
UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS)

Tesis doctoral

EVOLUTIONARY LEARNING OF FUZZY RULES FOR REGRESSION

Presentada por:

Ismael Rodrı́guez Fernández

Dirigida por:

Alberto J. Bugarı́n Diz
Manuel Mucientes Molina

Santiago de Compostela, septiembre de 2016
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Do or do not, there is no try.
Yoda

Now, I suppose this is the time for me to
say something profound... Nothing comes
to mind.

Jack O’Neill
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Resumen

Debido a la gran cantidad de datos que se generan todos los dı́as, existe la necesidad de ex-
plotarlos para obtener información a partir de ellos, procesándolos y extrayendo automática-
mente los patrones y tendencias relevantes presentes en los mismos. Esta tarea se denomina
aprendizaje a partir de datos, siendo el aprendizaje máquina el campo de las ciencias de la
computación que se centra en el desarrollo de los algoritmos que construyen automáticamente
los modelos para predicción y toma de decisiones. Existen dos categorı́as principales de prob-
lemas de aprendizaje:

• Aprendizaje supervisado: el objetivo es crear modelos que predigan el valor de una
variable de salida a partir de un conjunto de medidas de entrada.

• Aprendizaje no supervisado: no existe variable de salida, por lo que el objetivo es
aprender cómo se organizan los datos en sı́.

Dentro del aprendizaje supervisado, dependiendo del tipo de salida, existen dos tareas dife-
rentes: clasificación y regresión. En clasificación, los datos se dividen entre varias categorı́as
o clases, y el proceso de aprendizaje debe producir un modelo que asigne a las nuevas entradas
su categorı́a correspondiente. Por otro lado, en un problemas de regresión, la variable de sali-
da es un valor real continuo en vez de un valor discreto, por lo que el modelo debe generar un
valor real de salida a partir de las entradas.

Los modelos obtenidos a través de técnicas de aprendizaje máquina suelen tener dos requi-
sitos complementarios:

• Precisión: indica la capacidad del modelo de predecir valores cercanos a los verdaderos.

• Interpretabilidad: la capacidad del modelo de ser entendido por los seres humanos, la
cual está relacionada con lo complejo que es el modelo.
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El objetivo es encontrar un buen equilibrio entre la complejidad del modelo y la reducción
del error de entrenamiento para obtener, finalmente, un buen error de test. El error de entre-
namiento tiende a decrementar según el modelo se vuelve más complejo, esto es, cuando el
modelo se ajusta más a los datos (sobreaprendizaje). Sin embargo, cuando la complejidad del
modelo sobrepasa cierto umbral, aunque el error de entrenamiento disminuye, el modelo se
ajusta tanto a los datos de entrenamiento que se equivoca en los datos de test. Por el contrario,
si el modelo no es lo suficientemente complejo, no es capaz de representar el conocimiento
intrı́nseco de los datos, resultando en una mala precisión y pobre generalización.

De entre todos los tipos de modelos utilizados en aprendizaje máquina, los más inter-
pretables por el ser humano son los árboles de decisión y su representación como sentencias
condicionales o reglas. Ambos representan el conocimiento a través de condiciones que, dada
una entrada que las cumple, permiten estimar la salida. Además, el razonamiento realizado
por humanos es impreciso por naturaleza y, en muchos casos, los datos contienen cierto grado
de incertidumbre. La lógica borrosa es una técnica dentro del campo de la computación flexi-
ble que trabaja con este tipo de incertidumbres e imprecisiones, proporcionando un sistema
donde la verdad de los valores se representa como un número real entre 0 y 1. Por ello, el
uso de reglas borrosas está muy extendido, debido a la combinación de interpretabilidad y
expresividad de las reglas con la capacidad de representar incertidumbre de la lógica borrosa.

Los Sistemas Basados en Reglas Borrosas (FRBS, Fuzzy Rule Based Systems) utilizan
proposiciones borrosas tanto en el antecedente como el consecuente de las reglas. Los FRBS
se componen de cuatro partes diferentes: la Base de Conocimiento (Knowledge Base, KB),
la interfaz de borrosificación, el sistema de inferencia y la interfaz de desborrosificación. La
KB contiene el modelo, compuesto por la Base de Datos (DB, DataBase) — la definición
de los conjuntos borrosos utilizados en el sistema — y la Base de Reglas (RB, Rule Base)
— las sentencias condicionales que utilizan la información de la DB en sus proposiciones.
Los valores de entrada se introducen en el sistema a través de la interfaz de borrosificación,
donde los valores en crudo son convertidos a conjuntos borrosos definidos en la DB. Después,
el sistema de inferencia calcula el grado de pertenencia de la parte antecedente de las reglas
y dispara los consecuentes correspondientes para calcular la salida. Finalmente, las salidas
borrosas de la RB se transforman a valores crudos para obtener la salida final del sistema.

La definición de los conjuntos borrosos utilizados en la DB es uno de los aspectos más
importantes de un sistema borroso en términos de interpretabilidad, la cual puede seguir dos
aproximaciones diferentes:
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• La aproximación lingüı́stica define la división de cada variable en conjuntos borrosos
de manera global, donde cada división se denomina partición borrosa. Los conjuntos
borrosos dentro de una partición borrosa se pueden asociar a etiquetas lingüı́sticas, por
lo que le da mayor interpretabilidad humana al sistema. Sin embargo, esto limita los
grados de libertad del sistema y, por lo tanto, su capacidad de aproximar el problema
de manera más precisa.

• La aproximación aproximativa utiliza diferentes definiciones de conjuntos borrosos por
cada proposición de cada regla. Por lo tanto, no existe una definición global de partición
borrosa de las variables, y no se puede asociar términos lingüı́sticos a las mismas. Gen-
lingüı́stica, esta aproximación se utiliza cuando es necesario soluciones muy precisas,
aunque puede llevar a particiones complejas del espacio de entrada y dificultar la com-
prensión de la relación entre las entradas y la respuesta del sistema.

Takagi, Sugeno y Kang propusieron un modelo de reglas borrosas, denominado TSK,
donde los antecedentes se componen de variables lingüı́sticas mientras que el consecuente
se representa como una función polinómica de las entradas. La función polinómica más
comúnmente utilizada en los consecuentes de reglas TSK es la combinación lineal de las
entradas (TSK-1), donde el polinomio es de grado 1. Este tipo de reglas combinan la inter-
pretabilidad de las reglas borrosas con la precisión de los modelos de regresión, mejorando la
precisión del sistema. Los sistemas lingüı́sticos de reglas borrosas TSK representan un buen
equilibrio entre precisión e interpretabilidad:

• El uso de términos lingüı́sticos en el antecedente de las reglas proporciona una de-
scripción completa del espacio de entrada, dada la definición global de las particiones
borrosas en la DB.

• La representación lineal de la salida puede obtener soluciones precisas utilizando méto-
dos estadı́sticos conocidos en la literatura.

• El consecuente de las reglas, representado como una combinación lineal de las variables
de entrada, permite una comprensión fácil de la relación entre las entradas y la salida.

Por ello, aunque los sistemas de reglas borrosas TSK son menos entendibles en términos
de lenguaje natural, pueden proporcionar información útil y comprensiva, siendo la opción
preferida en muchos campos, como la robótica, imagen médica, estimaciones industriales u
optimización de procesos.
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El aprendizaje automático de FRBS se ha aproximado en la literatura utilizando dife-
rentes técnicas de aprendizaje máquina, como por ejemplo Redes Neuronales. Sin embargo, la
aproximación más existosa ha sido mediante el uso de Algoritmos Evolutivos, particularmente
Algoritmos Genéticos. Un algoritmo genético es una técnica de búsqueda heurı́stica que imita
el proceso de selección natural, utilizando operaciones como cruce, mutación y selección para
generar un conjunto de soluciones posibles que son optimizadas a lo largo de varias iteraciones
hasta que se alcanza algún criterio de convergencia. La caracterı́stica más importante de los
algoritmos genéticos es su capacidad de explorar espacios de búsqueda muy grandes y su
flexibilidad a la hora de incorporar conocimiento a priori en prácticamente cualquier parte
del algoritmo: la representación de las soluciones para parecerse a los modelos a aprender,
los operadores genéticos para conseguir que algoritmo converja a soluciones prometedores,
etc. La combinación de algoritmos genéticos con FRBS ha generado un nuevo campo dentro
de la computación flexible denominado Sistemas Genético-Borrosos (GFS, Genetic Fuzzy

Systems).

La flexibilidad de los algoritmos genéticos permite la codificación de cualquier parte de
los FRBS y, según como se represente la RB, existen tres aproximaciónes de GFS diferentes:

• Michigan: cada solución individual representa una única regla, y la población en su
conjunto representa la RB, evolucionando todas las reglas al mismo tiempo. Esta aprox-
imación tiene la desventaja de la falta de colaboración entre cada una de las soluciones,
lo que provoca que varias reglas pueden estar compitiendo por representar el mismo
conocimiento.

• Pittsburgh: esta aproximación intenta resolver el problema de la cooperación-competi-
ción codificando la KB entera en una única solución individual. Sin embargo, esto
puede generar cromosomas complejos, dificultando la definición de los operadores
genéticos. Este problema fue solucionado recientemente representando únicamente la
DB y generando la RB mediante un método ad-hoc.

• Iterative Rule Learning: en esta aproximación, cada individuo representa una única
regla, pero en vez de generar la RB usando toda la población, solo obtiene una única
regla al final del proceso evolutivo. Después, el algoritmo se repite quitando aquellos
ejemplos del conjunto de entrenamiento cubiertos por las reglas ya generadas, hasta
que ya no queden ejemplos. Esta aproximación suele generar muchas reglas que cubren
muy poco espacio de entrada, y por lo tanto suele utilizarse un proceso de selección de
reglas posteriormente.
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Particularmente, la flexibiliadad de los algoritmos genéticos permite gestionar el equilibrio
entre la precisión y la interpretabilidad del modelo de una manera efectiva. La intepretabilidad
de un FRBS involucra dos cuestiones principales:

• Legibilidad: está relacionado con la simplicidad de la estructura del sistema borroso:
número de variables, términos lingüı́sticos por variables, número de reglas, antecedentes
por regla, etc. Representa la parte cuantitativa u objetiva de la interpretabilidad del
modelo.

• Comprensibilidad: se determina por la semántica del sistema borroso y el mecanismo
de inferencia. Está asociado con el particionamiento borroso de las variables y su sig-
nificado para el usuario final, por lo que representa la parte cualitativa o subjetiva de la
intepretabilidad.

La legibilidad se suele transformar en una medida cuantitativa que se incorpora a la función
de evaluación dentro del GFS. Sin embargo, la comprensibilidad es mucho más sutil, y solo
algunas caracterı́sticas, como particiones borrosas fuertes o un bajo número de conjuntos
borrosos por cada partición borrosa, pueden mejorarla.

En la actualidad no existen GFSs que aprendan FRBSs capaces de resolver problemas
de regresión a gran escala de manera general y que tengan un nivel de interpretabilidad sufi-
ciente que los haga comprensibles para usuarios no expertos. La simplicidad de los modelos
obtenidos por GFS para regresión suele alcanzarse a través del control del número de re-
glas y/o número de etiquetas utilizados en la RB mediante una aproximación multi-objetivo.
Sin embargo, recientemente, también se utilizan técnicas de selección de instancias, ya que
pueden afrontar dos problemas al mismo tiempo: disminuye la complejidad de los proble-
mas a gran escala y reduce el sobreaprendizaje, ya que se puede generar la RB con una parte
del conjunto de entrenamiento y evaluar su error con otra parte. Además del número de re-
glas y número de etiquetas, un aspecto muy importante en la intepretabilidad de los FRBS
es la definición de las particiones borrosas de la DB. Una de las técnicas más utilizadas es la
aproximación multi-granular, donde el universo de discurso de una variable se divide en un
número diferente de etiquetas por cada granularidad, obteniendo una partición borrosa dife-
rente según el número de etiquetas. Además, cuando no está disponible conocimiento experto
que determine cómo deben ser las etiquetas borrosas, se pueden seguir dos aproximaciones:
discretización uniforme combinada con desplazamiento lateral, o discretización no uniforme.

El uso de bases de reglas TSK implica otra dimensión de complejidad: el polinomio del
consecuente — normalmente de grado 1 (TSK-1) o 0 (TSK-0). La aproximación más uti-
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lizada en el aprendizaje de los coeficientes del polinomio es el uso del método de mı́nimos
cuadrados. Sin embargo, esta opción suele obtener modelos sobreentrenados que se compor-
tan errónamente en test. Este problema se puede resolver mediante el control del valor de los
coeficientes para que no sea muy grande (regularización de Ridge) o poniendo algunos coefi-
cientes a 0 (regularización de Lasso), disminuyendo la complejidad del modelo. Además, es
posible realizar una combinación de ambas regularizaciones mediante el método Elastic Net.

