read unaligned BAM [118] files, it typically accepts FASTQ for-
mat [110] as input, which is one of the most common output formats for raw sequence reads.
It is a plain text format in such a way that every four lines describe a sequence or read. An
example including two reads is shown in Figure 4.1. The information provided per read is:
identifier (first line), sequence (second line), and the quality score of the read (fourth line).
An extra field, represented by symbol ’+’, is used as separator between the data and the qual-
ity information (third line). BWA is able to use single-end reads (one input FASTQ file) and
paired-end reads (two input FASTQ files). When considering paired-end reads, two sequences
corresponding to both ends of the same DNA fragment are available. Both reads are included
in different input files using the same identifier and in the same relative location within the
files. In this way, considering our example, the corresponding pair of sequence #2 will be
located in line 5 of the other input file. On the other hand, the output of BWA is a SAM
(Sequence Alignment/Map) [118] file, which is the standard format for storing read align-

4.4. Related Work 59

ments against reference sequences. This SAM file will be further required, for example, for
performing variant discovery analysis.

4.4. Related Work

We can find in the literature several interesting tools based on the Burrows-Wheeler
aligner which exploit parallel and distributed architectures to increase the BWA performance.
Some of these works are focused on big data technologies like SparkBWA, but they are all
based on Hadoop. Examples are BigBWA [76], Halvade [69] and SEAL [70]. BigBWA is a
recent sequence alignment tool developed by the authors which shows good performance and
scalability results with respect to other BWA-based approaches. Its main advantage is that
it does not require any modification of the original BWA source code. This characteristic is
shared by SparkBWA in such a way that both tools keep the compatibility with future and
legacy BWA versions.

SEAL uses Pydoop [71], a Python implementation of the MapReduce programming model
that runs on the top of Hadoop. It allows users to write their programs in Python, calling
BWA methods by means of a wrapper. SEAL only works with a particular modified version
of BWA. Since SEAL is based on BWA version 0.5, it does not support the new BWA-MEM
algorithm for longer reads.

Halvade is also based on Hadoop. It includes a variant detection phase which is the next
stage after the sequence alignment in the DNA sequencing workflow. Halvade calls BWA
from the mappers as an external process which may cause timeouts during the Hadoop execu-
tion if the task timeout parameter is not adequately configured. Therefore, a priori knowledge
about the execution time of the application is required. Note that setting the timeout pa-
rameter to high values causes problems in the detection of actual timeouts, which reduces
the efficiency of the fault tolerance mechanisms of Hadoop. To overcome this issue, as it is
explained in further sections, SparkBWA uses Java Native Interface (JNI) to call the BWA
methods.

Another approach is applying standard parallel programming paradigms to BWA. For in-
stance, pBWA [75] uses MPI to parallelize BWA in order to carry out the alignments on a clus-
ter. We must highlight that pBWA lacks fault tolerant mechanisms in contrast to SparkBWA.
In addition, pBWA, as well as SEAL, does not support the BWA-MEM algorithm.

Several solutions try to take advantage of the computing power of the GPUs to improve

60 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

��������	
���

� ��������	
���

� ��������	
���

�

���������	

����������

����������

���������	

����������

����������

����	
�������
 ����	
�������
 ����	
������	

���
������	
 ���
�������
 ���
�������

�����
����	
 �����
�����
 �����
�����

��
������
����

���

���

���

���

���

��
��
�����
����
� ��
��
�����
����
�

���
�����	
�

�
	�

�������
�
��	
����

���

������

����

(a)

��������	
���

� ��������	
���

� ��������	
���

�

�����������	 ����������
	 �����������	

�������
���	 �������
���	 �������
��
	

���	������	����	

���

���

���

�����	�����	����	
 �����	�����	����	�

���
�����	
�

��

������

����

	������	�����	����	����

�����	��
���

(b)

Figure 4.2: SparkBWA workflow for paired-end reads using (a) Join and (b) SortHDFS ap-
proaches.

the performance of BWA. This is the case of BarraCUDA [112], which is based on the CUDA
programming model. It requires the modification of the BWT (Burrows Wheeler Transform)
alignment core of BWA to exploit the massive parallelism of GPUs. Unlike SparkBWA which
supports all the algorithms included in BWA, BarraCUDA only supports the BWA-backtrack
algorithm for short reads. It shows improvements up to 2× with respect to the threaded
version of BWA. It is worth to mention that due to some changes in the BWT data structure
of most recent versions of BWA, BarraCUDA is only compatible with BWTs generated with
BWA versions 0.5.x. Other important sequence aligners (not based on BWA) that make use
of GPUs are CUSHAW [72], SOAP3 [67] and SOAP3-dp [68].

Some researchers have focused on speeding up the alignment process using the new In-
tel Xeon Phi coprocessor (Intel Many Integrated Core architecture - MIC). For example,
mBWA [113], which is based on BWA, implements the BWA-backtrack algorithm for the
Xeon Phi coprocessor. mBWA allows to use concurrently both host CPU and coprocessor
in order to perform the alignment, reaching speedups of 5× with respect to BWA. Another
solution for the MIC coprocessors can be found in [114]. A third aligner that takes advantage
of the MIC architecture is MICA [115]. Authors claim that it is 5× faster than threaded BWA
using 6 cores. Note that, unlike SparkBWA, this tool is not based on BWA.

Another researchers exploit fine-grain parallelism in FPGAs (Field Programmable Gate
Arrays) to increase the performance of several short-read aligners including some based on

4.5. SparkBWA 61

BWT [119, 120, 121].

Finally, a recent work uses Spark to increase the performance of one of the best well-
known alignment algorithms, the Smith-Waterman algorithm [122]. Performance results
demonstrate the potential of Spark as framework for this type of applications.

4.5. SparkBWA

This section introduces a new tool called SparkBWA, which integrates the Burrows-
Wheeler aligner into the Spark framework. As stated in the Introduction, SparkBWA was
designed with the following three objectives in mind:

It should boost BWA and other aligners based on BWA in terms of performance and
scalability.

It should be version-agnostic regarding BWA, which assures its compatibility with fu-
ture or legacy BWA versions.

An intuitive and flexible API should be provided to NGS professionals with the aim of
facilitating the acceptance and adoption of the new tool.

Next, a detailed description of the design and implementation of SparkBWA is provided,
together with the specification of the high-level API.

4.5.1. System design

SparkBWA workflow consists of three main stages: RDDs creation, map, and reduce
phases. In the first phase input data are prepared to feed the map phase where the alignment
process is, strictly speaking, carried out. In particular, RDDs are created from the FASTQ
input files, which are stored using HDFS. Note that, in this work, we assume HDFS as dis-
tributed file system. In this way, data is distributed across the computing nodes so it can be
processed in parallel in the map phase. The read identifier in the FASTQ file format is used as
key in the RDDs (see the example of Figure 4.1). In this way, key-value pairs generated from
an input file have the following appearance <read id, read content>, where read content

contains all the information of the corresponding sequence with read id identifier. These
RDDs will be used afterwards in the map phase. This approach works properly when consid-
ering single-end reads, that is, when there is only one FASTQ input file.

62 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

However, SparkBWA should also support paired-end reads. In that case, two RDDs will
be created, one per input file, and distributed among the nodes. Spark distributes RDDs in
such a way that is not guaranteed that the i-th data split (partition) of both RDDs will be
processed by the same mapper. In this way, a mapper cannot process paired-end reads since
they are always located in the same i-th data partition of both RDDs. This behavior can be
observed in the RDD creation stage of the example displayed in Figure 4.2(a). Two solutions
are proposed in order to overcome this issue:

Join: This approach is based on using the Spark join operation, which is a transfor-
mation that merges two RDDs together by grouping elements with the same key. This
solution is illustrated in Figure 4.2(a). Since the key is the same for paired reads in both
input files, the result after the join operation will be an unique RDD with the format:
<read id, Tuple<read content1, read content2>> (RDDUNSORTED in the example).
The resulting RDD after the join operation does not preserve the previous order of the
reads from the FASTQ files. This is not a problem because mappers will process the
paired-end reads independently from each other. However, Spark provides the sort-

ByKey transformation to sort RDD records according to its key. In the example, the
new RDD created after applying this operation is RDDSORTED. We must highlight that
the sortByKey operation is expensive in terms of memory consumption. For this reason
this step is optional in the SparkBWA dataflow and users should enable it specifically,
if they want to get a sorted output.

SortHDFS: A new approach is presented in order to avoid the join and sortByKey op-
erations (see Figure 4.2(b)). This solution can be considered as a preprocessing stage
which requires reading and writing to/from HDFS. In this way, FASTQ input files are
accessed directly by using the HDFS Hadoop library from the Spark driver program.
Paired-end reads (that is, those with the same identifier in the two files) are merged into
one record in a new HDFS file. As BWA requires to distinguish between both sequences
in the pair, a separator string is used to facilitate the subsequent parsing process in the
mappers. Afterwards, an RDD is created from the new file (RDDSORTED in the figure).
In this way, key-value pairs have the following format <read id, merged content>.

This solution performs several time consuming I/O operations, but saves a lot of mem-
ory in comparison to the join & sortByKey approach as we illustrate in Section 4.6.

4.5. SparkBWA 63

Function Default Console argument Description

setUseReducer(boolean) False -r
Use a reducer to generate one
output SAM file.

setPartitionNumber(int) Auto none |-partitions <num>

By default, data is split into
pieces of HDFS block size.
Otherwise, input data is split
into num partitions.

setSortFastqReads(int) Join none |-sort |-sorthdfs

Set the RDDs creation ap-
proach for paired-end reads:
Join (0), Join & sortByKey
(1) or SortHDFS (2).

setNumThreads(int) 1 -threads <num>

If num > 1, hybrid paral-
lelism mode is enabled in
such a way that each map
process is executed using
num threads.

setAlgorithm(int) BWA-MEM -mem |-aln |-bwasw

Set the alignment algorithm:
BWA-MEM (0), BWA-
backtrack (1), BWA-SW
(2)

setPairedReads(boolean) Paired -paired |-single
Use single-end (one FASTQ
input file) or paired-end reads
(two FASTQ input files).

setIndexPath(string) – -index <prefix>
Set the path to the reference
genome (mandatory option).

setInputPath(string) – Positional

Set the path (in HDFS) to the
FASTQ input file (manda-
tory option for single-end and
paired-end reads).

setInputPath2(string) – Positional

Set the path (in HDFS) to
the second FASTQ input file
(mandatory option for paired-
end reads).

setOutputPath(string) – Positional
Set the location (in HDFS)
where the output SAM file/s
will be stored.

Table 4.1: API methods and console arguments to set the SparkBWA options

Once RDDs are available, the map phase starts. Mappers will apply the sequence align-
ment algorithm from BWA on the RDDs. However, calling BWA from Spark is not straight-
forward as BWA source code is written in C language and Spark only allows to run code in
Scala, Java or Python. To overcome this issue SparkBWA takes advantage of the Java Native
Interface (JNI), which allows the incorporation of native code written in languages as C and
C++ as well as Java code.

The map phase was designed using two independent software layers. The first one corre-

64 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

sponds to the BWA software package, while the other is responsible to process RDDs, pass
the input data to the BWA layer and collect the partial results from the map workers. We
must highlight that mappers only perform calls to the BWA main function by means of JNI.
This design avoids any modification of the original BWA source code, which assures the
compatibility of SparkBWA with future or legacy BWA versions. In this way, our tool is
version-agnostic regarding BWA. Note that this approach is similar to the one adopted in the
BigBWA tool [76].

Another advantage of the two-layers design is that the alignment process could be per-
formed using two levels of parallelism. The first level corresponds to the map processes
distributed across the cluster. In the second level each individual map process is parallelized
using several threads, taking advantage of the BWA parallel implementation for shared mem-
ory machines. We refer to this mode of operation as hybrid mode. This mode can be enabled
by the user through the SparkBWA API.

On the other hand, BWA uses a reference genome as input in addition to the FASTQ
files. All mappers require the complete reference genome, so it has to be shared among all
computing nodes using NFS or stored locally in the same location of all the nodes (e.g., using
Spark broadcast variables).

Once the map phase is complete, SparkBWA creates one output SAM file in HDFS per
launched map process. Finally, users could merge all the outputs into one file choosing to
execute an additional reduce phase.

4.5.2. SparkBWA API

One of the requirements of SparkBWA is to provide bioinformaticians an easy and power-
ful way to perform sequence alignments using a big data technology as Apache Spark. With
this goal in mind a basic API is provided. It allows NGS professionals to focus only in the
scientific problem, while design and implementation details of SparkBWA are completely
transparent to them.

SparkBWA can be used from the Spark shell (Scala) or console. Table 4.1 summarizes
the API methods to set the SparkBWA options in the shell together with their corresponding
console arguments. For example, it is possible to choose the number of data partitions, how
RDDs are created, or the number of threads used per mapper (hybrid mode).

1. Spark Shell: Spark comes with an interactive shell that provides a simple way to learn the

4.5. SparkBWA 65

1 scala> var options = new BwaOptions();
2
3 scala> options.setInputPath("ERR000589_1.filt.fastq");
4 scala> options.setInputPath2("ERR000589_2.filt.fastq");
5
6 scala> options.setOutputPath("OutputSparkBWA.sam");
7 scala> options.setIndexPath("/opt/HumanBase/hg38");
8
9 scala> var newBwa = new BwaInterpreter(options, sc);

10 scala> var bwaRDD = newBwa.getDataRDD(); # Optional
11 scala> newBwa.runAlignment();

Figure 4.3: Example running SparkBWA from the Spark Shell (Scala).

Spark API, as well as a powerful tool to analyze data interactively. It is available in either
Scala (which runs on the Java VM and is thus a good way to use existing Java libraries) or
Python. Current SparkBWA version only supports the Scala shell.

An example of how to perform an alignment using SparkBWA from the Spark shell is
illustrated in Figure 4.3. First, the user should create a BwaOptions object to specify the
options desired in order to execute SparkBWA (line 1). In this example only the mandatory
options are set (lines 3 – 7). Refer to Table 4.1 for additional options.

Once the options are specified, a new BwaInterpreter should be created (line 9). At
that moment RDDs are created from the input files according to the implementation de-
tailed previously in Section 4.5.1. It is worth to mention that the RDDs creation is lazy
evaluated, which means that Spark will not begin to execute until an action is called. This
action could be, for example, obtaining explicitly the input RDD using the getDataRDD

method (line 10). This method is very useful in the sense that it allows the users to ap-
ply to the input RDDs all the transformations and actions that the Spark API provides in
addition to user-defined functions. Note that using the getDataRDD method is not neces-
sary to perform the sequence alignment with SparkBWA. Another action that triggers the
RDDs creation is runAlignment, which will execute the complete SparkBWA workflow
including the map and reduce phases (line 11).

2. Console: It is also possible to run SparkBWA from the console, that is, using the spark-
submit command. An example is shown in Figure 4.4. spark-submit provides a variety
of options that let the user control specific details about a particular run of an application
(lines 2 – 6). In our case, the user also needs to pass as arguments the SparkBWA options

66 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

1 spark-submit
2 --class SparkBWA
3 --master yarn-client # Connect to a YARN cluster
4 --num-executors 16 # Number of worker processes
5 --archives bwa.zip # BWA library
6 SparkBWA.jar # SparkBWA tool
7 -partitions 16 # Data partitions
8 -index /opt/HumanBase/hg38 # Reference genome
9 ERR000589_1.filt.fastq # Input file 1

10 ERR000589_2.filt.fastq # Input file 2
11 OutputSparkBWA.sam # Output file

Figure 4.4: Example running SparkBWA from the console.

Tag Name Number of
reads

Read length
(bp)

Size
(GiB)

D1 NA12750/ERR000589 12×106 51 3.4
D2 HG00096/SRR062634 24.1×106 100 11.8
D3 150140/SRR642648 98.8×106 100 48.3

Table 4.2: Main characteristics of the input datasets from the 1000 Genomes Project.

to Spark (lines 7 – 11). All the flags supported by SparkBWA are detailed in Table 4.1.

Therefore, SparkBWA provides an easy and flexible interface in such way that users could
perform a sequence alignment writing just a couple of lines of code in the Spark shell, or using
the standard spark-submit tool from the console.

4.6. Evaluation

In this section SparkBWA is evaluated in terms of performance, scalability, and memory
consumption. First, a complete description of the experimental setup is provided. Next,
SparkBWA is analyzed in detail paying special attention to the creation of RDDs and its
different modes of operation (regular and hybrid). Finally, in order to validate our proposal, a
comparison to several BWA-based aligners is also provided.

4.6.1. Experimental Setup

SparkBWA was tested using data from the 1000 Genomes Project [109]. The main char-
acteristics of the input datasets are shown in Table 4.2. Number of reads refers to the number

4.6. Evaluation 67

Algorithm Tools Parallelization
Technology

BWA-backtrack
pBWA [75] MPI
SEAL [70] Hadoop
SparkBWA Spark

BWA-MEM
BWA [63] Pthreads

BigBWA [76] Hadoop
Halvade [69] Hadoop
SparkBWA Spark

Table 4.3: Algorithms and BWA-based aligners evaluated.

of sequences to be aligned to the reference genome. The read length is expressed in terms of
the number of base pairs (bp).

As the alignment can be performed for single or paired-ended reads, it is needed to de-
termine which one is going to be used during the evaluation. As the paired-ended DNA
sequencing reads provide superior alignment across DNA regions containing repetitive se-
quences reads, it is the one that is considered in this work. In this way, each dataset consists
of two FASTQ files.

Experiments were carried out on a six-node cluster. Each node consists of four AMD
Opteron 6262HE processsors (4×16 cores) with 256 GiB of memory (i.e., 4 GiB per core).
Nodes are connected through a 10GbE network. The Hadoop and Spark versions used are
2.7.1 and 1.5.2, respectively, running on a CentOS 6.7 platform. OpenMPI 4.4.7 was used
in the experiments that require MPI. The cluster was configured assigning about 11 GiB of
memory per YARN container (map and reduce processes) in such a way that a maximum of
22 containers per node can be executed concurrently. This memory configuration allows each
SparkBWA container to execute one BWA process, including the memory required to store
the reference genome index. Note that the master node in the cluster is also used as computing
node.

The behavior of SparkBWA is compared to several state of the art BWA-based aligners.
In particular, we have considered the tools detailed in Table 4.3. A brief description of these
tools is provided in Section 4.4. pBWA and SEAL only support the BWA-backtrack algo-
rithm because both are based on BWA version 0.5 (2009). For fair comparison with these
tools, SparkBWA obtains its performance results for the BWA-backtrack algorithm also using
BWA version 0.5. In the case of BWA-MEM, three different aligners are evaluated: BigBWA,
Halvade and BWA (shared-memory threaded version). For the BWA-MEM performance eval-
uation, the latest available BWA version at the moment of writing the paper is used (version

68 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

D1 D2 D3
0

5

10

15

Ti
m

e
(m

in
ut

es
)

Join (32 map.) Join & sortByKey (32 map.)

Join (128 map.) Join & sortByKey (128 map.)

SortHDFS

Figure 4.5: Overhead of the RDDs sorting operation considering different datasets.

0.7.12, December 2014). We must highlight that all the time results shown in this section
were calculated as the average value (arithmetic mean) of twenty executions.

4.6.2. Performance Evaluation

RDDs creation

The first stage in the SparkBWA workflow is the creation of the RDDs, which can include
a sorting phase (see Section 4.5.1). Two different approaches were considered to implement
this phase: Join and SortHDFS. The first one is based on the Spark join operation, and includes
an additional optional step to sort the input paired-end reads by key (sortByKey operation).
The latter approach requires reading and writing to/from HDFS. As we pointed out previously,
this solution can be considered as a preprocessing stage. Both solutions have been evaluated
in terms of the overhead considering different datasets. Results are displayed in Figure 4.5.

The performance of the Join approach (with and without the sortByKey transformation)
depends on the number of map processes, so this operation was evaluated using 32 and 128
mappers. As the number of mappers increases, the sorting time improves because the size of

4.6. Evaluation 69

0 200 400 600 800

2

4

6

8

10

Evolution in time (seconds)

M
em

or
y

(G
iB

)

Join (32 map.) Join & sortByKey (32 map.)
Join (128 map.) Join & sortByKey (128 map.)
SortHDFS

Figure 4.6: Memory consumed by SparkBWA during the RDDs sorting operation when con-
sidering dataset D3.

the data splits computed by each worker is smaller. This behavior was observed for all the
datasets, especially when D3 is considered.

The overhead for all the approaches, as it was expected, increases with the size of the
dataset. However, the increment rate is higher for SortHDFS. For example, sorting D3 is 10×
slower than sorting D1, while the Join approach with and without sortByKey is at most only
5× and 7× slower respectively. Note that D3 is more than 14× bigger than D1 (see Table 4.2).

The Join approach is always better in terms of overhead, especially as the number of map
processes increases. For example, sorting D3 takes only 1.5 minutes with 128 mappers (join

only), which means a speedup of 8.7× with respect to SortHDFS. It can also be observed
that sorting the RDDs by key consumes extra time. In particular, the overhead means on
average doubling the time required by the sorting process when only the join transformation
is performed.

On the other hand, speed is not the only parameter that should be taken into account when
performing the RDDs sorting. In this way, memory consumption has also been analyzed. In
order to illustrate the behavior of both sorting approaches we have considered D3 as dataset.

70 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

0 200 400 600 800

2

4

6

8

10

Evolution in time (seconds)

M
em

or
y

(G
iB

)

Sequential
2 Threads
4 Threads
8 Threads

Figure 4.7: Memory consumed by a worker process executing the BWA-MEM algorithm
with different threads.

Figure 4.6 shows the memory used by a map process during the sorting operation period.
According to the results, the Join approach always consumes more memory than SortHDFS.

This is caused by the join and sortByKey Spark operations on the RDDs, which both are in-
memory transformations. It is especially relevant the differences observed when the elements
of the RDDs are sorted by key with respect to applying only the join operation. In this way,
the sortByKey operation consumes about 3 GiB extra per mapper for this dataset, which means
increasing more than 30% the memory required by SparkBWA in this phase. Note that when
considering 32 workers the maximum memory available per container is reached. The mem-
ory used by 128 workers is lower because RDDs are split into smaller pieces with respect
to considering 32 workers. On the other hand, SortHDFS requires a maximum of 4 GiB to
preprocess the dataset in the example. In this way, SortHDFS is the best choice if the memory
resources are limited or not enough to perform the Join operation (with or without sortByKey).
Note that the overall behavior illustrated in Figure 4.6 agrees with the observations for the
other datasets.

Hybrid mode

As stated in Section 4.5.1, the design of SparkBWA in two software layers allows to
use several threads per worker in such a way that the alignment process is performed taking

4.6. Evaluation 71

(a) D1

16 32 64 96 128
0

5

10

15

Number of mappers

Ti
m

e
(m

in
ut

es
)

SparkBWA (regular)
Hybrid (2 threads/map)
Hybrid (4 threads/map)

(b) D2

16 32 64 96 128
0

10

20

30

A
B C

Number of mappers
Ti

m
e

(m
in

ut
es

)

SparkBWA (regular)
Hybrid (2 threads/map)
Hybrid (4 threads/map)

16 32 64 96 128
0

100

200

300

400

Number of mappers

Ti
m

e
(m

in
ut

es
)

SparkBWA (regular)
Hybrid (2 threads/map)
Hybrid (4 threads/map)

(c) D3

Figure 4.8: Execution times obtained by SparkBWA using regular and hybrid modes of op-
eration for the BWA-MEM algorithm.

advantage of two levels of parallelism. In this way, SparkBWA has two modes of operation:
regular and hybrid. The hybrid mode refers to using more than one thread per map process,
while the regular behavior executes each mapper sequentially.

The memory used by each mapper when hybrid mode is enabled increases with the num-
ber of threads involved in the computation. However, since the index reference genome re-
quired by BWA is shared among threads, this increase is moderate. This behavior is illustrated
in Figure 4.7, where BWA-MEM is executed using different number of threads with a small

72 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

split of D1 as input. It can be observed that the difference between the memory used by
one SparkBWA mapper considering regular and hybrid mode with 8 threads is only 4 GiB. It
means an increase of about 30% in the total memory consumed, while the threads per mapper
grows by a factor of 8.

So, taking into account that our experimental platform allows 22 containers per node with
11 GiB of maximum memory, SparkBWA in hybrid mode for this example could use all the
64 cores in the node, e.g., running 16 mappers and 4 threads/mapper. This is not the case of
the regular mode, which only allows to use a maximum of 22 cores of the node. Therefore,
the hybrid mode can be very useful in scenarios where the computing nodes consist of a high
number of cores but, due to memory restrictions, only a few of them can be used.

Next, we evaluate the performance of SparkBWA using both modes of operation. Ex-
periments were conducted using the BWA-MEM algorithm and considering 2 and 4 threads
per map process when hybrid mode is enabled. Performance results are shown in Figure 4.8
for all the datasets and using different number of mappers. There are no results for the 128
mappers with 4 threads/mapper case because it implies that 512 cores are necessary for an
optimal execution, while our cluster only consists of 384 cores.