Uno de los principales inconvenientes de los GFS es su coste computacional. En gene-
ral, la adaptación de aproximaciones de aprendizaje máquina a grandes conjuntos de datos
ha conllevado un enorme desafı́o en los últimos años. En una aproximación GFS, el tamaño
de los datos tiene una gran influencia en el rendimiento de los modelos generados. Las re-
glas borrosas aprendidas sufren de una explosión exponencial en el número de reglas cuando
incrementa el número de ejemplos o variables. Por ello, cuando el espacio de búsqueda es
muy grande, el tiempo de convergencia para el aprendizaje de modelos simples incrementa de
manera no sostenible. Además, los algoritmos evolutivos son costosos computacionalmente
por si mismos debido al gran número de evaluaciones necesarias para converger y, en mu-
chos casos, el proceso de evaluación puede llevar mucho tiempo. Las técnicas utilizadas para
mejorar la escalabilidad de GFS se pueden clasificar en tres categorı́as:

• Orientadas al algoritmo, que adaptan la estructura del algoritmo evolutivo.

• Orientadas a los datos, que modifican el conjunto de entrenamiento para reducir el coste
computacional del aprendizaje.

• Aproximaciones distribuı́das, que aprovechan la capacidad de procesamiento de un con-
junto de máquinas para reducir el tiempo de ejecución.

El escalado del proceso de aprendizaje orientado a algoritmos puede realizarse mediante el
control del tamaño del espacio de búsqueda, disminuyendo el número de reglas o el número
de etiquetas utilizadas mediante aproximaciones multi-objetivo. Por otro lado, en los últimos
años, las aproximaciones orientadas a los datos han recibido mayor antención mediante el uso
de técnicas de selección de instancias que disminuyen la complejidad de problemas de gran
escala y evitan el sobreaprendizaje.

Desde un punto de vista Big Data, las aproximaciones distribuı́das son las más apropia-
das para escalar algoritmos GFS. Sin embargo, muy pocos trabajos han utilizado platafor-
mas Big Data para solucionar los problemas de escalado de los GFS. De entre los métodos
más utilizados, los más populares son: i) MPI (Message Passing Interface) que explota efi-
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cientemente arquitecturas de clústeres multi-núcleo, y ii) Apache Spark, una plataforma re-
cientemente desarrollada que puede ser ejecutada sobre clústers tradicionales como Hadoop.
El uso extendido de Spark está intrı́nsicamente ligado al éxito de Hadoop, el cual procesa
grandes volúmenes de datos en paralelo mediante el uso de Hadoop Distributed File Sys-

tem. Hadoop también popularizó el uso de la aproximación MapReduce, una metodologı́a
de procesamiento distribuı́do basado en la definición de dos funciones diferentes: la función
Map, que distribuye un bloque de datos entre varios nodos ejecutando el mismo proceso en
cada partició; y la función Reduce, que agrega los resultados de las funciones Map a través de
una representación Clave-Valor de los resultados. Spark añade a esta arquitectura la capacidad
de utilizar otro tipo de flujos de datos con mejora de la computación en memoria, junto con un
conjunto de funciones de alto nivel que facilitan la construcción de aplicaciones distribuı́das.

El objetivo de esta tesis es el diseño de GFSs que aprendan FRBSs capaces de resolver
problemas de regresión de una manera general. Particularmente, la meta es obtener modelos
de baja complejidad a la vez que mantienen una gran precisión, sin hacer uso de conocimiento
experto sobre el problema a resolver. Esto significa que los GFSs deben trabajar con datos en
bruto, esto es, sin ningún tipo de preprocesamiento que ayude al proceso de aprendizaje a re-
solver un problema en concreto. Esto es particularmente interesante cuando no hay disponible
conocimiento sobre los datos de entrada o para realizar una primera aproximación al pro-
blema. Además, los GFSs deben ser capaces de trabajar con problemas de gran escala, por lo
que los algoritmos diseñados tendrán que ser capaces de escalar con los datos.

Como primera aproximación a los objetivos de la Tesis, en el Capı́tulo 2 se presenta
un algoritmo de aprendizaje de controladores borrosos para robótica móvil con el preproce-
samiento de variables de entrada embebido dentro del algoritmo de aprendizaje. Especı́fica-
mente, se utilizan reglas borrosas cuantificadas para transformar las variables de bajo nivel
a variables de alto nivel, reduciendo la dimensionalidad del problema a través de resumir
los datos. Además, se propone un nuevo algoritmo, llamado Iterative Quantified Fuzzy Rule

Learning (IQFRL, Aprendizaje Iterativo de Reglas Borrosas Cuantificadas, en castellano),
basado en el Iterative Rule Learning y en programación genética para poder representar las
estructuras de las reglas con una gramática. IQFRL también utiliza etiquetas lingüı́sticas
definidas a través de granularidad múltiple sin restricciones, esto es, sin limitar los niveles de
granularidad posibles.

A continuación, en el Capı́tulo 3 se presenta FRULER (Fuzzy RUle Learning through

Evolution for Regression, Aprendizaje Evolutivo de Reglas Borrosas para Regresión en cas-
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tellano), un nuevo GFS para la obtención de modelos lingüı́sticos de reglas borrosas TSK-1
simples y precisos capaces de resolver problemas de regresión. La baja complejidad de los
sitemas borrosos tiene como objetivo mejorar tanto la capacidad de generalización como la
legibilidad del modelo. Para ello, FRULER genera particiones borrosas lingüı́sticas con pocas
etiquetas, un número bajo de reglas y regulariza los consecuentes — lo que reduce el número
de variables de entrada utilizadas en la obtención de la salida. El algoritmo consiste en tres
etapas: selección de instancias, discretización borrosas multi-granular y el aprendizaje evolu-
tivo de bases de reglas, que utiliza regularización Elastic Net para obtener los consecuentes
de las reglas.

El capı́tulo 4 se centra en la escabilidad de FRULER, obteniendo modelos con carac-
terı́sticas similares — precisos y simples —, pero disminuyendo el tiempo de ejecución de
convergencia del algoritmo. Para ello, el capı́tulo describe S-FRULER, una versión distribuı́da
y escalable de FRULER, que divide el problema en particiones más pequeñas e incorpora
un proceso de selección de caracterı́sticas para reducir el número de variables utilizado en
cada partición. Después, cada partición se resuelva independientemente usando el algoritmo
FRULER, para, a continuación, utilizar una función de agregación que obtenga la base de
reglas lingüı́sticas TSK final a partir de las bases de reglas generadas en cada partición.

Finalmente, el Capı́tulo 5 contiene las conclusiones de esta Tesis y sugiere posibles lı́neas
de trabajo futuro.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

With the vast amounts of data that are being generated, there is a need of automatic pro-
cesses that extract relevant patterns and trends from them, that allow users to understand what
data says. This task is referred to as learning from data, being machine learning the field of
computer science that focuses on the development of algorithms that automatically build a
model for making data-driven predictions or decisions [15]. There are mainly two categories
of learning problems:

• Supervised learning: the objective is to create a model that predicts the value of an
output variable using a set of input measurements.

• Unsupervised learning: there is no output variable and the objective is to learn how data
is organized by itself.

Inside supervised learning, depending on the type of output, there are two different prob-
lems: classification and regression. In classification, data is divided into several categories
or classes, and the learning process must produce a model that assigns unseen inputs to their
corresponding class. On the other hand, in a regression problem the output variable is a con-
tinuous real value rather than a discrete one, thus the obtained model generates a real-valued
output from the input data.

The models obtained through machine learning techniques usually have two complemen-
tary requirements [56]:

• Accuracy or precision: indicates the ability of the model to predict values close to the
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real ones.

• Interpretability: the capability of the model to be understood by a human being [7],
which is related with how complex is the model.

The objective is to find a good balance between the complexity of the model and the reduction
in the training error in order to, finally, get a good test error [47]. The training error tends
to decrease as the model complexity increases, that is, when the model fits the data harder.
However, when the complexity of the model exceeds a threshold, although the training error
decreases, the model adapts itself too closely to the training data and fails in test. In contrast,
if the model is not complex enough, it cannot represent the intrinsic knowledge of the data,
resulting in poor precision and generalization. Figure 1.1 shows the typical behavior of the test
and training errors, as model complexity is varied. With a low complexity both training and
test errors remain high (underfitting). Then, as the complexity increases both errors decrease
until some threshold where the test error worsens while the training error continues to improve
(overfitting).

Model Complexity

Pr
ec

is
io

n
 E

rr
or

Low High

Training Error

Test Error

Figure 1.1: Test and training errors as a function of model complexity.

Within all type of models in machine learning, the most human interpretable ones are
the decision trees and their equivalent as conditional statements or rules [47]. Both of them
represent knowledge by means of conditions that, when the input data meet them, allow the
output to be estimated. Moreover, the reasoning made by humans is imprecise by nature
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and, in many real problems, the data has uncertainty in some degree. Fuzzy Logic [116] is
a technique inside the field of soft computing that copes with this kind of uncertainty and
imprecision, providing a framework where the truth values are real number between 0 and 1.
Because of this, the use of fuzzy rules is much extended, since it combines the interpretability
and expressiveness of the rules with the ability of fuzzy logic for representing uncertainty.

The automatic learning of Fuzzy Rule-Based Systems (FRBSs) has been approached in
the literature using different Machine Learning techniques, for example with Neural Networks
[57]. However, the most successful approach is the use of Evolutionary Algorithms, particu-
larly Genetic Algorithms [61, 109]. These techniques have several characteristics that make
them suitable for learning fuzzy rules. In particular, the flexibility of evolutionary algorithms
allows to codify any part of the FRBS and, also, to manage the balance between accuracy and
interpretability of the model in an effective way. The combination of these approaches led to
a field inside soft computing called Genetic Fuzzy Systems (GFSs) [26].

One of the main drawbacks of GFSs is their computational cost. In general, the adaptation
of Machine Learning approaches to large scale datasets has been a huge challenge addressed
in the last years [43]. In a GFS approach, the size of the problem has a high influence in the
performance of the obtained models [26, 49]. The learned fuzzy rule bases suffer from expo-
nential rule explosion when the number of examples or variables increases. Thus, with huge
search spaces, the convergence time for learning interpretable models rises in an unsustain-
able way. Moreover, evolutionary algorithms are computationally expensive by themselves
due to the large number of evaluations needed to reach convergence and, in many cases, the
evaluation process to obtain the fitness may take a long time.

The objective of this PhD Thesis is to design GFSs that learn FRBSs to solve regression
problems in a general manner. Particularly, the aim is to obtain models with low complexity
while maintaining high precision without using expert-knowledge about the problem to be
solved. This means that the GFSs have to work with raw data, that is, without any preprocess-
ing that help the learning process to solve a particular problem. This is of particular interest,
when no knowledge about the input data is available or for a first approximation to the prob-
lem. Moreover, within this objective, GFSs have to cope with large scale problems, thus the
algorithms have to scale with the data.
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1.2 Fuzzy Rule-Based Systems

The input data of many real problems is uncertain and imprecise in some degree. The mea-
surements can deviate from the actual value due to noise in the source or precision errors
in the sensors. Moreover, the reasoning made by humans is imprecise by nature, without a
clear boundary between qualitative or quantitative terms. Fuzzy logic is a technique inside the
field of soft computing that copes with this kind of uncertainty [116]. Fuzzy logic provides a
framework where the degree of truth of an expression is a real number between 0 and 1 —in
classical logic it takes a value of true or false. Moreover, fuzzy sets are a generalization of the
classical sets, and their elements have degrees of membership.

One of the most popular fuzzy logic based models in the literature are Fuzzy Rule-Based
Systems (FRBS), where fuzzy propositions are stated in the antecedent and consequent part
of the rules [114]. Thus, when dealing with multiple inputs-single output systems, these fuzzy
rules are as follows:

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then Y is B (1.1)

where X j are the input variables, Y the output variable, A j and B are the fuzzy sets associated
with the input and output variables respectively, and p is the number of input variables. This
type of knowledge representation models the interactions and relationships that exist between
the input variables and the output. Moreover, the inference method of a FRBS is robust and
flexible due to approximate reasoning.

The first type of FRBS was proposed by Mamdani [73] (Eq. 1.1). A Mamdani system is
composed by four different parts (Fig. 1.2): the Knowledge Base, the Fuzzification Interface,
the Inference System and the Defuzzification Interface. The Knowledge Base (KB) stores the
model which is composed by the Data Base (DB) — the definition of the fuzzy sets used in
the system — and the Rule Base (RB) — which are the conditional statements that use the
DB information in their propositions.