Several conclusions can be extracted from the performance results. SparkBWA shows
a good scalability with the number of mappers, especially in the regular mode (that is, when
each mapper is computed sequentially). Assuming the same number of mappers, more threads
per mapper in the hybrid mode is only beneficial for the biggest dataset (D3). This behavior
points out that the benefits of using more threads in the computations do not compensate the
overhead caused by their synchronization.

On the other hand, considering the cores used in the computation (#threads× #mappers
cores), we can observe that the regular mode performs better than the hybrid one. For instance,
points A, B and C in Figure 4.8(b) were obtained using the same number of cores. SparkBWA
in regular mode (point C) clearly outperforms the hybrid version. This behavior is observed
in most of the cases. In this way, as we have indicated previously, SparkBWA hybrid mode
should be the preferred option only in those cases where limitations in memory do not allow
to use all the cores in each node.

Table 4.4 summarizes the results of SparkBWA in terms of performance for all the datasets.
It shows the minimum time required by SparkBWA to perform the alignment on our hardware
platform, the number of mappers used, the speed measured as the number of pairs aligned per
second and also the corresponding speedup with respect to the sequential execution of BWA.

4.6. Evaluation 73

Dataset Mode of operation No. of
mappers Time (minutes) Pairs aligned/s Speedup

D1
regular 128 4.3 46,512 60×

hybrid (2 th/map) 128 3.8 52,632 67.9×
hybrid (4 th/map) 96 4.1 48,780 62.9×

D2
regular 128 6.9 58,213 71.9×

hybrid (2 th/map) 128 5.5 73,030 90.2×
hybrid (4 th/map) 96 5.7 70,468 87.0×

D3
regular 128 69.4 23,727 85.6×

hybrid (2 th/map) 128 47.5 34,667 125.0×
hybrid (4 th/map) 96 47.3 34,813 126.2×

Table 4.4: Summary of the performance results of SparkBWA.

The sequential times are respectively 258, 496 and 5,940 minutes for D1, D2 and D3. In the
particular case of D3 it means more than 4 days of computation. It is worth noting that using
SparkBWA this time was reduced to less than an hour reaching speedups higher than 125×.

Finally, we verified the correctness of SparkBWA for regular and hybrid modes by com-
paring their output with the one generated by BWA (sequential version). We only found
small differences in the mapping quality scores (mapq) on some uniquely mapped reads (i.e.,
reads with quality greater than zero). Therefore, the mapping coordinates are identical for all
the cases considered. Differences affect from 0.06% to 1% of the total number of uniquely
mapped reads. Small differences in the mapq scores are expected because the quality cal-
culation depends on the insert size statistics, which are calculated on sample windows on
the input stream of sequences. These sample windows are different for each read in BWA
(sequential) and any other parallel implementation that splits the input into several pieces
(SEAL, pBWA, Halvade, BWA-threaded version, SparkBWA, etc.). In this way, any parallel
BWA-based aligner will obtain slightly different mapping quality scores with respect to the
sequential version of BWA. For instance, SEAL reports differences on average in 0.5% of the
uniquely mapped reads [70].

Comparison to other aligners

Next, a performance comparison among different BWA-based aligners and SparkBWA is
shown. The evaluated tools are enumerated in Table 4.3 together with their corresponding
parallelization technology. Some of them take advantage of classical parallel paradigms, as
Pthreads or MPI, while the others are based on big data technologies as Hadoop. All the
experiments were performed using SparkBWA in regular mode. For comparison purposes all

74 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

32 64 96 128
1

10

100

50

Number of mappers/cores

Ti
m

e
(m

in
ut

es
)

Linear
SEAL
pBWA
SparkBWA

(a) D1

32 64 96 128
1

10

100

50

Number of mappers/cores
Ti

m
e

(m
in

ut
es

)

Linear
SEAL
pBWA
SparkBWA

(b) D2

Figure 4.9: Execution times considering several BWA-based aligners running the BWA-
backtrack algorithm (axes are in log scale).

32 64 96 128
10

100

50

Number of mappers/cores

Sp
ee

du
p

Linear
SEAL
pBWA
SparkBWA

(a) D1

32 64 96 128
10

100

50

Number of mappers/cores

Sp
ee

du
p

Linear
SEAL
pBWA
SparkBWA

(b) D2

Figure 4.10: Speedup considering several BWA-based aligners running the BWA-backtrack
algorithm (axes are in log scale).

the graphs in this subsection include the corresponding results considering ideal speedup with
respect to the sequential execution of BWA.

Two different algorithms for paired-end reads have been considered: BWA-backtrack and
BWA-MEM. The evaluation of the BWA-backtrack algorithm was performed using the fol-
lowing aligners: pBWA, SEAL and SparkBWA. When paired reads are used as input data,

4.6. Evaluation 75

BWA-backtrack consists of three phases. First, the sequence alignment must be performed
for one of the input FASTQ files. Afterwards, the same action is applied to the other input
file. Finally, a conversion to the SAM output format is performed using the results of the pre-
vious stages. SparkBWA and SEAL take care of the whole workflow in such a way that it is
completely transparent to the user. Note that SEAL requires a preprocessing stage to prepare
the input files, so this extra time was included in the measurements. On the other hand, pBWA
requires to perform each phase of the BWA-backtrack algorithm independently despite they
are executed in parallel. In this way, pBWA times were calculated as the sum of each phase
time. No preprocessing is performed by pBWA.

As BWA-backtrack was especially designed for shorter reads (<100 bp), we have consid-
ered D1 as input dataset but, for completeness, D2 is also included in the comparison. Fig-
ure 4.9 shows the alignment times using different number of mappers. In this case, each map
process uses one core, so both terms, mappers and cores, are equivalent. Results show that
SparkBWA clearly outperforms SEAL and pBWA for all the cases. As we have mentioned
previously, SEAL times include the overhead caused by the preprocessing phase which takes
on average about 1.9 and 2.9 minutes for D1 and D2 respectively. This overhead has a large
impact on performance, especially for the smallest dataset.

The corresponding speedups obtained by the aligners for BWA-backtrack are displayed in
Figure 4.10. As reference we have used the BWA sequential time. Results confirm the good
behavior of SparkBWA with respect to SEAL and pBWA. For instance, SparkBWA reaches
speedups up to 57× and 77× for D1 and D2 respectively. The maximum speedups achieved
by SEAL are only about 31× and 42×, while the corresponding values for pBWA are 46×
and 59×. In this way, SparkBWA is on average 1.9× and 1.4× faster than SEAL and pBWA
respectively.

Finally, the BWA-MEM algorithm is evaluated considering the following tools: BWA,
BigBWA, Halvade, and SparkBWA. Figure 4.11 shows the corresponding execution times
for all the datasets varying the number of mappers (cores). BWA uses Pthreads in order to
parallelize the alignment process, so it can only be executed on a single cluster node (64
cores). Both BigBWA and Halvade are based on Hadoop, and they require a preprocessing
stage to prepare the input data for the alignment process. BigBWA requires, on average, 2.4,
5.8 and 23.6 minutes to preprocess each dataset, whereas Halvade spends 1.8, 6.6 and 22.7
minutes, respectively. Preprocessing is carried out sequentially for BigBWA, while Halvade is
able to perform it in parallel. This overhead does not depend on the number of mappers used

76 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

(a) D1

32 64 96 128
1

10

100

50

Number of mappers/cores

Ti
m

e
(m

in
ut

es
)

Linear
BWA
Halvade
BigBWA
SparkBWA

(b) D2

32 64 96 128
1

10

100

50

Number of mappers/cores
Ti

m
e

(m
in

ut
es

)

Linear
BWA
Halvade
BigBWA
SparkBWA

32 64 96 128
10

100

1,000

500

Number of mappers/cores

Ti
m

e
(m

in
ut

es
)

Linear
BWA
Halvade
BigBWA
SparkBWA

(c) D3

Figure 4.11: Execution times considering several BWA-based aligners running the BWA-
MEM algorithm (axes are in log scale).

in the computations. For comparison fairness, the overhead of this phase is included in the
corresponding execution times of both tools, since times for BWA and SparkBWA encompass
the whole alignment process.

Performance results show that BWA is competitive with respect to Hadoop-based tools
(BigBWA and Halvade) when 32 mappers are used, but its scalability is very poor. Using more
threads in the computations do not compensate the overhead caused by their synchronization
unless the dataset was big enough. BigBWA and Halvade show a better overall performance
with respect to BWA. Both tools behave in a similar way, and differences in their performance

4.6. Evaluation 77

(a) D1

32 64 96 128
10

100

50

Number of mappers/cores

Sp
ee

du
p

Linear
BWA
Halvade
BigBWA
SparkBWA

(b) D2

32 64 96 128
10

100

50

Number of mappers/cores
Sp

ee
du

p

Linear
BWA
Halvade
BigBWA
SparkBWA

32 64 96 128
10

100

50

Number of mappers/cores

Sp
ee

du
p

Linear
BWA
Halvade
BigBWA
SparkBWA

(c) D3

Figure 4.12: Speedup considering several BWA-based aligners running the BWA-MEM al-
gorithm (axes are in log scale).

are small. Finally, SparkBWA outperforms all the considered tools. In order to illustrate the
benefits of our proposal it is worth noting that, for example, SparkBWA is on average 1.5×
faster than BigBWA and Halvade when using 128 mappers, and 2.5× with respect to BWA
considering 64 mappers.

Performance results in terms of speedup with respect to the sequential execution of BWA
are shown in Figure 4.12. The scalability problems of BWA are clearly revealed in the
graphs. Hadoop-based tools show a better scalability but it is not enough to get closer to
SparkBWA. The average speedup is respectively 50× and 49.2× for BigBWA and Halvade

78 Chapter 4. SparkBWA: Speeding Up the Alignment of High-Throughput DNA. . .

using 128 workers. This value increases up to 72.5× for SparkBWA. Note that the scalabil-
ity of SparkBWA is especially good when considering the biggest dataset (Figure 4.12(c)),
reaching a maximum speedup of 85.6×. In other words, the parallel efficiency is 0.67.

In this way, SparkBWA has proven to be very consistent in all the scenarios considered,
improving the results obtained by other state of the art BWA-based aligners. In addition, we
must highlight that SparkBWA behaves better as the size of the dataset increases.

4.7. Conclusions

In this work we introduce SparkBWA, a new tool that exploits the capabilities of a Big
Data technology as Apache Spark to boost the performance of the Burrows-Wheeler Aligner
(BWA), which is a very popular software for mapping DNA sequence reads to a large refer-
ence genome. BWA consists of several algorithms especially tuned to deal with the alignment
of short reads. SparkBWA was designed in such a way that no modifications to the original
BWA source code are required. In this way, SparkBWA keeps the compatibility with any
BWA software release, future or legacy.

The behavior of SparkBWA was evaluated in terms of performance, scalability and mem-
ory consumption. In addition, a thorough comparison between SparkBWA and several state of
the art BWA-based aligners was performed. Those tools take advantage of different parallel
approaches as Pthreads, MPI, and Hadoop to improve the performance of BWA. The eval-
uation shows that when considering the algorithm to align shorter reads (BWA-backtrack),
SparkBWA is on average 1.9× and 1.4× faster than SEAL and pBWA. For longer reads
and the BWA-MEM algorithm, the average speedup achieved by SparkBWA with respect to
BigBWA and Halvade tools is 1.4×.

Finally, it is worth noting that most of the next-generation sequencing (NGS) professionals
are not experts in Big Data or High Performance Computing. For this reason, in order to make
SparkBWA more suitable for these professionals, an easy and flexible API is provided which
will facilitate the adoption of the new tool by the community. This API allows to manage the
sequence alignment process from the Apache Spark shell, hiding all the computational details
to the users.