The input values enter the system through a fuzzification interface, where the crisp input
values are mapped into the fuzzy sets defined in the DB. Then, the Inference System calculates
the fulfillment of the antecedent part of the rules and fires the corresponding consequents to
calculate the estimated output. The inference of a particular fuzzy rule (Eq. 1.1) can be
expressed as follows[73]:

µB(y) = I(T (µA1(x1),µA2(x2), . . . ,µAp(xp)),µB(y)) (1.2)
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Data Base Rule Base

Knowledge Base

Defuzzification
Interface

Fuzzification
Interface

Inference
SystemInput x Output y

Figure 1.2: Structure of a Fuzzy Rule-Based System.

where µF is the membership function of the fuzzy set F , x1,x2, . . . ,xp are the values of each
input variable, T is a fuzzy conjunctive operator and I is a fuzzy implication operator. The
most common choice for both fuzzy operators is the minimum t-norm. Finally, the fuzzy
outputs of the RB are transformed into a crisp value that is the final output of the FRBS. In
regression problems, the defuzzification interface is usually implemented with the center of
gravity of the union of all the output fuzzy sets for all rules.

The most important aspect of a fuzzy system in terms of interpretability is the definition
of the fuzzy sets used in the DB. Two different approaches can be followed:

• The linguistic approach defines globally the division of each variable into fuzzy sets,
called fuzzy partitions. The fuzzy sets inside a fuzzy partition can be associated to
linguistic labels, thus giving more human interpretability to the system. However, this
limits the degrees of freedom of the system, and, therefore, the ability to accurately
approximate any problem.

• The approximative approach uses a different fuzzy set definition for each proposition
of each rule. Therefore, there is no global partition of the variables into fuzzy sets,
and there are no linguistic labels associated to them. Generally, this approach is used
in problems where the system has to be really accurate. However, approximative ap-
proaches can lead to complex partitions of the input space that can make difficult to
understand how the input is associated with the response.

Takagi, Sugeno, and Kang proposed in [108, 106] a fuzzy rule model, called TSK fuzzy
rules, in which the antecedents are comprised of linguistic variables, as in the case of Mamdani
[73, 74], but the consequent is represented as a polynomial function of the input variables.
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This type of rules fuse the interpretability of fuzzy rules with the accuracy of regression, thus
improving the precision of the Mamdani type systems. Although Mamdani systems are well-
known for their semantic interpretability, the model of TSK rules is also a good choice since it
is straightforward to understand the relationship between the output and input variables. This
is of particular interest in many fields, such as robotics [93, 90, 85], medical imaging [91],
industrial estimation [86] and optimization of processes [112].

The most common function for the consequent of a TSK rule is a linear combination of
the input variables (TSK-1), and its structure is as follows:

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then

Y = β0 +X1 ·β1 +X2 ·β2 + · · ·+Xp ·βp (1.3)

where β j is the coefficient associated with X j in the consequent part of the rule. The matching
degree hk between the antecedent of the rule rk and the inputs to the system (x1,x2, . . . ,xp) is
calculated as:

hk = T (Ak
1(x1),Ak

2(x2), . . . ,Ak
p(xp)) (1.4)

where Ak
j is the linguistic fuzzy term for the j-th input variable in the k-th rule, and T is a

t-norm conjunctive operator, usually the minimum function. The final output of a TSK fuzzy
rule base system composed of m TSK fuzzy rules is computed as the average of the individual
rule outputs Yk weighted by the matching degree:

ŷ =
∑

m
k=1 hk ·Yk

∑
m
k=1 hk

(1.5)

Linguistic TSK fuzzy rule systems represent a good trade-off between accuracy and inter-
pretability:

• The use of linguistic terms in the antecedent of the rules provides a full description of
the input space due to the shared definition of the fuzzy partitions in the data base.

• The linear representation of the output allows to obtain accurate solutions using differ-
ent well-studied statistical methods.

• The consequent of the rules represented by a linear combination of the input variables
allows an easy understanding of the relationship between the inputs and the output.

Thus, even if the TSK fuzzy rule systems are less comprehensible in natural language terms
than a Mamdani approach, they can provide useful and understandable information, and is the
preferable choice in some domains.
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1.3 Genetic Fuzzy Systems

The automatic learning of FRBSs has been tackled with different Machine Learning tech-
niques, for example with Neural Networks [57]. However, the most successful technique are
Evolutionary Algorithms, particularly Genetic Algorithms (GA)[61, 109]. Evolutionary algo-
rithms have some features that make them suitable for learning fuzzy rules. The use of GA
to learn FRBSs is very extended and gave birth to a novel field called Genetic Fuzzy Systems
(GFS) [26].

A GA is a heuristic search technique that mimics the process of natural selection, using
operations like crossover, mutation and selection to generate a set of possible solutions which
are optimized through several iterations until a convergence criteria is reached. The most
important characteristic of a GA is its capability to explore large search spaces — very useful
in real-value optimizations — and its flexibility to incorporate prior knowledge in any part
of the algorithm: the representation of the solutions to match the type of model to learn, the
genetic operators to force the convergence of the algorithm towards promising solutions, etc.
This flexibility allows to codify any part of the FRBS into the GA. Because of this, there are
two different tasks that can be achieved[49]:

• In a learning process, the objective is to obtain a new FRBS model from the data. This
approach learns the components of the KB from scratch, using only the information of
the training data provided to the process.

• A tuning process starts from an existing KB and the GA optimizes some of the FRBS
parameters: rule selection, rule weighting, membership functions optimization, etc.

There are different GFS approaches, depending on how the RB is represented [26]:

• Michigan: each individual solution represents a rule and the whole population rep-
resents the RB, evolving simultaneously. This approach has as drawback the lack of
cooperation between solutions and that several rules may be competing to represent the
same knowledge.

• Pittsburgh: this approach tries to solve the cooperative-competitive problem encod-
ing the full KB into a single individual solution. However, this may generate overly
complex chromosomes, and, therefore, the definition of the evolutionary operations be-
comes more difficult. Recently [2], this problem was solved representing only the DB
and generating the RB with an ad-hoc method.
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• Iterative Rule Learning (IRL): in this approach, each individual represents a rule like
in a Michigan approach, but instead of generating the RB using the whole population,
it only obtains one rule at the end of the evolutionary process. Then, the algorithm
is repeated removing the training examples already covered by the previous generated
rules, until no examples remain. This approach usually generates too many rules that
cover a small search space, therefore is usually followed by a rule selection process.

In particular, the flexibility of evolutionary algorithms allows to manage the balance be-
tween accuracy and interpretability of the model in an effective way. The interpretability of a
FRBS involves two main issues [7]:

• Readability: it is related with the simplicity of the fuzzy system structure, i.e., the
number of variables, linguistic terms per variable, fuzzy rules, antecedents per rule, etc.
It represents the quantitative or objective part of the interpretability of the model.

• Comprehensibility: it is determined by the general semantics of the fuzzy system and
the fuzzy inference mechanism. It is associated with the fuzzy partitioning of the vari-
ables and its meaning for the user, thus representing the qualitative or subjective part of
the interpretability.

Readability is usually transformed into a measurement that can be incorporated to the fitness
function inside the GFS. However, comprehensibility is more subtle, and only some charac-
teristics like strong fuzzy partitions [96] or a low number of fuzzy sets for each fuzzy partition
can improve this measure.

The simplicity of the models obtained by regression GFSs has been mostly achieved in
the literature through the control of the number of rules and/or the number of labels used in
the rule base through a multi-objective approach [33, 54]. More recently, the use of instance
selection techniques has received more attention in both classification [34, 41] and regression
[92] problems. This approach faces two problems at the same time: decreases the complexity
for large-scale problems and reduces the overfitting, as the rules can be generated with a part
of the training data and the error of the rule base can be estimated with another part (or the
whole training set).

The most important aspect of a fuzzy system in terms of interpretability is the definition
of the fuzzy partition for each variable in the DB. One of the most used techniques is the
multi-granularity approach. The universe of discourse of a variable is divided into a different
number labels for each granularity, thus obtaining a different fuzzy partition depending on the
number of labels needed. Moreover, when no expert knowledge is available to determine the
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fuzzy labels, two different approaches can be applied: uniform discretization combined with
lateral displacements [2], or non-uniform discretization [55]. Recently, [32, 42] have shown
the application of non-uniform discretization techniques to classification problems.

The use of TSK fuzzy rule bases implies another complexity dimension: the polynomial
in the consequent —usually with degree 1 (TSK-1) or 0 (TSK-0). The most widely used
approach for learning the coefficients of the polynomial is the least squares method. However,
that choice often leads to models that overfit the training data and misbehave in test. This
problem can be solved by shrinking some coefficients (Ridge regularization) or setting them
to zero (Lasso regularization), thus obtaining less complex models. Moreover, a combination
of both regularizations (called Elastic Net [119]) can be used.

1.4 Scalability of Genetic Fuzzy Systems

In a GFS approach, the size of the problem has a huge influence in the performance of the ob-
tained models [26, 49]. The fuzzy rule bases suffer from exponential rule explosion when the
number of examples or variables increases. Thus, with huge search spaces, the convergence
time rises exponentially. In particular, recent developments using multi-objective evolutionary
fuzzy systems can be found in [3, 8, 39, 95, 94, 98], where both Mamdani and TSK systems
were proposed to solve large-scale regression problems. Moreover, in [76] an adaptive fuzzy
inference system was proposed to cope with high-dimensional problems. However, the num-
ber of variables and/or number of examples in the datasets used in these papers are still not
high enough for properly labelling them as Big Data. Thus, there is also a need in the field to
use Big Data regression datasets to benchmark the performance of the proposed GFSs.

Evolutionary algorithms are computationally expensive by themselves due to the large
number of evaluations needed to reach convergence and, in many cases, the evaluation process
to obtain the fitness may take a long time. The techniques to improve the scalability of GFS
can be classified into three categories [36]:

• Algorithm-oriented, that adapt the structure of the evolutionary algorithm.

• Data-oriented, that modify the training data to reduce the computational cost of the
learning process

• Distributed approaches, that take advantage of the availability of several machines to
reduce the runtime.
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To scale the learning process of a GFS in an algorithm-oriented manner, several papers in
the literature focused in the control of the search space, by reducing the number of rules and/or
the number of labels used in the rule base through a multi-objective approach [2, 3, 8, 33].
For example, rule explosion can be controlled by limiting the number of labels considered in
the learning process [2, 95, 94].

Moreover, in recent years, the data-oriented approach has received increasing attention.
The use of instance selection techniques decreases the complexity of large scale problems
and reduces overfitting. For example, in [2] the error was estimated using a randomly selected
subset of the examples, and the complete training dataset was only used for the most promising
individuals. Also, in [92], a new instance selection method for regression was applied to
generate the rules, while the error of the rule base was estimated with the whole training
dataset.

From a Big Data point of view, the distributed approach is the most appropriate for scaling
GFS. Among the most frequently used frameworks in Big Data analytics [88], the most popu-
lar ones are: i) MPI (Message Passing Interface) which efficiently exploits multi-core clusters
architectures, and ii) Apache Spark [118], a recently developed platform that can be executed
in traditional clusters such as Hadoop [115]. Spark was designed to perform distributed pro-
cessing and other workloads like streaming, interactive queries, and machine learning focused
algorithms. While MPI provides a solution mostly oriented to high performance computing,
Spark also deals with failures and straggler nodes effectively but with an impact on speed.
From the perspective of GFS, only a few works use Big Data frameworks to solve the scaling
problem [36].