The source code of SparkBWA is publicly available at the GitHub repository (https:
//github.com/citiususc/SparkBWA).

https://github.com/citiususc/SparkBWA
https://github.com/citiususc/SparkBWA

CHAPTER 5

PASTASPARK: MULTIPLE SEQUENCE

ALIGNMENT MEETS BIG DATA

Following is a reproduction of an article of which the author of this thesis is a main con-
tributor. This is a verbatim reproduction, and the original can be found online under the
following DOI: 10.1093/bioinformatics/btx354, or with this information:

J. M. Abuı́n, T. F. Pena, and J. C. Pichel, “PASTASpark: multiple sequence alignment
meets Big Data,” Bioinformatics

5.1. Abstract

Motivation: One basic step in many bioinformatics analyses is the Multiple Sequence
Alignment (MSA). One of the state of the art tools to perform MSA is PASTA (Practical
Alignments using SATé and TrAnsitivity). PASTA supports multithreading but it is limited to
process datasets on shared memory systems. In this work we introduce PASTASpark, a tool
that uses the Big Data engine Apache Spark to boost the performance of the alignment phase
of PASTA, which is the most expensive task in terms of time consumption.
Results: Speedups up to 10× with respect to single-threaded PASTA were observed, which
allows to process an ultra-large dataset of 200,000 sequences within the 24-hr limit.
Availability: PASTASpark is an Open Source tool available at https://github.com/citiususc/pastaspark

80 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

Tag Name No. of sequences Avg. sequence length Size
D1 16S.B.ALL 27,643 1,371.9 184.1 MB
D2 50k RNASim 50,000 1,556 591.8 MB
D3 200k RNASim 200,000 1,556 3.4 GB

Table 5.1: Main characteristics of the input datasets.

5.2. Introduction

Multiple sequence alignment (MSA) is essential in order to predict the structure and func-
tion of proteins and RNAs, estimate phylogeny, and other common tasks in sequence analysis.
PASTA [79] is a tool, based on SATé [80], which produces highly accurate alignments, im-
proving the accuracy and scalability of other state-of-art methods, including SATé. PASTA is
based on a workflow composed of several steps. During each phase, an external tool is called
to perform different operations such as estimating an initial alignment and tree, computing
MSAs on subsets of the original sequence set, or estimating the maximum likehood tree on a
previously obtained MSA. Note that computing the MSAs is the most time consuming phase,
implying in some cases over 70% of the total execution time.

PASTA is a multithreaded application that only supports shared memory computers. In
this way, PASTA is limited to process small or medium size input datasets, because the mem-
ory and time requirements of large datasets exceed the computing power of any shared mem-
ory system. In this work we introduce PASTASpark, an extension to PASTA that allows to
execute it on a distributed memory cluster making use of Apache Spark [13]. Apache Spark
is a cluster computing framework that supports both in-memory and on-disk computations in
a fault tolerant manner, using distributed memory abstractions known as Resilient Distributed
Datasets (RDDs). PASTASpark reduces noticeably the execution time of PASTA, running the
most costly part of the original code as a distributed Spark application. In this way, PASTAS-
park guarantees scalability and fault tolerance, and allows to obtain MSAs from very large
datasets in reasonable time.

5.3. Approach

PASTA was written in Python and Apache Spark includes APIs for Java, Python, Scala
and R. For this reason, authors use the Spark Python API (known as PySpark) to implement

5.3. Approach 81

PASTASpark. The design of PASTASpark minimizes the changes in the original PASTA code.
In fact, the same software can be used to run the unmodified PASTA on a multicore machine
or PASTASpark on a cluster: If Python is used, the original PASTA is launched, while if the
job is submitted through Spark, PASTA is automatically executed in parallel using the Spark
worker nodes.

The PASTA iterative workflow consists of four steps or phases. In the first phase (P1),
a default starting tree is computed from the input sequence set S. Afterwards, using the tree
and the centroid decomposition technique in SATé-II, S is divided into disjoint sets S1, . . . ,Sm

and a spanning tree T ∗ on the subsets is obtained. In the second phase (P2), the MSAs on
each Si are obtained. By default, MAFFT [82] is used in this step, but other aligners could be
employed. The resulting alignments are referred as type 1 subalignments. Now, in the third
phase (P3), OPAL [123] is used to align the type 1 subalignment for every edge (v,w) in T ∗,
producing the so called type 2 subalignment, from which the final MSA is obtained through
a sequence of pairwise mergers using transitivity. Finally, in the fourth phase (P4), if an
additional iteration is desired, FastTree-2 [124] is executed to estimate a maximum likelihood
tree on the MSA produced on the previous step, and the process is repeated using this tree as
input.

As it was stated in [79], the most time consuming phase in PASTA is the computation of
MSAs using MAFFT (P2). Due to this, PASTASpark focus on parallelizing this step. In the
original PASTA, P2 is parallelized using Python multiprocessing. As MAFFT requires a file
as input, the computed subsets Si have to be stored in files from which each PASTA process
calls the aligner using the Python class Popen. By default, PASTA creates so many processes
as cores are available in the machine. This procedure has several important limitations: it only
works on shared memory machines, it implies storing to disk a large amount of data, which
could be a bottleneck, and, finally, it prevents MAFFT to run in parallel taking advantage of
its OpenMP implementation.

To overcome these limitations, PASTASpark creates an in-memory RDD of key-value
pairs, in case it detects that the Spark engine is running. In particular, the key is an object
that includes information about the aligner and the required parameters to run it, while the
value is an object containing a subset Si. This RDD is automatically distributed by Spark
to the worker nodes in the cluster, receiving each worker a slice of the RDD. Then, a map
transformation is applied to the RDD. As a consequence, the input data is stored to each local
disk of the worker nodes, and the aligner is invoked to process each local file using the Popen

82 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

No. of workers (cores)
1 8 16 32 64

D1
PASTA

35.5
7.2 [69.5%] – – –

PASTASpark 7.4 [70.3%] 5.4 [59.3%] 4.5 [51.1%] 3.7 [40.6%]

D2
PASTA

100.5
18.7 [74.8%] – – –

PASTASpark 20.9 [77.5%] 14.4 [67.4%] 11.6 [59.5%] 9.5 [50.5%]

Table 5.2: Execution time (hours) for D1 and D2 using the CESGA cluster.

	
	
	
	

10 20 30 40 50 60

2

4

6

8

10

12

Cores

Sp
ee
du
p

PASTASpark
Amdahl’s Law

10 20 30 40 50 60

2

4

6

8

10

12

Cores

Sp
ee
du
p

PASTASpark
Amdahl’s Law

(a)	

D1 D2 D30

5

10

15

20

25

30

35

40

45

50

Ti
m

e
(h

ou
rs

)

PASTA − 1 node (16 cores)
PASTASpark − 4 nodes (64 cores)
PASTASpark − 8 nodes (128 cores)

(b)	

(c)	

Figure 5.1: Speedup considering D1 (a) and D2 (b) datasets on the CESGA cluster, and
execution times on the AWS cluster (c).

class. Notice that the amount of data stored to any of the local disks is divided by the number
of workers. We must also highlight that the storing process is done in parallel, which reduces
significantly the I/O cost. Besides, if the worker nodes are multicore machines, the aligner

5.4. Results and discussion 83

software could run in parallel using several threads, which is also an important advantage of
PASTASpark over the original PASTA application. The output of the map transformation is
a new RDD that contains the type 1 subalignments. The resulting RDD is collected by the
Spark Driver in order to continue the PASTA workflow. In this way, P2 is performed by the
workers, while P1, P3 and P4 are executed by the Spark Driver. More details about PASTA
and PASTASpark can be found in the Supplementary Material.

5.4. Results and discussion

Input datasets from the original PASTA publication are used to test PASTASpark perfor-
mance. A summary of their main characteristics are shown in Table 5.1. Note that a starting
tree is available for all the considered datasets, so its calculation in P1 is avoided. The exper-
imental evaluation was carried out considering two different clusters, CESGA and AWS (see
description in the Supplementary Material).

Table 5.2 shows the execution times of PASTA and PASTASpark when running on the
CESGA cluster (PASTA can only run on a single 8 cores node). Important improvements
were observed when using PASTASpark with different number of workers (cores). Note that
the table displays between brackets the percentage of time spent in the alignment phase (P2),
which was the one parallelized by PASTASpark. Those values are essential to understand the
corresponding speedups achieved by PASTASpark with respect to original PASTA (see Fig-
ures 5.1(a) and 5.1(b)). In these figures we have used the Amdahl’s law [125] to estimate the
theoretical maximum speedup achievable by PASTASpark. This law states that if a fraction s

of the work for a given problem can not be parallelized, with 0 < s ≤ 1, while the remaining
portion, 1− s, is p-fold parallel, then the maximum achievable speedup is 1/(s+(1− s)/p).
In our particular case, P1, P3 and P4 phases in PASTA are multithreaded, so they could not
be, in theory, considered sequential code. However, the execution time of P1 and P3 is really
small with respect to P2 and P4, so without losing precision we can consider their execution
time as a constant. On the other hand, the scalability of P4 (FastTree-2) is poor and it does not
scale beyond 1.5–1.7× using 3 or more threads. Therefore, as a valid approximation for the
current implementation of PASTA we consider P1, P3 and P4 as sequential processes. Red
lines in Figures 5.1(a) and 5.1(b) show the Amdahl’s law theoretical maximum speedup ap-
plied to D1 and D2 datasets. It can be observed that PASTASpark is close to the upper limit,
obtaining speedups up to 10× when using 64 workers (cores).

84 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

Finally, Figure 5.1(c) displays the performance results of PASTASpark running on the
AWS cluster using a different number of computing nodes. Each node in this system consists
of 16 cores. It is worth to mention that PASTASpark is able to process an ultra-large dataset
of 200,000 sequences (D3) within the 24 hour limit using only 8 AWS nodes.

5.5. Supplementary Material

5.5.1. Apache Spark

PASTASpark allows to execute PASTA on a distributed memory cluster using Apache
Spark [13]. Spark is a cluster computing framework designed to support iterative jobs and
interactive analytics, which includes automatic parallelization and task distribution as well
as fault tolerance. Spark was originally developed at the University of California, Berkeley,
becoming a Top-Level Apache Project in 2014. It uses a master/slave architecture with one
central coordinator, named Spark Driver, and many distributed workers or Spark Executors,
as Figure 5.2 illustrates. Spark applications run as independent sets of processes on a cluster
coordinated by an object called SparkContext, which is a defined object in the Driver. The
SparkContext can connect to several types of cluster managers (either Spark’s own standalone
cluster manager, Mesos [25] or YARN [24]). Through the cluster manager, Spark acquires
Executors on the cluster nodes, which are processes that run computations and store data for
a Spark user program.

The Spark Driver is responsible for converting an user program into units of physical
execution called tasks. A Spark program implicitly creates a logical directed acyclic graph
(DAG) of operations, which the Driver converts into a physical execution plan consisting in a
set of stages, where each stage is composed of multiple tasks. This plan is then optimized, for
example, merging several transformations, and individual tasks are bundled up and prepared
to be sent to the cluster. The Spark Driver tries to schedule each task in an appropriate location
based on the data placement.

On the other hand, Spark Executors run the tasks that make up the application into a
Spark Container (a Java Virtual Machine), returning results to the Driver. Besides, when
tasks execute, their associated data can be cached in the Executors local memory. The Driver
tracks the location of cached data and uses it to schedule future tasks that access that data.

Spark handle fault tolerance by introducing the concept of Resilient Distributed Datasets
(RDDs) [39]. An RDD represents a read-only collection of objects partitioned across the

5.5. Supplementary Material 85

Figure 5.2: Apache Spark basic components.

cluster nodes that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in
memory across machines and reuse it in multiple MapReduce-like parallel operations. By
using RDDs, programmers can perform iterative operations on their data without writing in-
termediary results to disk. In this way, Spark is well-suited, for example, to machine learning
algorithms.

RDDs can be created from a collection of objects (e.g., a list or set) or by loading an
external dataset. Note that Spark can process input data from HDFS, HBase [24], Cassan-
dra [116], Hive [28], Parquet [117], and any Hadoop InputFormat. On created RDDs, Spark
supports two types of parallel operations: transformations and actions. Transformations are
operations on RDDs that return a new RDD, such as map, filter, join, groupByKey, etc.
The resulting RDD will be stored in memory by default, but Spark also supports the option of
writing RDDs to disk whenever necessary. On the other hand, actions are operations that kick
off a computation, returning a result to the Driver program or writing it to storage. Examples
of actions are collect, count, take, etc. Note that transformations on RDDs are lazily
evaluated, meaning that Spark will not begin to execute until it sees an action.

When running on a cluster, Spark allows two deploy modes namely client and cluster

mode. In client mode, the Driver program runs on the same machine where it is itself being
invoked, usually the user workstation. In cluster mode, the Driver will be shipped to execute
on a worker node in the cluster, freeing the user computer to do other jobs.

86 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

Apache Spark provides Python, Scala, and R interactive shells, which let the user interact
with data that is distributed on disk or in memory across many machines. Apart from running
interactively, Spark can also be linked into applications in either Java, Scala, or Python. As
the original PASTA is written in Python, we have decided to use the Spark Python API (also
knows as PySpark) to implement PASTASpark.