The extended use of Spark is closely linked to the success of Hadoop, which processes
vast amounts of data in parallel on large clusters, usually implemented using the Hadoop
Distributed File System. Hadoop popularized the MapReduce[28] approach, a distributed
methodology based on the definition of two different functions: a Map function that distributes
a block of data to several Worker Nodes, and executes the same process — called Task — in
each data partition; and the Reduce function that aggregates the results of the Map functions
by means of a Key-Value representation of the results, and performs some operations to obtain
the final result. Spark adds to this framework the capability to use other data-flows with an
improvement of in-memory computing and an easy of programming high-level functions that
facilitate to build parallel applications.
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1.5 Objectives

The objective of this PhD Thesis is to design GFSs that learn FRBSs to solve regression
problems. Particularly, the aim is to obtain models with low complexity while maintaining
high precision without using expert-knowledge about the problem to be solved. To achieve
this, the following objectives have been pursued:

(a) Learning fuzzy controllers in mobile robotics with embedded preprocessing

As a first approximation to the objective of this PhD Thesis, the goal was to design a
GFS that obtains a fuzzy controller for a well-studied behavior in mobile robotics. In
this particular case, the aim was to automatically learn the fuzzy controller associated
with the wall-following behavior of an autonomous mobile robot. The first step for
designing controllers for mobile robots consists of the preprocessing of the raw sensor
data, which usually is of high dimensionality. For example, a robot equipped with two
laser range finders with 0.5 degrees of precision can provide 720 low-level distance val-
ues that must be aggregated into more significant variables, such as frontal distance. For
this problem, no knowledge about how to transform the raw primitive sensor data into
high-level input variables was considered in the learning process. Thus, the designed
GFS should automatically perform the mapping between low-level and high-level input
variables during the learning phase of the controller. The model learned should provide
propositions that are able to summarize the data and model the underlying knowledge
in a better way than just using average, maximum or minimum values. Therefore,
in this work the FRBSs use a particular type of fuzzy proposition called Quantified
Fuzzy Propositions (QFP), which provide a formal model that is capable to represent
the knowledge involved in this grouping task.

(b) TSK Fuzzy Rule Evolutionary Learning for Regression

Starting from the development made in the previous work, the next step was to design a
GFS that learns accurate and low complex FRBSs to solve regression problems. Since
the objective is a general purpose algorithm, the approach cannot take into account any
expert knowledge about a particular problem, and only used the example data provided
to the system with no other information. Particularly, to meet this goal, the GFS should
learn linguistic TSK KBs which represent a good trade-off between accuracy and inter-
pretability. Also, the following issues should be considered:
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• There is no previous definition of the fuzzy terms of the DB, hence the fuzzy par-
titions must be obtained automatically. For that, an automatic fuzzy discretization
technique should be developed. Moreover, a multi-granularity approach is pre-
ferred to give the GFS the flexibility to choose a different granularity level for
each input variable.

• In order to prevent overfitting, it is necessary to obtain low complex models which
generalize well both the antecedent part — low granularity for each variable —
and the consequent part — regularized regression.

(c) Scalability of TSK Fuzzy Rule Evolutionary Learning for Regression

The last objective was to adapt the previous algorithm to cope with large scale problems,
thus giving the algorithm the capability to scale with the data size. This is of particular
interest in the case of GFS, due to the rule explosion when the number of input variables
increases. Moreover, the evolutionary algorithms are computationally expensive by
themselves, because of the high number of iterations needed to converge and because
the fitness function can take a long time to be computed. The proposal has to be able
to deal with problems with a large number of examples and high dimensional inputs,
while maintaining the ability to learn simple an precise TSK FRBSs.

1.6 Contributions

The main contributions of this PhD dissertation are:

• Iterative Quantified Fuzzy Rule Learning (IQFRL), an algorithm that is able to learn
QFRs of variable structure for the design of controllers with embedded preprocessing
in mobile robotics. It is based on the Iterative Rule Learning (IRL) approach and uses
linguistic labels defined with unconstrained multiple granularity, i.e., without limiting
the granularity levels. This proposal was designed to solve control (regression) prob-
lems in mobile robotics having as input variables the internal state of the robot and the
sensors distance data. Expert knowledge is only used to generate the training data, and
also to define the context-free grammar that specifies the structure of the rules.

– The proposed algorithm is able to learn with the state of the robot and the raw
sensors data, with no preprocessing. The mapping between low-level variables
and high-level variables is done embedded in the algorithm.
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– The algorithm uses Quantified Fuzzy Propositions, a model able to summarize the
low-level input data [117].

– IQFRL uses linguistic labels with unconstrained multiple granularity. With this
approach, the interpretability of the membership functions is unaffected while the
flexibility of representation remains.

– The proposal was validated in several simulated and real environments with the
wall-following behavior. The approach was also tested in three real world behav-
iors: path tracking with obstacles avoidance, object tracking with fixed obstacles
avoidance, and object tracking with moving obstacle avoidance.

• Fuzzy RUle Learning through Evolution for Regression (FRULER), a new GFS al-
gorithm for obtaining accurate and simple linguistic TSK-1 fuzzy rule base models
to solve regression problems. The simplicity of the fuzzy system aims to improve
both the generalization ability and the readability of the model —and, therefore, the
interpretability— by obtaining linguistic fuzzy partitions with few labels, a low num-
ber of rules, and the regularization of the consequents —which reduces the number
of input variables that contribute to the output. It is made up by three components: a
two-stage preprocessing —formed by the instance selection and multi-granularity fuzzy
discretization modules—, and a genetic algorithm, which contains an ad-hoc TSK-1
rule generation module. Both preprocessing techniques are executed to improve the
simplicity of the fuzzy rule bases generated by the evolutionary algorithm, while the
evolutionary learning process obtains a definition of the data base of the knowledge
system.

– The algorithm incorporates a new instance selection method for regression, called
Class Conditional Instance Selection for Regression (CCISR), that has a good bal-
ance between reduction and accuracy, with a low computational cost. CCISR uses
the class conditional nearest neighbor relation over pairs of points in the training
set, and uses this information to develop an effective large margin instance selec-
tion method. The instance selection process reduces the variance of the models
focusing the generated rules on the representative examples.

– The fuzzy partitions of the DB are obtained using a novel multi-granularity fuzzy
discretization of the input variables, in order to generate non-uniform fuzzy parti-
tions with different degrees of granularity. This process decreases the complexity
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of the fuzzy partitions and, therefore, it is not necessary to establish an upper
bound in the number of rules in the evolutionary stage.

– The evolutionary algorithm uses a fast and scalable method with Elastic Net reg-
ularization solved through Stochastic Gradient Descent to generate accurate and
simple TSK-1 fuzzy rules.

– The automatic generation of the RB uses only the instances selected by CCISR,
while the fitness function is calculated with all the examples in the training dataset.
Thus, this evaluation can be seen, in some way, as a validation process, as the rule
base was constructed with a subset of the examples.

– Each stage was validated using 28 real-world datasets. Moreover, FRULER was-
compared with three state of the art GFSs for regression.

• S-FRULER, a scalable version of FRULER, which allows to obtain models with similar
characteristics than those obtained by FRULER —accurate and simple—, but reducing
the runtime of the algorithm to converge. The algorithm divides the problem into a set
of smaller problems that are solved independently using FRULER. Then, the solutions
obtained in each partition are combined in order to get a final solution.

– The developed GFS uses a distributed approach and the Spark software.

– S-FRULER incorporates a random feature selection process to reduce the number
of variables used in each partition of the problem.

– The number of partitions was automatically calculated taking into account quan-
tifiable characteristics of the dataset.

– After obtaining the solutions for each partition, these are combined completing
the variables not used in one partition with information of the others. Then, these
solutions are evaluated using the combination of selected instances in each par-
tition to generate the new KB. The solution with best performance using the full
training dataset is selected as the final solution.

– S-FRULER was validated in terms of scalability, precision and complexity using
10 large-scale datasets and it was compared with three state of the art GFSs.

– Moreover, in order to validate the scalability of the algorithm, a real bioinformatic
problem [13] that combines a high number of examples and high dimensional
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inputs in a regression problem was confronted, obtaining good results in both
accuracy and complexity.

In addition to the contributions to the GFS field, two web applications have been devel-
oped:

• TSK-View [22]: a web application that allows users to visualize regression models
based on TSK rules, together with the underlying reasoning process. The software
incorporates a visual analysis of:

– the relative importance of the variables (numerical weights).

– the fuzzy linguistic labels.

– the rules of the knowledge-base.

TSK-View users can analyze in the web their own TSK models, add new input values ,
and visualize the inference results.

• A web platform, called STAC (Stastical Tests for Algorithms Comparison) [19] that
facilitates the application of statistical tests for the comparison of algorithms. Since
the correct election of a test depends on a number of factors, such as the data distri-
bution (parametrical or non-parametrical tests), the relationship among them (paired or
unpaired) or the number of algorithms to be compared (pairwise or multiple), STAC
includes an assistant for deciding among the existing alternatives.

The contributions of this PhD dissertation are included in the following publications:

Journal Papers

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. S-FRULER: Scalable Fuzzy
Rule Learning through Evolution for Regression. Knowledge-Based Systems, El-
sevier, Available online 26 July 2016. (DOI 10.1016/j.knosys.2016.07.034).
Impact Factor (JCR 2015): 2.947
Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE. Rank: 16/123.
Quartile 1.

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. FRULER: Fuzzy Rule Learn-
ing through Evolution for Regression. Information Sciences, Elsevier, No. 354,
pp. 1-18, 2016. (ISSN 0020-0255, DOI 10.1016/j.ins.2016.03.012).
Impact Factor (JCR 2015): 4.038
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Category: COMPUTER SCIENCE, INFORMATION SYSTEMS. Rank 6/139.
Decil 1. Quartile 1.

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. Learning Fuzzy Controllers in
Mobile Robotics with Embedded Preprocessing. Applied Soft Computing, Else-
vier, No. 26, pp. 123-142, 2015 (ISSN 1568-4946, DOI 10.1016/j.asoc.2014.09.021).
Impact Factor (JCR 2015): 2.810
Category: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE. Rank: 17/123.
Quartile 1.

Book Chapters

– I. Rodrı́guez-Fdez, M. Mucientes and A. Bugarı́n. Springer Handbook of Com-
putational Intelligence, chapter Application of Fuzzy Techniques to Autonomous
Robots. pages 313-328. Springer, 2015 (ISBN 978-3-662-43504-5, DOI 10.1007/978-
3-662-43505-2).

Conference Papers

– I. Rodriguez-Fdez, M. Mucientes and A. Bugarı́n. A Genetic Fuzzy System for
Large-scale Regression. In Proceedings of the 25th IEEE International Confer-

ence on Fuzzy Systems, Vancouver (Canada), 2016.
Conference Ranking (CORE 2014): A

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. Reducing the Complexity
in Genetic Learning of Accurate Regression TSK Rule-Based Systems. In Pro-

ceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), Istanbul (Turkey), 2015 (ISBN 978-1-4673-7428-6, DOI 10.1109/FUZZ-
IEEE.2015.7337930).
Conference Ranking (CORE 2014): A
Best Student Paper Nomination Award (within the 4 finalists)

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. STAC: a web platform for the
comparison of algorithms using statistical tests. In Proceedings of the 2015 IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul (Turkey), 2015
(ISBN 978-1-4673-7428-6, DOI 10.1109/FUZZ-IEEE.2015.7337889).
Conference Ranking (CORE 2014): A

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. An Instance Selection Algo-
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rithm for Regression and its Application in Variance Reduction. In Proceedings

of the 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Hy-
derabad (India), 2013 (DOI 10.1109/FUZZ-IEEE.2013.6622486).
Conference Ranking (CORE 2014): A

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. Iterative rule learning of quan-
tified fuzzy rules for control in mobile robotics. In Proceedings of IEEE Sympo-

sium Series on Computational Intelligence (SSCI), pages 111–118, Paris (France),
2011 (ISBN 978-1-61284-048-2, DOI 10.1109/GEFS.2011.5949500).

– M. Mucientes, I. Rodrı́guez-Fdez, and A. Bugarı́n. Evolutionary learning of quan-
tified fuzzy rules for hierarchical grouping of laser sensor data in intelligent con-
trol. In Proceedings of the IFSA-EUSFLAT 2009 conference, pages 1559–1564,
Lisbon (Portugal), 2009.
Conference Ranking (CORE 2008): B

– I. Rodrı́guez-Fdez, M. Mucientes, A. Bugarı́n. A MapReduce Implementation of
a Genetic Fuzzy System for Regression. In Actas del XVIII Congreso Español

sobre Tecnologı́as y Lógica Fuzzy, pp. 178-179. San Sebastián (España). 2016

– I. Rodrı́guez-Fdez, M. Mucientes, and A. Bugarı́n. Photons detection in positron
emission tomography through iterative rule learning of tsk rules. In Actas del VIII

Español sobre Metaheurı́sticas, Algoritmos Evolutivos y Bioinspirados (MAEB),
pages 251-258, Albacete (Spain), 2012.

1.7 Dissertation Structure

This thesis consists of four further chapters. Chapters 2, 3 and 4 contain a full copy of each
one of the main publications made during this PhD thesis, together with a brief introduction
and contextualization of the papers.