Big Data and Bioinformatics

Due to the fast expansion of Big Data technologies, we can find several bioinformatics
works that exploit the capabilities of different Big Data frameworks such as Apache Hadoop
or Apache Spark on distributed memory clusters. However, to the best of our knowledge, none
of those works deal with Multiple Sequence Alignment (MSA), being most of them focused
on the short read alignment problem. Some relevant examples are the following:

SparkBWA [78]: this tool exploits the capabilities of the Apache Spark engine to
boost the performance of one of the most widely adopted aligner, the Burrows-Wheeler
Aligner (BWA). The design of SparkBWA uses two independent software layers in
such a way that no modifications to the original BWA source code are required, which
assures its compatibility with any BWA version (future or legacy).

BigBWA [76]: BigBWA is a tool that uses Apache Hadoop to boost the performance of
the Burrows–Wheeler aligner (BWA). BigBWA is fault tolerant and it does not require
any modification of the original BWA source code.

SEAL [70]: SEAL is a scalable tool that also uses Apache Hadoop for short read pair
mapping and duplicate removal. It computes mappings that are consistent with those
produced by BWA and removes duplicates according to the same criteria employed by
Picard’s MarkDuplicates.

Halvade [69]: Halvade is a framework that enables sequencing pipelines to be exe-
cuted in parallel on a multi-node and/or multi-core Hadoop compute infrastructure in a
highly efficient manner. As an example, a DNA sequencing analysis pipeline for variant
calling has been implemented according to the GATK Best Practices recommendations,
supporting both whole genome and whole exome sequencing.

Additionally, MSAProbs-MPI [84] is a distributed-memory parallel version of the mul-
tithreaded MSAProbs [83] tool that reduce runtimes by exploiting the compute capabilities

5.5. Supplementary Material 87

of distributed memory clusters by using the MPI [10] library. MSAProbs is a state-of-the-art
protein multiple sequence alignment tool based on hidden Markov models. It can achieve high
alignment accuracy at the expense of relatively long runtimes for large-scale input datasets.
Note that unlike traditional parallel programming paradigms as MPI, code developing in Spark
is largely simplified with characteristics as the automatic input splitting, task scheduling or
fault tolerance mechanism.

5.5.2. PASTASpark in more detail

Next we describe the design and implementation of PASTASpark, but first, some back-
ground on the original PASTA application is provided.

PASTA Workflow

As it is described in [79], PASTA uses an iterative strategy. The first iteration begins with
a starting tree, and subsequent iterations use as input the tree estimated in the previous one. In
each step, the guide tree is used to divide the sequence set S into smaller subsets, and to build a
spanning tree with these subsets as nodes. Then multiple sequence alignments (MSAs) for all
the sequence subsets are independently estimated. After that, pairs of MSAs corresponding
to subset that are adjacent in the spanning tree are aligned together. The resulting collection
of MSAs overlap each other and are compatible where they overlap. These properties enable
PASTA to merge these overlapping MSAs using transitivity and generate an MSA on the
entire set of sequences. Finally, a maximum likelihood (ML) tree is estimated on the final
alignment.

The starting tree can be provided by the user as an input parameter or it can be com-
puted from an alignment A of a random subset X of 100 sequences from S. PASTA uses
HMMER [126, 127] to compute an Hidden Markov Model on A, and to align all sequences
in S−X one by one to A. Then, an ML tree on this alignment is constructed using FastTree-
2 [124].

Considering this starting tree as input, the PASTA workflow consist in an iterative method
that we can summarize in four phases (see Figure 5.3):

Phase 1 (P1):

The sequence set S is divided into disjoint sets S1, . . . ,Sm, each with at most 200 se-
quences, using the current guided tree and the centroid decomposition technique in

88 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

Figure 5.3: Main PASTA stages.

SATé-II [80]. In this technique, if the tree has at most 200 leaves, the set of sequences
is returned; otherwise, an edge in the tree that splits the set of leaves into roughly equal
sizes is found and removed from the tree. Then, the algorithm recurses on each subtree.

A spanning tree T ∗ on the subsets is obtained. To do this, all leaves are labeled by
their subset and, for every node v in the guide tree that is on a path between two leaves
that both belong to Si, it is labeled by Si. If after this process there are unlabeled
nodes, labels are propagated from nodes to unlabeled neighbors (breaking ties by using
the closest neighbor according to branch lengths in the guide tree) until all nodes are
labeled. Then, edges edges that have the same label at the endpoints are collapsed.

Phase 2 (P2):

In this step, MSAs on each Si are obtained using an existing MSA tool. Each such
alignment is denoted as a type 1 subalignment. By default, MAFFT [82] with the
L-INS-i settings is used. It is based on the iterative refinement method incorporating
local pairwise alignment information.

Phase 3 (P3):

Every node in T ∗ is labeled by an alignment subset for which we have a type 1 sub-
alignment from previous step. For every edge (v,w) in T ∗, OPAL [123] is employed to
align the type 1 subalignments at v and w; this produces a new set of alignments, each

5.5. Supplementary Material 89

Figure 5.4: Phase 2 in PASTA.

containing at most 2k sequences, which are called type 2 subalignments. The merger
technique used to compute type 2 subalignments is required not to change the align-
ments on the type 1 subalignments; therefore, type 2 subalignments induce the type 1
subalignments computed in the phase 2 and are all compatible with each other.

The final alignment is computed through a sequence of pairwise mergers using transi-
tivity, as described in [79]. Using the concept of transitivity merger, the spanning tree is
used to merge all the type 2 subalignments through a sequence of pairwise transitivity
mergers into a multiple sequence alignment on the entire set of sequences. The final
transitivity merger produces an alignment that includes all the sequences.

Phase 4 (P4):

If an additional iteration (or a tree on the alignment) is desired, FastTree-2 is used to
estimate a maximum likelihood tree on the MSA produced in the previous phase and
the process is repeated.

As it was stated in [79], P1 and P3 require a small amount of time, so their paralleliza-
tion/optimization is not necessary. The most expensive phase in terms of computational time
is P2 (subsets alignment), which may imply more than 70% of the total execution time. Fi-
nally, P4 (tree estimation) requires more time than P1 and P3 but it is much faster than P2.

90 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

P2 in PASTA is parallelized using a multithreaded approach. By default, PASTA set the
number of threads to be used equal to the number of available cores in the shared memory
system, although the user can also specify a particular value. Figure 5.4 shows an example of
how P2 is implemented in PASTA considering five subsequences and a quad-core computer.
First, the subsequences are stored in the hard disk because the input to the aligner (MAFFT in
this case) can only be a regular file. Afterwards, each Python thread forks a new child process,
which execute MAFFT using Python’s class subprocess.Popen. These child processes run
in parallel in the four cores, and their outputs are again stored to disk to be used in the next
phase (P3). Note that in the example of Figure 5.4, since there are five subsequences and only
four cores, one of the cores executes sequentially two MAFFT subprocesses.

The PASTA parallelization strategy has three main drawbacks:

1. Both the Python reference interpreter (CPython) and the alternative interpreter that of-
fers the fastest single-threaded performance for pure Python code (PyPy), use a Global
Interpreter Lock (GIL) [128] to avoid various problems that arise when using threading
models that implicitly allowing concurrent access to objects from multiple threads of
execution. This makes Python unsuitable for using shared memory threading to exploit
multiple cores on a single machine. To overcome this problem, the adopted solution in
PASTA was to lunch a child process in each thread using the Python multiprocessing
library. These processes can run in parallel but with the extra overhead of creating them.

2. The second drawback is that, with the adopted approach, each subprocess runs on a
single core and call the external alignment program (MAFFT by default) with one of
the input subsequences. MAFFT supports multithreading with OpenMP, but, as each
subsequence is aligned in a single core, MAFFT parallelism cannot be harnessed.

3. The third drawback and the most important one is that PASTA can only be executed
on shared memory computers, which limits its scalability to a few number of cores. In
this way, PASTA is limited to process small input datasets because the memory and
time requirements of large datasets exceed the computing power of any shared memory
system.

PASTASpark

The objective of PASTASpark is to reduce the execution time of PASTA using Apache
Spark as engine to run it on a distributed memory cluster. Current version of PASTASpark

5.5. Supplementary Material 91

Figure 5.5: Phase 2 in PASTASpark.

focused only in the subset alignment step (P2) of the PASTA workflow. So, other steps are
executed by the Spark Driver program.

Figure 5.5 shows how P2 is modified in PASTASpark. This example considers that we
have again five subsequences and Spark is running on a distributed memory cluster with two
dual core nodes. If the code is launched using spark submit, the output of the first phase
is not spilled to disk but a pair RDD is created. A pair RDD is an RDD where the elements
are (key, value) pairs. In this case, the key is a job identifier and the value is one of the
subsequences created in P1 and which resides in the Driver memory. Afterwards, a map()

transformation is applied to the RDD in such a way that MAFFT is executed concurrently
on each of the subsequences. We must highlight that each piece of the RDD is stored in the
local disk of a worker node (not in the Driver disk), and the writing is performed in parallel
reducing the I/O cost with respect to PASTA.

The output of the map transformation is a new RDD with the aligned subsequences (stored
in the local memory of the worker nodes). As transformations on RDDs are lazily evaluated,
Spark will not start to execute the map until it detects an action. In this case, a collect()

action is used to retrieve the output RDD as a list, which is finally stored in the local disk of
the Driver. From this point, the rest of the PASTA phases are executed in the Driver.

92 Chapter 5. PASTASpark: multiple sequence alignment meets Big Data

Tag Name No. of sequences Avg. sequence length Size
D1 16S.B.ALL 27,643 1,371.9 184.1 MB
D2 50k RNASim 50,000 1,556 591.8 MB
D3 200k RNASim 200,000 1,556 3.4 GB

Table 5.3: Datasets used for the experimental evaluation of PASTASpark.

5.5.3. Experimental setup

Input Datasets

In the original PASTA paper [79] several input datasets were used. In particular, datasets
are from the million-sequence RNASim [129] with subsamples of 10k, 20k, 50k, 100k and
200k sequences, and biological datasets from the comparative ribosomal website (CRW)
[130]. In order to test PASTASpark datasets from both groups have been chosen (see Ta-
ble 5.3 for details).

According to the original PASTA paper and regarding the RNASim datasets, PASTA was
able to complete two iterations with the 100k subsample and only one iteration with the 200k
subsample. However, it completes the three iterations that PASTA runs by default with the 50k
sample. For this reason we have chosen as illustrative examples the 50K and 200k datasets
(D2 and D3 respectively). D1 was selected since it is the biggest dataset among the CRW
examples.

Computational Platforms

We have used two different clusters in the performance tests. The first one is a Big Data
cluster installed at CESGA1 (Galicia Supercomputing Center in Spain). This cluster has 12
computing nodes with 54.5 GB of RAM memory each one, and 19 cores available for Spark
containers. However, in our case the maximum number of cores that can be used per container
is 8 due to some restrictions set by the system administrators. CPUs are Intel Xeon CPU
E5-2620-v3 at 2.40GHz. Hadoop, Spark and Java versions are 2.7.1 (HDP), 1.6.1, and 1.8,
respectively.

The second platform is a 9-node AWS (Amazon Web Services) EC2 cluster2 with 16 cores
(Intel Xeon E5-2670 at 2.5GHz CPUs) and 122 GB of RAM memory per node. In particular,

1www.cesga.es
2aws.amazon.com/ec2/

https://www.cesga.es
https://aws.amazon.com/ec2/

5.5. Supplementary Material 93

each computing node corresponds to a r3.4xlarge EC2 instance. In this case, Hadoop, Spark
and Java versions are 2.7.2, 1.6.2, and 1.8 respectively.

It should be taken into account that PASTASpark runs P1, P3 and P4 in the Spark Driver,
while P2 is performed by the Spark Executors. In this way, depending on the input dataset
some hardware parameters should be set: the number of cores and RAM memory used by the
Driver, the memory assigned to the Executors, etc. For example, the Driver considering D2

uses 20 GB, while for D1 15 GB is an adequate value. Regarding the Executors, 5 GB are
enough in both cases.

5.5.4. Future work

The first topic to be addressed in the future work is the problem related to the paral-
lelization efficiency of FastTree-2 tool (P4). As the number of cores used in the computation
increases, P4 becomes the major bottleneck in the performance of PASTASpark. In this way,
it is necessary to completely redesign the parallelization strategy of FastTree-2 or Fast-Tree-2
should be replaced by a different tool with a better scalability. The goal is also to integrate
P4 in the Spark framework. In this way, we believe that the scalability of PASTASpark will
improve noticeably.