Chapter 2 is focused on the learning of fuzzy controllers in mobile robotics with em-
bedded preprocessing. Specifically, Quantified Fuzzy Rules (QFR) are used to transform
low-level input variables into high-level input variables, reducing the input dimensionality
through summarization. Moreover, the proposed algorithm, called Iterative Quantified Fuzzy
Rule Learning (IQFRL), is based on the Iterative Rule Learning approach and on genetic pro-
gramming in order to represent the valid rule structures with a grammar. IQFRL also uses
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linguistic labels defined through unconstrained multiple granularity, i.e., without limiting the
granularity levels.

Chapter 3 presents FRULER (Fuzzy RUle Learning through Evolution for Regression), a
new GFS algorithm for obtaining accurate and simple linguistic TSK-1 fuzzy rule base models
to solve regression problems. The simplicity of the fuzzy system aims to improve both the
generalization ability and the readability of the model. For that, FRULER generates linguistic
fuzzy partitions with few labels, a low number of rules, and regularizes the consequents —
which reduces the number of input variables that contribute to the output. The algorithm
consists of three stages: instance selection, multi-granularity fuzzy discretization of the input
variables, and the evolutionary learning of the rule base that uses the Elastic Net regularization
to obtain the consequents of the rules.

Chapter 4 focuses on the scalability of FRULER, obtaining models with similar char-
acteristics —accurate and simple—, but reducing the runtime of the algorithm to converge.
For that, this chapter describes S-FRULER, a scalable distributed version of FRULER, which
focuses on splitting the problem into smaller partitions and incorporates a feature selection
process for reducing the number of variables used in each partition. Each partition is then
solved independently using the FRULER algorithm. Then, an aggregation function is used to
obtain linguistic TSK fuzzy rule bases from the rule bases generated for each dataset partition.

Finally, Chapter 5 contains the conclusions of this PhD thesis and suggests future lines of
work.



CHAPTER 2

LEARNING FUZZY CONTROLLERS IN

MOBILE ROBOTICS WITH EMBEDDED

PREPROCESSING

The first objective of the thesis was to develop an algorithm to learn fuzzy controllers for mo-
bile robot behaviors. Usually, the automatic learning of controllers for mobile robots requires
a first stage where sensorial data are preprocessed or transformed into high level variables
which are usually defined from expert knowledge. One of the main challenges of the ap-
proach was to do the mapping between low-level and high-level input variables automatically
during the learning phase of the controller.

This part of the thesis introduces the combination of evolutionary algorithms and FRBS.
Specifically, in this work, Quantified Fuzzy Rules (QFR) are used to transform low-level input
variables into high-level input variables, reducing the input dimensionality through summa-
rization. Moreover, the proposed algorithm, called Iterative Quantified Fuzzy Rule Learning
(IQFRL), is based on the Iterative Rule Learning approach and on genetic programming in
order to represent the valid rule structures with a grammar. IQFRL also uses linguistic la-
bels defined through unconstrained multiple granularity, i.e., without limiting the granularity
levels.

The algorithm has been tested with the implementation of the wall-following behavior
both in several realistic simulated environments with different complexity and on a Pioneer

3-AT robot in two real environments. Results have been compared with several state-of-the-
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art learning approaches combined with different data preprocessing techniques, showing that
IQFRL exhibits a better and statistically significant performance. Moreover, three real world
applications for which IQFRL plays a central role are also presented: path and object tracking
with static and moving obstacles avoidance.

In this chapter, a full copy of the following publication is presented:

I. Rodrı́guez-Fdez1, M. Mucientes1, and A. Bugarı́n1. Learning Fuzzy Controllers in
Mobile Robotics with Embedded Preprocessing. Applied Soft Computing, Elsevier, No.
26, pp. 123-142, 2015.

2.1 Abstract

The automatic design of controllers for mobile robots usually requires two stages. In the first
stage, sensorial data are preprocessed or transformed into high level and meaningful values of
variables which are usually defined from expert knowledge. In the second stage, a machine
learning technique is applied to obtain a controller that maps these high level variables to the
control commands that are actually sent to the robot. This paper describes an algorithm that
is able to embed the preprocessing stage into the learning stage in order to get controllers
directly starting from sensorial raw data with no expert knowledge involved. Due to the
high dimensionality of the sensorial data, this approach uses Quantified Fuzzy Rules (QFRs),
that are able to transform low-level input variables into high-level input variables, reducing
the dimensionality through summarization. The proposed learning algorithm, called Iterative
Quantified Fuzzy Rule Learning (IQFRL), is based on genetic programming. IQFRL is able
to learn rules with different structures, and can manage linguistic variables with multiple
granularities. The algorithm has been tested with the implementation of the wall-following
behavior both in several realistic simulated environments with different complexity and on a
Pioneer 3-AT robot in two real environments. Results have been compared with several well-
known learning algorithms combined with different data preprocessing techniques, showing
that IQFRL exhibits a better and statistically significant performance. Moreover, three real
world applications for which IQFRL plays a central role are also presented: path and object
tracking with static and moving obstacles avoidance.

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela, Santiago de Compostela, Spain.
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2.2 Introduction

The control architecture of mobile robots usually includes a number of behaviors that are
implemented as controllers, which are able to solve specific tasks such as motion planning,
following a moving object, wall-following, avoiding collisions, etc. in real time. These be-
haviors are implemented as controllers whose outputs at each time point (control commands)
depend on both the internal state of the robot and the environment in which it evolves. The
robot sensors (e.g. laser range finders, sonars, cameras, etc.) are used in order to obtain the
augmented state of the robot (internal state and environment). When the robot operates in
real environments, both the data obtained by these sensors and the internal state of the robot
present uncertainty or noise. Therefore, the use of mechanisms that manage them properly is
necessary. The use of fuzzy rules is convenient to cope with this uncertainty, since it com-
bines the interpretability and expressiveness of the rules with the ability of fuzzy logic for
representing uncertainty.

The first step for designing controllers for mobile robots consists of the preprocessing of
the raw sensor data: the low-level input variables obtained by the sensors are transformed
into high-level variables that are significant for the behavior to be learned. Usually, expert
knowledge is used for the definition of these high-level variables and the mapping from the
sensorial data. After this preprocessing stage, machine learning algorithms can be used to
automatically obtain the mapping from the high-level input variables to the robot control
commands. This paper describes an algorithm that is able to perform the preprocessing stage
embedded in the learning stage, thus avoiding the use of expert knowledge. Therefore, the
mapping between low-level and high-level input variables is done automatically during the
learning phase of the controller.

The data provided by the sensors is of high dimensionality. For example, a robot equipped
with two laser range finders can generate over 720 low-level variables. However, in mobile
robotics it is more common to work with sets or groupings of these variables, (e.g. “frontal
sector”) that are much more significant and relevant for the behavior. As a result, it is neces-
sary to use a model that is capable of grouping low-level variables, thus reducing the dimen-
sionality of the problem and providing meaningful descriptions. The model should provide
propositions that are able to summarize the data with expressions like “part of the distances in
the frontal sector are high”. This kind of expressions can model the underlying knowledge in
a better way than just using average, maximum or minimum values of sets of low level vari-
ables. Moreover, these expressions also include the definition of the set of low-level variables



22 Chapter 2. Learning Fuzzy Controllers in Mobile Robotics

to be used. Since these propositions involve fuzzy quantifiers (e.g. “part”), they are called
Quantified Fuzzy Propositions (QFPs) [81]. QFP provide a formal model that is capable of
modeling the knowledge involved in this grouping task.

Evolutionary algorithms have some characteristics that make them suitable for learning
fuzzy rules. The well-known combination of evolutionary algorithms and fuzzy logic (genetic
fuzzy systems) is one of the approaches that aims to manage the balance between accuracy and
interpretability of the rules [23, 49]. As it was pointed out before, fuzzy rules can be composed
of both conventional and QFPs (therefore, they will be referred to as QFRs). Furthermore, the
transformation from low-level to high-level variables using QFPs produces a variable number
of propositions in the antecedent of the rules. Therefore, genetic programming, where the
structure of individuals is a tree of variable size derived from a context-free grammar, is here
the most appropriate choice.

This paper describes an algorithm that is able to learn QFRs of variable structure for the
design of controllers with embedded preprocessing in mobile robotics. This proposal, called
Iterative Quantified Fuzzy Rule Learning (IQFRL), is based on the Iterative Rule Learning
(IRL) approach and uses linguistic labels defined with unconstrained multiple granularity,
i.e. without limiting the granularity levels. This proposal has been designed to solve control
(regression) problems in mobile robotics having as input variables the internal state of the
robot and the sensors data. Expert knowledge is only used to generate the training data for
each of the situations of the task to be learned and, also, to define the context-free grammar
that specifies the structure of the rules.

The main contributions of the paper are: (i) the proposed algorithm is able to learn us-
ing the state of the robot and the sensors data, with no preprocessing. Instead, the mapping
between low-level variables and high-level variables is done embedded in the algorithm; (ii)
the algorithm uses QFPs, a model able to summarize the low-level input data; (iii) moreover,
IQFRL uses linguistic labels with unconstrained multiple granularity. With this approach, the
interpretability of the membership functions used in the resulting rules is unaffected while the
flexibility of representation remains. The proposal was validated in several simulated and real
environments with the wall-following behavior. Results show a better and statistically sig-
nificant performance of IQFRL over several combinations of well-known learning algorithms
and preprocessing techniques. The approach was also tested in three real world behaviors
that were built as a combination of controllers: path tracking with obstacles avoidance, object
tracking with fixed obstacles avoidance, and object tracking with moving obstacle avoidance.
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The paper is structured as follows: Section 2.3 summarizes recent work related with this
proposal and Section 2.4 presents the QFRs model and its advantages in mobile robotics.
Section 2.5 describes the IQFRL algorithm that has been used to learn the QFRs. Section 2.6
presents the obtained results, and Section 2.7 shows three real world applications of IQFRL
in robotics. Finally, Section 2.8 points out the most relevant conclusions.

2.3 Related Work

The learning of controllers for autonomous robots has been dealt with by using different ma-
chine learning techniques. Among the most popular approaches can be found evolutionary
algorithms [16, 77], neural networks [107] and reinforcement learning [1, 68]. Also hibrida-
tions of them, like evolutionary neural networks [65], reinforcement learning with evolution-
ary algorithms [97, 72], the widely used genetic fuzzy systems [102, 83, 79, 80, 67, 62, 84], or
even more uncommon combinations like ant colony optimization with reinforcement learning
[59] or differential evolution [53] or evolutionary group based particle swarm optimization
[58] have been successfully applied. Furthermore, over the last few years, mobile robotic
controllers have been getting some attention as a test case for the automatic design of type-2
fuzzy logic controllers [68, 77, 53].

An extensive use of expert knowledge is made in all of these approaches. In [102] 360
laser sensor beams are used as input data, and are heuristically combined into 8 sectors as
inputs to the learning algorithm. On the other hand, in [65, 83, 79, 80, 67, 84, 59, 58] the input
variables of the learning algorithm are defined by an expert. Moreover, in [83, 79, 67, 84, 53]
the evaluation function of the evolutionary algorithm must be defined by an expert for each
particular behavior. As in the latter case, the reinforcement learning approaches need the
definition of an appropriate reward function using expert knowledge.

The approaches based on genetic fuzzy systems use different alternatives in the definition
of the membership functions. In [97, 102, 67] the membership functions are defined heuris-
tically. In [79, 80] labels have been uniformly distributed, but the granularity of each input
variable is defined using expert knowledge. On the other hand, in [83, 62, 84, 59, 58] an ap-
proximative approach is used, i.e., different membership functions are learned for each rule,
reducing the interpretability of the learned controller.

The main problem of learning behaviors using raw sensor input data is the curse of dimen-
sionality. In [1], this issue has been managed from the reinforcement learning perspective, by
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using a probability density estimation of the joint space of states. Among all the approaches
based on evolutionary algorithms, only in [16] no expert knowledge has been taken into ac-
count. In this work, the number of sensors and their position are learned from a reduced
number of sensors.

In [85] a Genetic Cooperative-Competitive Learning (GCCL) approach was presented.
The proposal learns knowledge bases without preprocessing raw data, but the rules involved
approximative labels while the IQFRL proposal uses unconstrained multiple granularity. More-
over, in this approach it is difficult to adjust the balance between cooperation and competition,
which is typical when learning rules in GCCL. As a result, the obtained rules where quite spe-
cific and the performance of the behavior was not comparable to other proposals based on
expert knowledge.

2.4 Quantified Fuzzy Rules (QFRs)

2.4.1 QFRs for robotics

Machine learning techniques in mobile robotics are used to obtain the mapping from inputs
to outputs (control commands). In general, two categories can be established for the input
variables:

• High-level input variables: variables that provide, by themselves, information that is
relevant and meaningful to the expert for modeling the system (e.g. the linear velocity
of the robot, or the right-hand distance from the robot to a wall).

• Low-level input variables: variables that do not provide by themselves information for
the expert to model the system (e.g. a single distance measure provided by a sensor).
Relevance of these variables emerge when they are grouped into more significant sets
of variables. For example, the control actions cannot be decided by simply analyzing
the individual distance values provided by each beam of a laser range finder, since noisy
measurements or gaps between objects (very frequent in cluttered environments) may
occur. Instead, more significant variables and models involving complex groupings and
structures are used.

Usually, high-level variables, or sectors, consisting of a set of laser beam measures instead
of the beam measures themselves (e.g., right distance, frontal distance, etc.) are used in mo-
bile robotics. The low-level input variables are transformed into high-level input variables in
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a preprocessing stage previous to the learning of the controller. Traditionally, this transforma-
tion and the resulting high-level input variables are defined using expert knowledge. Doing
this preprocessing automatically during the learning phase demands a model that groups the
low-level input variables in an expressive and meaningful way. Within this context Quanti-
fied Fuzzy Propositions (QFPs) such as “part of the distances of the frontal sector are low”

are useful for representing relevant knowledge for the experts and therefore for performing
intelligent control. Modeling with QFPs as in the previous example demands the definition of
several elements:

• part: how many distances of the frontal sector must be low?

• frontal sector: which beams belong to the frontal sector?

• low: what is the actual semantics of low?

This example clearly sets out the need to use propositions that are different from the
conventional ones. The use of QFPs in robotics eliminates the need of expert knowledge in
two ways: i) the preprocessing of the low-level variables can be embedded in the learning
stage; ii) the definition of the high-level variables obtained from low-level variables is done
automatically, also during the learning stage. In this paper QFPs are used for representing
knowledge about high-level variables that are defined as the grouping of low-level variables.
Conventional fuzzy propositions are also used to represent conventional high-level variables,
i.e., high-level variables not related to low-level ones (e.g. velocity).

2.4.2 QFRs model

An example of a QFR is shown in Fig. 2.1, involving both QFPs (2.1) and conventional ones
(2.2); the outputs of the rule are also fuzzy sets. In order to determine the degree to which the
output of the rule will be applied, it is necessary to reason about the propositions (using, for
example, the Mamdani’s reasoning scheme).

The general expression for QFPs in this case is:

d (h) is F i
d in Qi of F i

b (2.3)

where, for each i=1, ..., gmax
b (gmax

b being the maximum possible number of sectors of dis-
tances):

• d (h) is the signal. In this example, it represents the distance measured by beam h.
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IF part of distances of FRONTAL SECTOR are LOW (2.1)

and

velocity is HIGH (2.2)

THEN vlin is VERY LOW

and

vang is TURN LEFT

Figure 2.1: An example of QFR to model the behavior of a mobile robot.

• F i
d is a linguistic value for variable d (h) (e.g., “low”).

• Qi is a (spatial, defined in the laser beam domain) fuzzy quantifier (e.g., “part”).

• F i
b is a fuzzy set in the laser beam domain (e.g., the “frontal sector”).

Evaluation of the Degree of Fulfillment (DOF) for QFP (Eq. 2.3) is carried out using
Zadeh’s quantification model for proportional quantifiers (such as “most of”, “part of”, ...)
[117]. This model allows to consider non-persistence, partial persistence and total persistence
situations for the event “d (h) is F i

d” in the range of laser beams (spatial interval F i
b). Therefore,

for the considered example, it is possible to make a total or partial assessment on how many
distances should be low, in order to decide the corresponding control action. This is a relevant
feature of this model, since it allows to consider partial, single or total fulfillment of an event
within the laser beams set.

The number of analyzed sectors of distances and their definition may vary for each of the
rules. There can be very generic rules that only need to evaluate a single sector consisting
of many laser beams, while other rules may need a finer granularity, with more specific laser
sectors. Moreover, the rules may require a mix of QFPs and standard fuzzy propositions (for
conventional high-level variables). Therefore, the automatic learning of QFRs demands an
algorithm with the capability of managing rules with different structures.
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2.5 Iterative Quantified Fuzzy Rule Learning of Controllers

2.5.1 Evolutionary learning of Knowledge Bases

Evolutionary learning methods follow two approaches in order to encode rules within a pop-
ulation of individuals [50, 27]:

• Pittsburgh approach: each individual represents the entire rule base.

• Michigan, IRL [25], and GCCL [46]: each individual codifies a rule. The learned rule
base is the result of combining several individuals. The way in which the individuals
interact during the learning process defines these three different approaches.

The discussion is focused on those approaches for which an individual represents a rule,
discarding the Michigan approach as it is used in reinforcement learning problems in which
the reward from the environment needs to be maximized [31]. Therefore, the IRL and GCCL
approaches are analyzed.

In the IRL approach, the individuals compete among them but only a single rule is learned
for each run (epoch) of the evolutionary algorithm. After each sequence of iterations, the best
rule is selected and added to the final rule base. The selected rule must be penalized in order to
induce niche formation in the search space. A common way to penalize the obtained rules is
to delete the training examples that have been covered by the set of rules in the final rule base.
The final step of the IRL approach is to check whether the obtained set of rules is a complete
knowledge base. In the case it is not, the process is repeated. A weak point of this approach
is that the cooperation among rules is not taken into account when a rule is evaluated. For
example, a new rule could be added to the final rule base, deteriorating the behavior of the
whole rule base over a set of examples that were already covered. The cooperation among
rules can be improved with a posterior rules selection process.

In the GCCL approach the entire population codifies the rule base. That is, rules evolve
together but competing among them to obtain the higher fitness. For this type of algorithm
it is fundamental to include a mechanism to maintain the diversity of the population (niche
induction). This mechanism must warrant that individuals of the same niche compete among
themselves, but also has to avoid deleting those weak individuals that occupy a niche that
remains uncovered. This is usually done using token competition [27].

Although GCCL works well for classification problems [81], the same does not occur for
regression problems [85], mostly due to the difficulty of achieving in this realm an adequate
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balance between cooperation and competition. It is frequent in regression that an individual
tries to capture examples seized by other individual, improving the performance on many
of the examples, but decreasing the accuracy on a few ones. In subsequent iterations, new
and more specific individuals replace the rule that was weakened. As a result, the individuals
improve their individual fitness, but the performance of the knowledge base does not increase.
In particular, for mobile robotics, the obtained knowledge bases over-fit the training data due
to a polarization effect of the rule base: few very general rules and many very specific rules.
Moreover, many times, the errors of the individual rules compensate each other, generating a
good output of the rule base over the training data, but not on test data.

This proposal, called IQFRL (Iterative Quantified Fuzzy Rule Learning), is based on IRL.
The learning process is divided into epochs (set of iterations), and at the end of each epoch a
new QFR (Sec. 2.4.2) is obtained. The following sections describe each of the stages of the
algorithm (Fig. 2.2).

2.5.2 Examples and Grammar

The learning process is based on a set of training examples. In mobile robotics, each example
can be composed of several variables that define the state of the robot (position, orienta-
tion, linear and angular velocity, etc.), and the data measured by the sensors. If the robot is
equipped with laser range finders, the sensors data are vectors of distances. A laser range
finder provides the distances to the closest obstacle in each direction (Fig. 2.3) with a given
angular resolution (number of degrees between two consecutive beams). In this paper, each
example el is represented by a tuple:

el = (d (1) , . . . , d (Nb) , velocity, vlin, vang) (2.4)

where d (h) is the distance measured by beam h, Nb is the number of beams (e.g. 722 for
a robot equipped with two Sick LMS200 laser range scanners as in Fig. 2.3), velocity is
the measured linear velocity of the robot, and vlin and vang are the output variables (control
commands for the linear and angular velocities respectively).

The individuals in the population include both conventional propositions and QFPs (Sec.
2.4.2). Also, the number of relevant inputs can be different. Therefore, genetic programming
is the most appropriate approach, as each individual is a tree of variable size. In order to
generate valid individuals of the population, and to produce right structures for the individuals
after crossover and mutation, some constraints have to be added. With a context-free grammar
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1: KBcur :=∅
2: repeat
3: it := 0
4: equalind := 0
5: Initialization
6: Evaluation
7: repeat
8: Selection
9: Crossover and Mutation

10: Evaluation
11: Replacement
12: if best it−1

ind = best it
ind then

13: equalind := equalind + 1
14: else
15: equalind := 0

16: it := it + 1
17: until (it ≥ itmin∧ equalind ≥ itcheck)∨ (it ≥ itmax)

18: KBcur := KBcur ∪bestind

19: uncovex := uncovex − covex

20: until uncovex =∅

Figure 2.2: IQFRL algorithm.

all the valid structures of a tree (genotype) in the population can be defined in a compact form.
A context-free grammar is a quadruple (V, Σ, P, S), where V is a finite set of variables, Σ is a
finite set of terminal symbols, P is a finite set of rules or productions, and S the start symbol.

The basic grammar is described in Fig. 2.4. As usual, different productions for the same
variable are separated by symbol “|”. Fig. 2.5 represents a typical chromosome generated with
this context-free grammar. Terminal symbols (leaves of the tree) are represented by ellipses,
and variables as rectangles. There are two different types of antecedents:

• The sector antecedent. Consecutive beams are grouped into sectors in order to gen-
erate more general (high-level) variables (frontal distance, right distance, etc.). This
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d(181) d(120)d(180)d(361)

d(91)

d(1)

d(650)

d(542)

d(Nb=722)

Figure 2.3: Some of the distances measured by a robot equipped with two laser range finders.

type of antecedent is defined by the terminal symbols Fd , Fb and Q: i) the linguis-
tic label Fd represents the measured distances (HIGH in Fig. 2.1, prop. 2.1); ii) Fb

is the linguistic label that defines the sector, i.e., which beams belong to the sector
(FRONTAL SECTOR in Fig. 2.1, prop. 2.1); iii) Q is the quantifier (part in Fig. 2.1,
prop. 2.1).

• The measured linear velocity of the antecedent is defined by the Fv linguistic label.

Finally, Flv and Fav are the linguistic labels of the linear and angular velocity control
commands respectively, which are the consequents of the rule.

The linguistic labels of the antecedent (Fv, Fd , Fb) are defined using a multiple granularity
approach. The universe of discourse of a variable is divided into a different number of equally
spaced labels for each granularity. Specifically, a granularity gi

var divides the variable var in
i uniformly spaced labels, i.e., Ai

var = {A
i, 1
var , ...,A

i, i
var}. Fig. 2.6 shows a partitioning of up

to granularity five. On the other hand, the linguistic labels of the consequents (Flv, Fav) are
defined using a single granularity approach2.

2Multiple granularity makes no sense if the labels are defined as singletons, which is the usual choice for the
output variables in control applications.
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• V = { rule, antecedent, consequent, sector }

• Σ = { Flv, Fav, Fv, Fd , Fb, Q }

• S = rule

• P:

(a) rule −→ antecedent consequent

(b) antecedent −→ sector Fv | sector

(c) consequent −→ Flv Fav

(d) sector −→ Fd Q Fb sector | Fd Q Fb

Figure 2.4: Basic context-free grammar for controllers in robotics.

Figure 2.5: An individual representing a QFR that models the behavior of a robot.

2.5.3 Initialization

An individual (Fig. 2.5) is generated for each example in the training set. The consequent
part (Flv and Fav) is initialized as Fvar = Agvar , β

var where β = argmax j µ
gvar , j
var

(
el
)
, i.e., the label
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g² g³

g⁴ g⁵

Figure 2.6: Multiple granularity approach from g2
x to g5

x .

with the largest membership value for the example.
The initialization of the antecedent part of a rule requires obtaining the most similar lin-

guistic label to a given fuzzy membership function (which is called mask label). As the
maximum granularity of the linguistic labels in the antecedent part of a rule is not limited, the
function maskToLabel (Fig. 2.7) is applied to obtain the most appropriate linguistic label.
This function uses a similarity measure defined as [101]:

similarity(Fφ , Fψ) = 1 − ∑x∈X |µφ (x) − µψ(x)|
|X |

(2.5)

where Fφ and Fψ are the labels being compared and X is a finite set of points x uniformly
distributed on the support of φ ∪ψ .

The maskToLabel function (Fig. 2.7) receives a triangular membership function (maskvar)
and searches for the label Ai, j

var with the highest similarity (Eq. 2.5, line 6) with less or equal
support (line 5), starting from g1

var (line 1).
For the initialization of the quantified propositions (sectors), the distances measured in the

example are divided into groups of consecutive laser beams whose deviation does not exceed
a certain threshold (σbd). Each group represents a sector that is going to be included in the
individual. Afterwards, for each of the previously obtained sectors, the components (Fb, Fd

and Q) are calculated:

(a) Fb = maskToLabel(maskb), with maskb = (leftb, centerb, rightb) where leftb is the
lower beam of the group, rightb is the higher beam, centerb is the middle beam and
the following properties are satisfied: µ(leftb) = µ(rightb) = 0.5 and µ(centerb) = 1
as shown in Fig. 2.8(a).