CHAPTER 6

CONCLUSIONS

In the recent years Big Data tools and ecosystems have become the standard when ana-
lyzing or processing huge datasets. We find the cause in the benefits of these technologies:
fault tolerance, use of high level programming languages, or their similarity with High Per-
formance Computing (HPC) regarding its parallel philosophy. Many experts in the HPC area
agree that the Big Data and the HCP ecosystems should converge, or at least, share some
approaches in order to enter into the Exascale era. In this way, HPC should incorporate some
features from Big Data technologies such as the fault tolerance or the fast data distribution.

In this thesis, we use Big Data technologies to deal with some scientific problems that
are computationally intensive regarding execution time (typical in HPC problems) and, at the
same time, have a large input data size (typical in Big Data), with the objective of improving
the execution time, scalability and efficiency. Conclusions derived from this work, and pre-
sented in this chapter, can clarify where the barrier between these two paradigms stands, or
even prove whether this barrier exists at all. In this way, we want to contribute to solve the key
question that in recent times has arisen among the HPC community could be solved: should
Big Data be considered part of the High Performance Computing field?

Next, the main conclusions derived from this work are summarized:

The field of NLP needs scalable and efficient tools in order to process the huge amount
of information available in the Big Data era. However, the state of the art tools are
usually written in languages that are not suitable neither for HPC nor Big Data tech-
nologies. This is the case, for example, of the existent modules in the Linguakit repos-
itory, written in Perl language. Although Hadoop provides the Hadoop Streaming tool

96 Chapter 6. Conclusions

to deal with these cases, it has shown a poor performance. To overcome this issue, we
have developed Perldoop (Chapter 2), which is a tool that automatically translates Perl
scripts prepared to be executed using Hadoop Streaming into Hadoop-ready Java codes.
However, the objective was not to develop a powerful tool that allows to automatically
translate any existent Perl code to Java, but a simple and easy-to-use tool that takes as
input Perl codes written for Hadoop Streaming, follows a reduced number of additional
programming rules, and produces Hadoop-ready Java codes. By using this tool, NLP
programs can benefit from the scalability, performance and fault tolerance properties of
Big Data technologies. To facilitate this job, the tool uses a system based on tagging
the source code and templates. Results show how, by using the MapReduce-ready Java
codes generated by Perldoop, the NERC modules from Linguakit are executed 8× faster
than using the Hadoop Streaming tool with the same number of CPUs. For instance,
the original NERC modules require about 19 days to process the whole Wikipedia in
Spanish language. This result is improved by the Hadoop Streaming tool to less than
16 hours when using 64 cores. However, considering the Perldoop generated codes, the
time is noticeably reduced to less than 2 hours using the same number of cores.

In the last years, the available biological data in a digital format has experimented a
big and fast growth. This process has been possible thanks to the next-generation se-
quencing (NGS) technologies. These technologies have facilitated the extraction of
huge quantities of DNA sequences, which will further promote the future growth of
biological databases. However, the process of giving meaning to all this information
is overcoming the computing capacity of a CPU. Due to this fact, bioinformatics tools
need to be efficient and scalable; that is, they need to deal with an ever growing amount
of data. One of the most important challenges in Bioinformatics is the sequence align-
ment process. In this thesis, we deal with this problem introducing the BigBWA tool
(Chapter 3). BigBWA uses Hadoop as a Big Data technology, while internally it uses
the C functions from the state of the art software BWA to perform the alignment phase.
In this way, two independent software layers were created in BigBWA. The first one
corresponds to the BWA software package, while the other is, strictly speaking, our
tool. This design implies that no modification of the BWA source code is needed, which
assures the compatibility of BigBWA with any BWA version. Also, BigBWA is fault
tolerant. It is worth noting that considering the 6 billion (6×109) reads that a Illumina
HiSeqXT M Ten is able to generate, BigBWA is capable or performing the alignment in

97

just 5 hours considering a medium size cluster. That is, 192× faster than single-thread
BWA.

The Big Data world evolves very quickly as Apache Spark illustrates. Since its birth,
destined to overcome the Apache Hadoop limitations, it has experimented an enormous
growth regarding functionalities and improvements. Taking advantage of this technol-
ogy, we have developed SparkBWA (Chapter 4). SparkBWA follows the philosophy
of BigBWA in terms of software design. SparkBWA fulfills three requirements. First,
SparkBWA outperforms BWA and other BWA-based aligners both in terms of perfor-
mance and scalability. Second, it keeps the compatibility with future and legacy ver-
sions of BWA. Since BWA is constantly evolving to include new functionalities and al-
gorithms, it is important for SparkBWA to be agnostic regarding the BWA version. This
is an important difference with respect to other existing tools based on BWA, which re-
quire modifications of the BWA source code. Finally, NGS professionals demand solu-
tions to perform sequence alignments efficiently, in such a way that the implementation
details are completely hidden to them. For this reason SparkBWA provides a simple
and flexible API to handle all the aspects related to the alignment process, which allows
bioinformaticians to focus only on the scientific problem to deal with. In terms of per-
formance, we must highlight that SparkBWA is almost twice faster than other state of
the art tools.

Multiple Sequence Alignment (MSA) is an extension of the pairwise alignment to incor-
porate more than two sequences at a time. Multiple sequence alignments are computa-
tionally difficult to produce and most formulations of the problem lead to NP-complete
combinatorial optimization problems. PASTA is a multithreaded application which pro-
duces highly accurate alignments, improving the accuracy and scalability of other state-
of-art methods. PASTA is limited to process small or medium size input datasets, be-
cause the memory and time requirements of large datasets exceed the computing power
of any shared memory system. In this thesis, we introduce PASTASpark (Chapter 5),
an extension to PASTA that allows to execute it on a distributed memory cluster making
use of Apache Spark. The design of PASTASpark minimizes the changes in the origi-
nal PASTA code. In fact, the same software can be used to run the unmodified PASTA
on a multicore machine or PASTASpark on a cluster. We are able to process a dataset
composed of 200.000 sequences in less than 24 hours. Note that the original PASTA
tool can not complete this process because of memory restrictions.

98 Chapter 6. Conclusions

We consider that a two level programming model can be a solution for mixing the Big
Data and HPC worlds. A high level programming interface should be used when ac-
cessing the data for reading or writing (for example, by using HDFS) with languages
such as Java, Scala or Python, more suited for these kind of tasks. This should be com-
plemented with a low level programming interface when dealing with performance,
memory consumption restrictions, or high performance libraries. Here, the program-
ming languages should be the classic HPC languages, such as C, C++ or Fortran. In
this way, advantages from the two worlds can be obtained, with a minimum perfor-
mance penalty, as we have demonstrated in Chapter 3 and 4. We have demonstrated
that the efficient communication of these two layers can be performed by using the Java
Native Interface (JNI), or calling native methods from Python.

When applications are not written in languages suited for Big Data nor HPC technolo-
gies, the best option is porting the codes to another language. However, this is a tedious
and hard job. In this way, source to source compilers can be a great help, as the case
shown in Chapter 2.

Memory consumption could be a problem in Big Data applications. This is mainly
caused by the way containers are implemented in YARN. A container is basically a
process running as a Java Virtual Machine (JVM), with the corresponding memory
overhead and memory management issues related to the Java Garbage Collector. A
solution for this can be to use JNI as well, since native methods can reserve and free
memory that the Java Garbage Collector is not aware of. This is a good approach, but
at the same time, it requires that the programmer reserves and frees memory according
to the program requirements.

6.1. Future work

We present here a list of future tasks that can be carried out in order to continue the work
started in this thesis:

Current Big Data schedulers do not allow to incorporate resources such as GPUs or
accelerators such as Intel Xeon Phi, which are typical components of current super-
computing nodes. Add them as resources in YARN or Mesos should be a great step.

6.1. Future work 99

Metagenomic sequencing studies are becoming increasingly popular, including the se-
quencing of human microbiomes and diverse environments. A fundamental computa-
tional problem in this context is read classification. For example, the assignment of each
read to a taxonomic label. Due to the large number of reads produced by modern high-
throughput sequencing technologies and the rapidly increasing number of available ref-
erence genomes, current software tools suffer from either long runtimes, large memory
requirements and/or low accuracy. Because of this, Big Data technologies seem suit-
able for this problem. A possibility for future works is to enter into the metagenomics
scientific field.

Development of a new Perldoop version. This new version will incorporate the possi-
bility of translate codes into other kind of Big Data technologies, and not only Apache
Hadoop. Among the possible candidates we can highlight Apache Spark and Apache
Storm.

PASTA has another bottleneck that could be improved. This bottleneck is the starting
tree construction, which is performed by the FastTree-2 tool and only scales up until 4
cores. If this construction phase could be improved, it would cause a great impact in
the field of Multiple Sequence Alignment. In order to do so, the construction algorithm
should be completely redesigned.

BigBWA, SparkBWA and PASTASpark perform some writing/reading to/from disk,
with the consequent lose of performance. These operations could be avoided by passing
the input sequence data directly to the BWA and PASTA functions from the Big Data
side of the application. In order to do that, a C library to communicate the Big Data
side of the application with its C codes counterparts needs to be created.

Bibliography

[1] IBM, “Big Data at the Speed of Business,” http://www-01.ibm.com/software/data/
bigdata/what-is-big-data.html, [Online; accessed July, 2014].

[2] Cern, “CERN Web Site,” https://home.cern, [Online; accessed May, 2017].

[3] “Square Kilometre Array Home Page,” http://skatelescope.org/, [Online; accessed
June, 2017].

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clus-
ters,” in Proceedings of the 6th Conference on Symposium on Opearting Systems De-

sign & Implementation - Volume 6, ser. OSDI’04. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[5] ——, “MapReduce: simplified data processing on large clusters,” Communications of

the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[6] Hadoop, “Apache Hadoop,” http://hadoop.apache.org, [Online; accessed May, 2017].

[7] TOP500, “TOP500 List,” https://www.top500.org/, [Online; accessed May, 2017].

[8] Cesga, “Galicia Supercomputing Centre Web Site,” http://www.cesga.es/, [Online; ac-
cessed May, 2017].

[9] E. exchange, “Processing power compared,” http://pages.experts-exchange.com/
processing-power-compared/, [Online; accessed May, 2017].

[10] D. W. Walker and J. J. Dongarra, “MPI: a standard message passing interface,” Super-

computer, vol. 12, pp. 56–68, 1996.

http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
https://home.cern
http://skatelescope.org/
http://hadoop.apache.org
https://www.top500.org/
http://www.cesga.es/
http://pages.experts-exchange.com/processing-power-compared/
http://pages.experts-exchange.com/processing-power-compared/

102 Bibliography

[11] L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory pro-
gramming,” IEEE computational science and engineering, vol. 5, no. 1, pp. 46–55,
1998.

[12] “OpenACC web page,” https://www.openacc.org/, [Online; accessed Apr, 2017].

[13] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
Computing with Working Sets,” in Proc. of the 2Nd USENIX Conference on Hot Topics

in Cloud Computing (HotCloud), 2010, pp. 10–10.

[14] H. Asaadi, D. Khaldi, and B. M. Chapman, “A Comparative Survey of the HPC and Big
Data Paradigms: Analysis and Experiments,” in 2016 IEEE International Conference

on Cluster Computing, CLUSTER 2016, Taipei, Taiwan, September 12-16, 2016, 2016,
pp. 423–432.

[15] D. A. Reed and J. Dongarra, “Exascale Computing and Big Data,” Commun. ACM,
vol. 58, no. 7, pp. 56–68, Jun. 2015.

[16] Lustre, “Lustre File System,” http://lustre.org, [Online; accessed May, 2017].

[17] G. Staples, “TORQUE Resource Manager,” in Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, ser. SC ’06. New York, NY, USA: ACM, 2006.

[18] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for resource
management,” in Workshop on Job Scheduling Strategies for Parallel Processing.
Springer, 2003, pp. 44–60.

[19] “Nvidia CUDA Home Page,” http://www.nvidia.com/object/cuda home new.html,
[Online; accessed May, 2017].

[20] “OpenCL Home Page,” https://www.khronos.org/opencl/, [Online; accessed May,
2017].

[21] “LAPACK web page,” http://www.netlib.org/lapack/, [Online; accessed Apr, 2017].

[22] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient Management of
Parallelism in Object Oriented Numerical Software Libraries,” in Modern Software

Tools in Scientific Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, Eds.
Birkhäuser Press, 1997, pp. 163–202.

https://www.openacc.org/
http://lustre.org
http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
http://www.netlib.org/lapack/

Bibliography 103

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File
System,” in Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems

and Technologies (MSST), ser. MSST ’10. Washington, DC, USA: IEEE Computer
Society, 2010, pp. 1–10.

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler, “Apache Hadoop YARN: Yet Another Resource Ne-
gotiator,” in Proc. of the 4th Annual Symposium on Cloud Computing (SOCC), 2013,
pp. 5:1–5:16.

[25] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker,
and I. Stoica, “Mesos: A Platform for Fine-grained Resource Sharing in the Data Cen-
ter,” in Proc. of the 8th USENIX Conference on Networked Systems Design and Imple-

mentation, 2011, pp. 295–308.

[26] T. White, Hadoop: The Definitive Guide, 3rd ed. O’Reilly Media, Inc., 2012.

[27] “Apache Pig Home Page,” https://pig.apache.org/, [Online; accessed June, 2017].

[28] “Apache Hive home page,” http://hive.apache.org/, [Online; accessed December,
2016].

[29] HBase, “HBase,” https://hbase.apache.org/, [Online; accessed May, 2017].

[30] I. F. Haddad, “PVFS: A Parallel Virtual File System for Linux Clusters,” Linux J., vol.
2000, no. 80es, Nov. 2000.

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” in Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, ser. SOSP ’03.
New York, NY, USA: ACM, 2003, pp. 29–43.

[32] M. K. McKusick and S. Quinlan, “GFS: Evolution on Fast-forward,” Queue, vol. 7,
no. 7, pp. 10:10–10:20, Aug. 2009.

[33] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly Media, Inc., 2015.

[34] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting Scientific Computing Problems
to Clouds Using MapReduce.”

https://pig.apache.org/
http://hive.apache.org/
https://hbase.apache.org/

104 Bibliography

[35] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neu-
mann, and A. Abdelnur, “Oozie: towards a scalable workflow management system for
Hadoop,” in Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow

Execution Engines and Technologies. ACM, 2012, p. 4.

[36] “Cascading home page,” http://www.cascading.org/, [Online; accessed February,
2016].

[37] M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, and M. Guo, “More convenient more over-
head: the performance evaluation of Hadoop streaming,” in ACM Symp. on Research

in Applied Computation, 2011, pp. 307–313.

[38] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark: Lightning-Fast

Big Data Analytics, 1st ed. O’Reilly Media, Inc., 2015.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A Fault-tolerant Abstrac-
tion for In-memory Cluster Computing,” in Proc. of the 9th USENIX Conference on

Networked Systems Design and Implementation, 2012, pp. 2–2.

[40] R. Agerri, X. Artola, Z. Beloki, G. Rigau, and A. Soroa, “Big data for natural language
processing: a streaming approach,” Knowledge-Based Systems, vol. 79, pp. 36–42,
2015.

[41] P. Gamallo and M. Garcı́a, “A Resource-Based Method for Named Entity Extraction
and Classification,” LNCS series, vol. 7026, pp. 610–623, 2011.

[42] T. Hasegawa, S. Sekine, and R. Grishman, “Discovering relations among named en-
tities from large corpora,” in Proceedings of the 42nd Annual Meeting on Association

for Computational Linguistics. Association for Computational Linguistics, 2004, p.
415.

[43] Z. Kozareva, J. Silva, P. Gamallo, and G. Lopes, “Cluster analysis of named entities,”
in Intelligent Information Processing and Web Mining. Springer, 2004, pp. 429–433.

[44] J. Nothman, N. Ringland, W. Radford, T. Murphy, and J. R. Curran, “Learning multi-
lingual named entity recognition from Wikipedia,” Artificial Intelligence, vol. 194, pp.
151–175, 2013.

http://www.cascading.org/

Bibliography 105

[45] D. Lin and X. Wu, “Phrase clustering for discriminative learning,” in Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International

Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2.
Association for Computational Linguistics, 2009, pp. 1030–1038.

[46] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local information into
information extraction systems by gibbs sampling,” in Proceedings of the 43rd annual

meeting on association for computational linguistics. Association for Computational
Linguistics, 2005, pp. 363–370.

[47] M. Garcia and P. Gamallo, “An Entity-Centric Coreference Resolution System for Per-
son Entities with Rich Linguistic Information,” in COLING, 2014, pp. 741–752.

[48] ——, “Yet another suite of multilingual NLP tools,” in International Symposium on

Languages, Applications and Technologies. Springer, 2015, pp. 65–75.

[49] J. M. Abuı́n, J. C. Pichel, T. F. Pena, P. Gamallo, and M. Garcia, “Perldoop: Efficient
execution of Perl scripts on Hadoop clusters,” in IEEE International Conference on Big

Data, 2014, pp. 766–771.

[50] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell,
and E. W. Sayers, “GenBank,” Nucleic Acids Research, vol. 41, no. D1, p. D36, 2013.

[51] R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale,
C. O’Donovan, N. Redaschi, and L. L. Yeh, “UniProt: the Universal Protein knowl-
edgebase,” Nucleic Acids Research, vol. 32, no. S1, pp. 115–119, 2004.

[52] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen
et al., “De novo assembly of human genomes with massively parallel short read se-
quencing,” Genome research, vol. 20, no. 2, pp. 265–272, 2010.

[53] J. Shendure, R. D. Mitra, C. Varma, and G. M. Church, “Advanced sequencing tech-
nologies: methods and goals,” Nature Reviews Genetics, vol. 5, no. 5, pp. 335–344,
2004.

[54] B. Schmidt, Bioinformatics: High Performance Parallel Computer Architectures,
1st ed. CRC Press, 2011.

106 Bibliography

[55] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky,
K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo, “The Genome
Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA se-
quencing data,” Genome Research, vol. 20, pp. 1297–1303, Sep 2010.

[56] B. institute, “GATK Best Practices,” https://software.broadinstitute.org/gatk/
best-practices/, [Online; accessed May, 2017].

[57] D. W. Mount, Bioinformatics: sequence and genome analysis. CSHL press, 2004, ch.
Phylogenetic Prediction.

[58] R. C. Deonier, S. Tavaré, and M. Waterman, Computational genome analysis: an in-

troduction. Springer Science & Business Media, 2005.

[59] B. Haubold and T. Wiehe, Introduction to computational biology: an evolutionary

approach. Springer Science & Business Media, 2006.

[60] N. C. Jones and P. Pevzner, An introduction to bioinformatics algorithms. MIT press,
2004.

[61] H. Li and R. Durbin, “Fast and Accurate Short Read Alignment with Burrows-Wheeler
Transform,” Bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009.

[62] ——, “Fast and Accurate Long-Read Alignment with Burrows-Wheeler Transform,”
Bioinformatics, vol. 26, no. 5, pp. 589–595, 2010.

[63] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with BWA-
MEM,” arXiv:1303.3997v2, 2013.

[64] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome,” Genome biology, vol. 10,
no. 3, p. R25, 2009.

[65] R. Li, Y. Li, K. Kristiansen, and J. Wang, “SOAP: short oligonucleotide alignment
program,” Bioinformatics, vol. 24, no. 5, p. 713, 2008.

[66] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang, “SOAP2: an
improved ultrafast tool for short read alignment,” Bioinformatics, vol. 25, no. 15, p.
1966, 2009.

https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/

Bibliography 107

[67] C.-M. Liu, T. K. F. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X. Chu,
K. Zhao, R. Li, and T. W. Lam, “SOAP3: ultra-fast GPU-based parallel alignment tool
for short reads,” Bioinformatics, vol. 28, no. 6, pp. 878–879, 2012.

[68] R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin, W. Zhu, D. W.
Cheung, H.-F. Ting, S.-M. Yiu, S. Peng, C. Yu, Y. Li, R. Li, and T.-W. Lam, “SOAP3-
dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner,” PLoS ONE, vol. 8,
no. 5, 2013.

[69] D. Decap, J. Reumers, C. Herzeel, P. Costanza, and J. Fostier, “Halvade: Scalable
Sequence Analysis with MapReduce,” Bioinformatics, vol. 31, no. 15, pp. 2482–2488,
2015.

[70] L. Pireddu, S. Leo, and G. Zanetti, “SEAL: a distributed short read mapping and dupli-
cate removal tool,” Bioinformatics, vol. 27, no. 15, pp. 2159–2160, 2011.

[71] S. Leo and G. Zanetti, “Pydoop: a Python MapReduce and HDFS API for Hadoop,” in
Proc. of 19th Symposyum on HPDC, 2010, pp. 819–825.

[72] Y. Liu, B. Schmidt, and D. L. Maskell, “CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform,” Bioinformatics,
vol. 28, no. 14, pp. 1830–1837, 2012.

[73] Y. Liu and B. Schmidt, “CUSHAW2-GPU: empowering faster gapped short-read align-
ment using GPU computing,” IEEE Design & Test, vol. 31, no. 1, pp. 31–39, 2014.

[74] Y. Liu, B. Popp, and B. Schmidt, “CUSHAW3: sensitive and accurate base-space
and color-space short-read alignment with hybrid seeding,” PloS one, vol. 9, no. 1,
p. e86869, 2014.

[75] D. Peters, X. Luo, K. Qiu, and P. Liang, “Speeding Up Large-Scale Next Generation
Sequencing Data Analysis with pBWA,” Journal of Applied Bioinformatics & Compu-

tational Biology, vol. 1, no. 1, pp. 1–6, 2012.

[76] J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “BigBWA: Approaching the Bur-
rows–Wheeler Aligner to Big Data Technologies,” Bioinformatics, vol. 31, no. 24, pp.
4003–4005, 2015.

108 Bibliography

[77] S. Liang, Java Native Interface: Programmer’s Guide and Reference, 1st ed. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[78] J. M. Abuı́n, J. C. Pichel, T. F. Pena, and J. Amigo, “SparkBWA: speeding up the align-
ment of high-throughput DNA sequencing data,” PloS one, vol. 11, no. 5, p. e0155461,
2016.

[79] Mirarab, S. et al., “PASTA: ultra-large multiple sequence alignment for nucleotide and
amino-acid sequences,” Journal of Computational Biology, vol. 22, no. 5, pp. 377–386,
2015.

[80] Liu, K. et al., “SATé-II: very fast and accurate simultaneous estimation of multiple
sequence alignments and phylogenetic trees,” Systematic Biology, vol. 61, no. 1, pp.
90–106, 2012.

[81] J. M. Abuı́n, T. F. Pena, and J. C. Pichel, “PASTASpark: multiple sequence alignment
meets Big Data,” Bioinformatics.

[82] Katoh, K. et al., “MAFFT: improvement in accuracy of multiple sequence alignment,”
Nucleic acids research, vol. 33, no. 2, pp. 511–518, 2005.

[83] Y. Liu, B. Schmidt, and D. L. Maskell, “MSAProbs: multiple sequence alignment
based on pair hidden Markov models and partition function posterior probabilities,”
Bioinformatics, vol. 26, no. 16, pp. 1958–1964, 2010.

[84] J. González-Domı́nguez, Y. Liu, J. Touriño, and B. Schmidt, “MSAProbs-MPI: parallel
multiple sequence aligner for distributed-memory systems,” Bioinformatics, vol. 32,
no. 24, pp. 3826–3828, 2016.

[85] A. Gudyś and S. Deorowicz, “QuickProbs—A Fast Multiple Sequence Alignment Al-
gorithm Designed for Graphics Processors,” PLOS ONE, vol. 9, no. 2, pp. 1–18, 02
2014.

[86] P. Gamallo, J. C. Pichel, M. Garcia, J. M. Abuı́n, and T. F. Pena, “Análisis mor-
fosintáctico y clasificación de entidades nombradas en un entorno Big Data,” Proce-

samiento del Lenguaje Natural, vol. 53, pp. 17–24, 2014.

[87] J. Kegler, “Perl And Undecidability: The Halting Problem,” The Perl Review, vol. 4,
pp. 21–25, 2008.

Bibliography 109

[88] ——, “Perl And Undecidability: Rice’s Theorem,” The Perl Review, vol. 4, pp. 23–29,
2008.

[89] L. Wall, B. Jepson, N. Patwardhan, E. Siever, and D. Futato, PERL Resource Kit UNIX

Edition: 4 Volume Set with CD-ROM. Sebastopol, CA, USA: O’Reilly & Associates,
Inc., 1997.

[90] “Perl programming documentation,” http://perldoc.perl.org/, [Online; accessed July,
2014].

[91] Oracle, “Java Platform, Standard Edition 7 API Specification,” http://docs.oracle.com/
javase/7/docs/api/java, [Online; accessed July, 2014].

[92] JRegex, Regular Expressions for Java, http://jregex.sourceforge.net/, [Online; accessed
July, 2014].