2.5. Iterative Quantified Fuzzy Rule Learning of Controllers 33

Require: maskvar

1: i := g1
var

2: result :=∅
3: loop
4: for all j ∈ [1, i] do
5: if support(maskvar) ≥ support(Ai, j

var) then
6: if similarity(maskvar, Ai, j

var) > similarity(maskvar, result) then
7: result := Ai, j

var

8: else
9: break loop

10: i := i + 1

11: return result

Figure 2.7: Function that searches for the most similar label to maskvar .

(b) Fd =maskToLabel(maskd), with maskd = (d̄ − σd , d̄, d̄ + σd) where d̄ is the mean of
the distances measured by the beams of the group, σd is the standard deviation of these
distances and the following properties are satisfied: µ(d̄ − σd) = µ(d̄ + σd) = 0.5
and µ(d̄) = 1 as shown in Fig. 2.8(b).

(c) Q (Fig. 2.9) is calculated as the percentage of beams of the sector (h ∈ Fb) that fulfill
Fd :

Q =
∑h∈Fb

min
(
µFd (d(h)), µFb(h)

)
∑h∈Fb

µFb(h)
(2.6)

Finally, the velocity antecedent Fv is initialized as Fv =Agi
v, β

v where β = argmax j µ
gi

v, j
v (el)

and gi
v is the granularity that satisfies that two consecutive linguistic labels have a separation

of σv, where σv is a threshold of the velocity deviation.

2.5.4 Evaluation

The fitness of an individual of the population is calculated as follows. Firstly, it is necessary
to estimate the probability that an example el matches the output (C j) associated to the j-th
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Figure 2.8: maskvar representations for beam (b) and distance (d) variables.

1

0 1Q

Figure 2.9: Example of a definition of the quantified label Q.

individual rule:

P
(

C j | el
)
= exp

(
−

errorl
j

ME

)
(2.7)

where ME is a parameter that defines the meaningful error and errorl
j is the difference between

output C j and the output codified in the example:

errorl
j = ∑

k

(
yl

k − c j, k

maxk − mink

)2

(2.8)

where yl
k is the value of the k-th output variable of example el , c j, k is the output of the k-th

output variable associated to individual j, and maxk and mink are the maximum and minimum
values of output variable k. In regression problems, there can be several consequents that are
different from the one codified in the example, but that produce small errors, i.e., that are very
similar to the desired output. Thus, P

(
C j | el

)
can be interpreted as a normal distribution with
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covariance ME, and errorl
j is the square of the difference between the mean (output codified

in the example) and the output value proposed in the rule codified by the individual.

In an IRL approach, C j =CR j , i.e., the output coded in individual j is the output associated
to rule j. The fitness of an individual in the population is calculated as the combination of
two values. On one hand, the accuracy with which the individual covers the examples, called
confidence. On the other hand, the ability of generalization of the rule, called support. The
confidence can be defined as:

confidence =
ρu

∑l DOFj(el
u)

(2.9)

where DOFj(el
u) is the degree of fulfillment of el

u for rule j, and el
u ∈ uncovex, where uncovex

is defined as:

uncovex = {el : DOFKBcur(e
l)< DOFmin} (2.10)

i.e., the set of examples that are covered with a degree of fulfillment below DOFmin by the
current final knowledge base (KBcur) (line 18, Fig. 2.2), and ρu can be defined as:

ρu = ∑
l

DOFj(el
u) : P

(
C j | el

u

)
> Pmin

and DOFj(el
u)> DOFmin

(2.11)

where Pmin is the minimum admissible accuracy. Therefore, the higher the accuracy over the
examples covered by the rule (and not covered yet by the current knowledge base), the higher
the confidence. Support is calculated as:

support =
ρu

#uncovex
(2.12)

Thus, support measures the percentage of examples that are covered with accuracy, related to
the total number of uncovered examples. Finally, f itness is defined as a linear combination
of both values:

fitness = α f · confidence+(1−α f ) · support (2.13)

which represents the strength of an individual over the set of examples in uncovex. α f ∈ [0, 1]
is a parameter that codifies the trade-off between accuracy and generalization of the rule.
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2.5.5 Crossover

The matching of the pairs of individuals that are going to be crossed is implemented following
a probability distribution defined as:

Pclose (α, β ) = 1 −
∑

Nc
k=1(

cα, k − cβ , k
maxk − mink

)2

Nc
(2.14)

where cα, k (cβ , k) is the value of the k-th output variable of individual α (β ), and Nc is
the number of consequents. With this probability distribution, the algorithm selects with
higher probability mates that have similar consequents. The objective is to extract information
on which propositions of the antecedent part of the rules are important, and which are not.
Crossover has been designed to generate more general individuals, as the initialization of the
population produces very specific rules. The crossover operator generates two offsprings:

offspring1 = crossover(indi, ind j)

offspring2 = crossover(ind j, indi) (2.15)

This operator modifies a single proposition in antecedent part of the rule. As individu-
als have a variable number of antecedents, the total number of propositions can be different
for two individuals. Moreover, the propositions can be defined using different granularities.
Therefore, the first step is to select the propositions (one for each individual) to be crossed
between both individuals (Fig. 2.10) as follows:

(a) Get the most specific granularity of the sectors of the individuals to cross (gmax
b ). Then,

an antecedent m ∈ [1, Na] is selected, where Na is gmax
b plus one, due to the velocity

proposition.

(b) Check the existence of this antecedent in both individuals, according to the following
criteria:

a) If the antecedent m is a sector, then calculate for each proposition of each indi-
vidual the similarity between the definition of the sector for the proposition and
the linguistic label that defines sector m. Finally, select for each individual the
proposition with the highest similarity.

b) If the antecedent m is the velocity, then the corresponding proposition is Fv (in
case it exists).
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Require: indα , indβ

1: aα = aβ =∅
2: Na = gmax

b + 1
3: repeat
4: m = random ∈ [1, Na]

5: if m is a sector then
6: aα = argmaxr similarity(Fb, r, A

gmax
b ,m

b )≥ 0 : ∀r ∈ indα

7: aβ = argmaxr similarity(Fb, r, A
gmax

b ,m
b )≥ 0 : ∀r ∈ indβ

8: else
9: aα = Fv ∈ indα

10: aβ = Fv ∈ indβ

11: until (aα 6=∅)∨ (aβ 6=∅)

Figure 2.10: Selection of antecedents for crossover.

Table 2.1: Crossover operations

Individual 1 Individual 2 Action

no yes copy proposition from individual 2 to 1
yes no delete proposition in individual 1
yes yes combine propositions

Once the propositions to be crossed have been selected, an operation must be picked
depending on the existence of the antecedent in both parents (table 2.1):

• If the proposition does not exist in the first individual but exists in the second one, then
the proposition of the second individual is copied to the first one, as this proposition
could be meaningful.

• If the situation is the opposite to the previous one, then the proposition of the first
individual is deleted, as it might be not important.

• If the proposition exists in both individuals, then both propositions are combined in
order to obtain a proposition that generalizes both antecedents.

In this last case, the combination of propositions is done by taking into account the degree
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No similarity

Total similarity

Partial similarity

Figure 2.11: Different possibilities of similarity for the labels of equal proposition of two individuals used in the
crossover operator.

of similarity (Eq. 2.5) between them (Fig. 2.11). If the proposition is of type sector, the
similarity takes into account both Fb and Fd labels. Only when both similarities are partial,
the propositions are merged:

• If there is no similarity, then the propositions correspond to different situations. For
example, “the distance is high in part of the frontal sector” and “the distance is low

in part of the frontal sector”. This means that the proposition of the first individual
might not contain meaningful information and it could be deleted to generalize the rule.
For example, both individuals have the proposition “the distance is high in part of the

frontal sector”.

• If the similarity is total, then, in order to obtain a new individual with different an-
tecedents, the proposition is eliminated.

• Finally, if the similarity is partial, then the propositions are merged in order to obtain
a new one that combines the information provided by the two original propositions.
For example, “the distance is high in part of the frontal sector“ and “the distance is

medium-high in part of the frontal sector“. Therefore, the individual is generalized.
The merge action is defined as the process of finding the label with the highest possible
granularity that has some similarity with the labels of both original propositions. This
is done for both Fb and Fd labels. Q is calculated as the minimum Q of both individuals.
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2.5.6 Mutation

If crossover is not performed, both individuals are mutated. Mutation implements two differ-
ent strategies (Fig. 2.12): generalize or specialize a rule. The higher the value of confidence
(Eq. 2.9), the higher the probability to generalize the rule by mutation. This occurs with
rules that cover their examples with high accuracy and that could be modified to cover other
examples. On the contrary, when the confidence of the individual is low, this means that it
is covering some of its examples with a low performance. In order to improve the rule some
of the examples that are currently covered should be discarded in order to get a more specific
rule.

For generalization, the following steps are performed:

(a) Select an example esel ∈ uncov j
ex, where uncov j

ex = {el
u : DOFj(el

u)< DOFmin}, i.e. the
set of examples that belong to uncovex and are not covered by individual j. The example
is selected with a probability distribution given by P

(
C j | el

u
)

(Eq. 2.7). The higher the
similarity between the output of the example and the consequent of rule j, the higher
the probability of being selected.

(b) The individual is modified in order to cover esel . Therefore, all the propositions that are
not covering the example (those with µprop

(
esel
)
< DOFmin) are selected for mutation.

a) For sector propositions (Eq. 2.1), there are three different ways in which the
proposition can be modified: Fd , Fb, and Q. The modification is selected among
the three possibilities, with a probability proportional to the µprop

(
esel
)

value after
applying each one.

i. Fd and Fb are generalized choosing the most similar label in the adjacent
partition with lower granularity. The process is repeated until µprop

(
esel
)
≥

DOFmin.

ii. On the other hand, Q is decreased until µprop
(
esel
)
≥ DOFmin.

b) For velocity propositions (Eq. 2.2), generalization is done choosing the most
similar label in the adjacent partition with lower granularity until µprop

(
esel
)
>

DOFmin.

For specialization, the process is equivalent:
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Generalization Specialization

Figure 2.12: The strategies used for mutation for variables d, b and v.

(a) Select an example esel ∈ cov j
ex, where cov j

ex = {el
u : DOFj(el

u) > DOFmin}, i.e. the set
of examples that belong to uncovex and are covered by individual j. The example is
selected with a probability distribution that is inversely proportional to P

(
C j | el

u
)

(Eq.
2.7). The higher the similarity between the output of the example and the consequent
of rule j, the lower the probability of being selected.

(b) Only one proposition needs to be modified to specialize the individual. This proposition
is selected randomly.

a) For sector propositions there are, again, three different ways in which the propo-
sition can be modified: Fd , Fb, and Q. The modification is selected among these
three possibilities, with a probability that is inversely proportional to the µprop

(
esel
)

value after applying each one.

i. Fd and Fb are specialized, choosing the most similar label in the adjacent
partition with higher granularity. The process is repeated until µprop

(
esel
)
<

DOFmin.

ii. On the other hand, Q is increased until µprop
(
esel
)
< DOFmin.

b) For velocity propositions, specialization is done by choosing the most similar label
in the adjacent partition with higher granularity until µprop

(
esel
)
< DOFmin.

Finally, once the antecedent is mutated, the consequent also mutates. Again, this mutation
requires the selection of an example. If generalization was selected for the mutation of the
antecedent, then the example will be esel . On the other hand, for specialization an example
is randomly selected from those currently in cov j

ex. For each variable in the consequent part
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Probability Distribution

Individual
Output

Example
Output

Higher Probability Lower Probability

Figure 2.13: Probability distribution example for consequent mutation. Labels closest to the individual output have
higher probability to be selected.

of the rule, the label of the individual is modified selecting a label following a probability
distribution (Fig. 2.13):

P
(

Agvar , γ
var | Agvar , α

var , Agvar , β
var

)
= 1 − |α − γ|

|α − β | + 1
(2.16)

where Agvar , α
var is the label of each of the consequents of the individual, Agvar , β

var is the label
with the largest membership value for esel and Agvar , γ

var is a label between them. Thus, the
labels closer to the label of the individual have a higher probability to be selected, while the
labels closer to the example label have a lower one.