[93] P. Gamallo and M. Garcı́a, “Using Morphosyntactic Post-processing to Improve PoS-
tagging Accuracy,” in 9th Int. Conf. on Computational Processing of Portuguese Lan-

guage (PROPOR), 2010.

[94] M. Banko and R. Moore, “Part of Speech Tagging in Context,” in Proc. of the 20th Int.

Conf. on Computational Linguistics, 2004.

[95] L. Padró and E. Stanilovsky, “Freeling 3.0: Towards wider multilinguality,” in Proc. of

the LREC, 2012.

[96] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collabora-
tively created graph database for structuring human knowledge,” in Proc. of the ACM

SIGMOD Int. Conf. on Management of data, 2008, pp. 1247–1250.

[97] J. Lehman et al., “DBpedia - A Large-scale, Multilingual Knowledge Base Extracted
from Wikipedia,” Semantic Web Journal, 2014.

[98] L. Lai et al., “ShmStreaming: A Shared Memory Approach for Improving Hadoop
Streaming Performance,” Int. Conf. on Advanced Information Networking and Appli-

cations, pp. 137–144, 2013.

[99] E. Dede et al., “MARISSA: MApReduce Implementation for Streaming Science Ap-
plications,” in eScience, 2012, pp. 1–8.

http://perldoc.perl.org/
http://docs.oracle.com/javase/7/docs/api/java
http://docs.oracle.com/javase/7/docs/api/java
http://jregex.sourceforge.net/

110 Bibliography

[100] C. Dyer, A. Cordova, A. Mont, and J. Lin, “Fast, easy, and cheap: Construction of
statistical machine translation models with MapReduce,” in Proc. of the Workshop on

Statistical Machine Translation, 2008, pp. 199–207.

[101] R. Ahmad, P. Kumar, B. Rambabu, P. Sajja, M. K. Sinha, and R. Sangal, “Enhanc-
ing Throughput of a Machine Translation System using MapReduce Framework: An
Engineering Approach,” in 9th Int. Conf. on Natural Language Processing, 2011.

[102] J. Lin, “Scalable language processing algorithms for the masses: A case study in com-
puting word co-occurrence matrices with MapReduce,” in Proc. of the EMNLP, 2008,
pp. 419–428.

[103] P. Pantel, E. Crestan, A. Borkovsky, A.-M. Popescu, and V. Vyas, “Web-scale distribu-
tional similarity and entity set expansion,” in Proc. of the EMNLP, 2009, pp. 938–947.

[104] D. Metzler and E. Hovy, “Mavuno: a scalable and effective Hadoop-based paraphrase
acquisition system,” in Proc. of the 3rd Workshop on Large Scale Data Mining: Theory

and Applications, 2011, p. 3.

[105] “Integrating NLTK with the Hadoop MapReduce Framework.”

[106] D. M. Beazley, “SWIG: An easy to use tool for integrating scripting languages with C
and C++,” in Proc. of the 4th USENIX Tcl/Tk workshop, 1996, pp. 129–139.

[107] S. Bird, “NLTK: the natural language toolkit,” in Proc. of the COLING/ACL on Inter-

active presentation sessions, 2006, pp. 69–72.

[108] G. Attardi, S. D. Rossi, and M. Simi, “The Tanl Pipeline,” in Proc. of the 7th Int. Conf.

on Language Resources and Evaluation, may 2010.

[109] Altshuler, D. et al., “A map of human genome variation from population-scale sequenc-
ing,” Nature, vol. 467, pp. 1061–1073, 2010.

[110] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The Sanger FASTQ
file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants,”
Nucleic Acids Research, vol. 38, no. 6, pp. 1767–1771, 2010.

[111] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

http://aws.amazon.com/ec2/

Bibliography 111

[112] P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane, G. S. Yeo, and
B. Y. Lam, “BarraCUDA - a fast short read sequence aligner using graphics processing
units,” BMC Research Notes, vol. 5, p. 27, 2012.

[113] Y. Cui, X. Liao, X. Zhu, B. Wang, and S. Peng, “mBWA: A Massively Parallel Se-
quence Reads Aligner,” in 8th Int. Conference on Practical Applications of Computa-

tional Biology & Bioinformatics, ser. Advances in Intelligent Systems and Computing,
2014, vol. 294, pp. 113–120.

[114] L. You and C. Congdon, “Building and Optimizing BWA ALN 0.5.10 for Intel
Xeon Phi Coprocessors,” https://github.com/intel-mic/bwa-aln-xeon-phi-0.5.10, [On-
line; accessed May, 2015].

[115] R. Luo, J. Cheung, E. Wu, H. Wang, S.-H. Chan, W.-C. Law, G. He, C. Yu, C.-M. Liu,
D. Zhou, Y. Li, R. Li, J. Wang, X. Zhu, S. Peng, and T.-W. Lam, “MICA: A fast short-
read aligner that takes full advantage of Many Integrated Core Architecture (MIC),”
BMC Bioinformatics, vol. 17, p. 7, 2015.

[116] “Apache Cassandra home page,” http://cassandra.apache.org/, [Online; accessed
February, 2016].

[117] “Apache Parquet home page,” http://parquet.apache.org/, [Online; accessed February,
2016].

[118] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abeca-
sis, R. Durbin, and . G. P. D. P. Subgroup, “The Sequence Alignment/Map format and
SAMtools,” Bioinformatics, vol. 25, no. 16, pp. 2078–2079, 2009.

[119] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang, “Hardware Acceleration of Genetic Se-
quence Alignment,” Reconfigurable Computing: Architectures, Tools and Applica-

tions. Lecture Notes in Computer Science., vol. 7806, pp. 13–24, 2013.

[120] Y. Sogabe and T. Maruyama, “An acceleration method of short read mapping using
FPGA,” in International Conference on Field-Programmable Technology (FPT), Dec
2013, pp. 350–353.

[121] H. Waidyasooriya and M. Hariyama, “Hardware-Acceleration of Short-read Alignment
Based on the Burrows-Wheeler Transform,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. PP, no. 99, pp. 1–1, 2015.

https://github.com/intel-mic/bwa-aln-xeon-phi-0.5.10
http://cassandra.apache.org/
http://parquet.apache.org/

112 Bibliography

[122] G. Zhao, C. Ling, and D. Sun, “SparkSW: Scalable Distributed Computing System for
Large-Scale Biological Sequence Alignment,” in 15th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid), 2015, pp. 845–852.

[123] T. J. Wheeler and J. D. Kececioglu, “Multiple alignment by aligning alignments,”
Bioinformatics, vol. 23, no. 13, pp. i559–i568, 2007.

[124] M. N. Price, P. S. Dehal, and A. P. Arkin, “FastTree2 – approximately maximum-
likelihood trees for large alignments,” PloS one, vol. 5, no. 3, p. e9490, 2010.

[125] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proc. AFIPS’67 (Spring), 1967, pp. 483–485.

[126] S. R. Eddy et al., “A new generation of homology search tools based on probabilistic
inference,” in Genome Inform, vol. 23, no. 1, 2009, pp. 205–211.

[127] R. D. Finn, J. Clements, and S. R. Eddy, “HMMER web server: interactive sequence
similarity searching,” Nucleic acids research, p. gkr367, 2011.

[128] D. Beazley, “Understanding the Python GIL,” in PyCON Python Conference. Atlanta,

Georgia, 2010.

[129] S. Guo, L.-S. Wang, and J. Kim, “Large-scale simulation of RNA macroevolution by
an energy-dependent fitness model,” ArXiv e-prints, Dec. 2009.

[130] J. J. Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza, Y. Du,
B. Feng, N. Lin, L. V. Madabusi, K. M. Müller, N. Pande, Z. Shang, N. Yu, and R. R.
Gutell, “The Comparative RNA Web (CRW) Site: an online database of compara-
tive sequence and structure information for ribosomal, intron, and other RNAs,” BMC

Bioinformatics, vol. 3, no. 1, p. 2, 2002.

List of Figures

1.1. Stack comparison between Big Data and HPC ecosystems. 4

1.2. Example of how HDFS works. 7

1.3. Example of how YARN works. 8

1.4. Example of how Spark works. 11

1.5. NERC system from Linguakit. 13

2.1. Use of templates and tags with Perldoop. 29

2.2. WordCount mapper example using Perl (left) and its equivalent Java code
generated using Perldoop (right). 31

2.3. WordCount reducer example using Perl (left) and its equivalent Java code
generated using Perldoop (right). 32

2.4. Execution time of the NER (top left), Tagger (top right) and NEC (bottom)
modules on a Hadoop cluster (log scale). 35

2.5. Performance improvement of the Java modules generated by Perldoop using
Hadoop with respect to the use of Perl and Hadoop Streaming. 36

2.6. Speedup with respect to the sequential version in Java and Perl for the NER
(top left), Tagger (top right) and NEC (bottom) modules (log scale). 37

114 List of Figures

3.1. Structure of the Hadoop cluster used in the tests. 48
3.2. Average speedups for BWA-backtrack (left) and BWA-MEM (right) algo-

rithms. 52

4.1. FASTQ file format example. 58
4.2. SparkBWA workflow for paired-end reads using (a) Join and (b) SortHDFS

approaches. 60
4.3. Example running SparkBWA from the Spark Shell (Scala). 65
4.4. Example running SparkBWA from the console. 66
4.5. Overhead of the RDDs sorting operation considering different datasets. . . . 68
4.6. Memory consumed by SparkBWA during the RDDs sorting operation when

considering dataset D3. 69
4.7. Memory consumed by a worker process executing the BWA-MEM algorithm

with different threads. 70
4.8. Execution times obtained by SparkBWA using regular and hybrid modes of

operation for the BWA-MEM algorithm. 71
4.9. Execution times considering several BWA-based aligners running the BWA-

backtrack algorithm (axes are in log scale). 74
4.10. Speedup considering several BWA-based aligners running the BWA-backtrack

algorithm (axes are in log scale). 74
4.11. Execution times considering several BWA-based aligners running the BWA-

MEM algorithm (axes are in log scale). 76
4.12. Speedup considering several BWA-based aligners running the BWA-MEM

algorithm (axes are in log scale). 77

5.1. Speedup considering D1 (a) and D2 (b) datasets on the CESGA cluster, and
execution times on the AWS cluster (c). 82

5.2. Apache Spark basic components. 85
5.3. Main PASTA stages. 88
5.4. Phase 2 in PASTA. 89
5.5. Phase 2 in PASTASpark. 91

List of Tables

1. Seis posible alineamientos para las secuencias de ejemplo. XIX

1.1. Comparing processing power of different platforms. 2

1.2. Linguakit NERC example. 14

1.3. Six different possible alignments for the example sequences. 17

3.1. Main characteristics of the input datasets. 42

3.2. Comparison of the performance for the BWA-backtrack algorithm. 43

3.3. Comparison of the performance for the BWA-MEM algorithm. 43

3.4. Main characteristics of the input datasets. 50

3.5. Comparison of the performance (pairs aligned/second) for the BWA-backtrack
algorithm. 50

3.6. Comparison of the performance (pairs aligned/second) for the BWA-MEM
algorithm. 50

4.1. API methods and console arguments to set the SparkBWA options 63

4.2. Main characteristics of the input datasets from the 1000 Genomes Project. . 66

4.3. Algorithms and BWA-based aligners evaluated. 67

4.4. Summary of the performance results of SparkBWA. 73

116 List of Tables

5.1. Main characteristics of the input datasets. 80
5.2. Execution time (hours) for D1 and D2 using the CESGA cluster. 82
5.3. Datasets used for the experimental evaluation of PASTASpark. 92

	Portada
	Introduction
	Motivation
	The MapReduce programming model: Apache Hadoop
	Hadoop Limitations and Apache Spark
	Case studies: Natural Language Processing and Genomics
	Thesis outline
	List of publications

	Perldoop: Efficient Execution of Perl Scripts on Hadoop Clusters
	Abstract
	Introduction
	The Perldoop tool
	Case studies: NLP scripts
	Performance evaluation
	Related work
	Conclusions

	BigBWA: Approaching the Burrows-Wheeler Aligner to Big Data…
	Abstract
	Introduction
	Approach
	Discussion
	Supplementary material

	SparkBWA: Speeding Up the Alignment of High-Throughput DNA…
	Abstract
	Introduction
	Background
	Related Work
	SparkBWA
	Evaluation
	Conclusions

	PASTASpark: multiple sequence alignment meets Big Data
	Abstract
	Introduction
	Approach
	Results and discussion
	Supplementary Material

	Conclusions
	Future work

	Bibliography
	List of Figures
	List of Tables