2.5.7 Selection and replacement

Selection has been implemented following the binary tournament strategy. Replacement fol-
lows an steady-state approach. The new individuals and those of the previous population are
joined, and the best popmax individuals are selected for the next population.

2.5.8 Epoch loop

An epoch is a set of iterations at the end of which a new rule is added to KBcur. The stopping
criterion of each epoch (inner loop in Fig. 2.2) is the number of iterations, but this limit
varies according to the following criteria: once the number of iterations (it) reaches itmin, the
algorithm stops if there are itcheck consecutive iterations (counted by equalind) with no change
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in the best individual (bestind). If the number of iterations reaches the maximum (itmax), then
the algorithm stops regardless of the previous condition.

When the epoch ends, the rule defined in bestind is added to KBcur. Moreover, the examples
that are covered with accuracy (according to the criterion in Eq. 2.11) are marked as covered
by the algorithm (line 19, Fig. 2.2). Finally, the algorithm stops when there are no uncovered
examples.

2.5.9 Rule subset selection

After the end of the iterative part of the algorithm, the performance of the obtained rule base
can be improved selecting a subset of rules with better cooperation among them. The rule se-
lection algorithm described in [81] has been used. The rule selection process has the following
steps:

(a) Generate #Rgp rule bases, where #Rgp is the number of rules of the population obtained
by the IQFRL algorithm (RBgp) Each rule base is coded as: RBi = ri

1 · · ·ri
#Rgp

, with:

ri
j =

0, i f j > i

1, i f j ≤ i
(2.17)

where ri
j indicates if the j-th rule of RBgp is included (ri

j = 1) or not (ri
j = 0) in RBi.

With this codification, RBi will contain the best i rules of RBgp, as these rules have been
ranked in decreasing order of their individual fitness. Notice that RB#Rgp is RBgp

(b) Evaluate all the rule bases, and select the best one, RBsel .

(c) Execute a local search on RBsel to obtain the best rule set, RBbest .

The last step was implemented with the iterated local search (ILS) algorithm [71].
threshold (maxRestarts).

2.6 Results

2.6.1 Experimental setup

The proposed algorithm has been validated with the well-known in mobile robotics wall-
following behavior. The main objectives of a controller for this behavior are: to keep a suitable
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Figure 2.14: Pioneer 3-AT robot equipped with two laser range scanners.

distance between the robot and the wall, to move at the highest possible velocity, and to
implement smooth control actions. The Player/Stage robot software [44] has been used for the
tests on the simulated environments and also for the connection with the real robot Pioneer 3-

AT (Fig. 2.14). This real robot was equipped with two laser range scanners with an amplitude
of 180◦ and a precision of 0.5◦ (i.e. 361 measurements for each laser scan). Without loss of
generality, all the examples and tests here described were made with the robot following the
wall at its right.

The examples that have been used for learning were generated for three different situations
(Fig. 2.15) that have been identified by an expert:

(a) Convex corner: it is characterized by the existence of a gap in the wall (like an open
door) (labeled CX in Fig. 2.15).

(b) Concave corner: it is a situation in which the robot finds a wall in front of it (labeled
CC in Fig. 2.15).

(c) Straight wall: any other situation (labeled SW in Fig. 2.15).

For each of the above situations, the robot was placed in different positions and the asso-
ciated control order was the one that minimized the error. Therefore, each example consists
of 722 distances (one for each laser beam), the current linear velocity of the robot, and the
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Figure 2.15: The three different situations for the wall-following behavior.

control commands (linear and angular velocity). The expert always tried to follow the wall
at, approximately, 50 cm and the maximum values for the linear and angular velocities were
50 cm/s and 45os−1 respectively. 572 training examples were generated for the straight wall
situation, 540 for the convex corner and 594 for the concave corner.

The IQFRL algorithm was used to learn a different controller for each of the three sit-
uations. In order to decide which knowledge base should be used at each time instant, the
classification version of IQFRL (IQFRL-C, see 2.A) was used. In this way, IQFRL learning
could be tested with three completely different controllers.

In order to analyze the performance of the proposed learning algorithm, several tests were
done in 15 simulated environments and two real ones. Table 2.2 shows some of the character-
istics of the environments: the dimensions of the environment, the path length, the number of
concave (#CC) and convex (#CX) corners, and the number of times that the robot has to cross
a door (#doors). The action of crossing a door represents a high difficulty as the robot has to
negotiate a convex corner with a very close wall in front of it.

The simulated environments are shown in Figs. 2.16 and 2.17. The trace of the robot is
represented by marks, and the higher the concentration of marks, the lower the velocity of
the robot. Furthermore, Fig. 2.18 shows the real environments. Each of them represents an
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Table 2.2: Characteristics of the test environments

Environment Dim. (m×m) Length (m) #CC #CX #doors

home 8×10 20 8 3 1
gfs b 14×10 43 10 6 0
dec 19×12 53 8 4 0

domus 26×16 60 9 6 3
citius 16×10 63 12 6 2
raid a 16×16 66 16 12 0
wsc8a 15×15 70 4 7 1

home b 18×11 76 17 6 2
raid b 20×10 86 12 10 2
rooms 19×19 86 12 6 4
flower 22×20 98 9 6 1
office 26×26 146 23 10 8

autolab 26×28 154 21 11 10
maze 18×18 205 13 9 0

hospital 74×45 1046 98 69 43
real env 1 9×8 20 7 3 0
real env 2 10×5 26 7 3 0

occupancy grid map of the environment, together with the trajectory of the robot.

2.6.2 Algorithms and parameters

The following values were used for the parameters of the evolutionary algorithm: ME = 0.02,
DOFmin = 0.001, α f = 0.99, Pcross = 0.8, popmax = 70, itmin = 50, itcheck = 10, itmax = 100,
σbd = 0.01, σv = 0.1 and Pmin = 0.17. Pmin is a parameter that has a high influence in the
performance of the system. A single value of Pmin was used in testing, obtained from Eqs. 2.7
and 2.8 for the case the error for each consequent is one label (Eq. 2.8). The granularities and
the universe of discourse of each output of a rule are shown in table 2.3. For the rule subset
selection algorithm, the parameters have values of radiusnbhood = 1 and maxRestarts = 2.

The fuzzy inference system used for the learned fuzzy rule sets uses the minimum t-
norm for both the implication and conjunction operators, and the weighted average method as
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(a) home (b) gfs b (c) dec

(d) domus (e) citius
(f) raid a

(g) wsc8a (h) home b (i) raid b

Figure 2.16: Path of the robot along the simulated environments (I).

Table 2.3: Universe of discourse and granularities

Variable Min Max Granularities

Distance 0 1.5 All
Beam 0 721 All

Quantifier 10 100 −
Velocity 0 0.5 All

Lineal velocity 0 0.5 {9}
Angular velocity −π/4 π/4 {19}

defuzzification operator.
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(a) rooms (b) flower (c) office

(d) autolab (e) maze

(f) hospital

Figure 2.17: Path of the robot along the simulated environments (II).

The IQFRL approach was compared with three different algorithms:

• Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative Learning
approach (MOGUL): a three-stage genetic algorithm [24]:

(a) An evolutionary process for learning fuzzy rules, with two components: a fuzzy-
rule generating method based on IRL, and an iterative covering method.
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(a) real environment 1 (b) real environment 2

Figure 2.18: Path of the robot along the real environments.

(b) A genetic simplification process for selecting rules.

(c) A genetic tuning process, that tunes the membership functions for each fuzzy rule
or for the complete rule base.

The soft-constrained MOGUL was used, as it has better performance in very hard prob-
lems [25]3.

• Multilayer Perceptron Neural Network (MPNN): a single-hidden-layer neural network
trained with the BFGS method [103] with the following parameters: abstol = 0.01,
reltol = 0.0001 and maxit = 500. The number of neurons in the hidden layer varies
from n to 2 ·n, being n the number of inputs4.

• ν-Support Vector Regression (ν-SVR)5: a ν-SVM [99] version for regression with a
Gaussian RBF kernel. The parameter sigma is estimated based upon the 0.1 and 0.9
quantile of ||x − x′||2.

As mentioned before, in the IQFRL proposal the preprocessing of raw sensor data is em-
bedded in the learning algorithm. Since the algorithms for the comparison need to preprocess
the data before the learning phase, three different approaches were used for the transformation
of the sensor data:

3The implementation in Keel [5], an open source (GPLv3) Java software tool to assess evolutionary algorithms
for Data Mining problems, was used.

4The package nnet [111] of the statistical software R was used.
5The package kernlab [60] of the statistical software R was used.
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Table 2.4: Different configurations for the preprocessing methods.

Preprocessing Configuration

Min (n) {4,8,16,32,64}
Sample (n) {4,8,16,32,64}
PCA (σPCA) {0.90,0.95,0.975,0.99,0.999}

Table 2.5: Number of inputs obtained with PCA.

σPCA Straight Convex Concave

0.90 35 15 27
0.95 51 24 40
0.975 66 35 53
0.99 85 57 68
0.999 127 99 109

• Min: the beams of the laser range finder are grouped in n equal sized sectors. For each
sector, the minimum distance value is selected as input.

• Sample: n equidistant beams are selected as the input data.

• PCA: Principal Component Analysis computes the most meaningful basis to re-express
the data. It is a simple, non-parametric method for extracting relevant information. The
variances associated with the principal components can be examined in order to select
only those that cover a percentage of the total variance.

Different parameters have been used for the preprocessing approaches. For Min and Sample

methods, the number of obtained inputs (n) was changed. For PCA, the percentage of vari-
ance (σPCA) indicates the principal components selected as input data. Table 2.4 shows the
parameters used for the preprocessing methods. Moreover, table 2.5 shows the number of
inputs obtained with PCA for the three datasets with each configuration.

2.6.3 Comparison and statistical significance

Table 2.6 shows the training and test errors over a 5-fold cross-validation. For each algorithm
and dataset the mean and standard deviation of the error (Eq. 2.8) were calculated.
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Table 2.6: Training and test errors

Alg. Preproc. Dataset Training Test

IQFRL
− Straight 0.11±0.03 0.14±0.03

Convex 0.10±0.01 0.12±0.02
Concave 0.04±0.01 0.05±0.01

MOGUL

min 16
other 0.01±0.00 0.10±0.01

convex 0.01±0.00 0.05±0.01
concave 0.00±0.00 0.05±0.01

sample 16
other 0.01±0.00 0.09±0.02

convex 0.02±0.00 0.05±0.01
concave 0.00±0.00 0.04±0.01

MPNN

min 8
other 0.01±0.00 0.06±0.10

convex 0.02±0.01 0.03±0.05
concave 0.00±0.00 0.04±0.06

sample 8
other 0.02±0.00 0.18±0.25

convex 0.03±0.01 0.02±0.02
concave 0.01±0.00 0.17±0.34

ν-SVR

min 16
other 0.01±0.00 0.02±0.02

convex 0.03±0.01 0.02±0.01
concave 0.01±0.00 0.00±0.00

sample 16
other 0.02±0.01 0.02±0.02

convex 0.04±0.02 0.02±0.01
concave 0.01±0.00 0.01±0.00

For each preprocessing technique, a 5-fold cross-validation was performed for each com-
bination of the parameters of the algorithms. For example, for the Min preprocessing with
16 equal size sectors, a 5-fold cross-validation was run for each number of neurons between
17 and 34 for the MPNN approach. Only the configuration of the algorithm with lowest test
error for each configuration of the preprocessing methods was used for comparison purposes.
Moreover, only those configurations of preprocessing techniques with the best results are
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shown in the tables of this section. Results for PCA preprocessing have not been included, as
the learning algorithms were not able to obtain adequate controllers.

Although, the MSE (Mean Squared Error) is the usual measure of the performance of
the algorithms, this is not a sufficient criterion in mobile robotics. A good controller must be
robust and able to provide a good and smooth output in any situation. The only way to validate
the controller is to test it on environments (simulated and real) with different difficulties and
assessing on these tests a number of quality parameters such as mean distance to the wall,
mean velocity along the paths, . . .

Table 2.7 contains the results of the execution of each of the algorithms for the different
simulated environments (Figs. 2.16 and 2.17). Furthermore, table 2.8 shows the average
results for the following five different indicators: the distance to the wall at its right (Dist.),
the linear velocity (Vel.), the change in the linear velocity between two consecutive cycles
(Vel.ch.) —which reflects the smoothness in the control—, the time per lap, and the number
of blockades of the robot along the path and cannot recover.

The robot is blocked if it hits a wall or if it does not move for 5 s. In this situation the robot
is placed parallel to the wall at a distance of 0.5 m. The average values of the five indicators
are calculated for each lap that the robot performs in the environment. Results presented in
the table are the average and standard deviation values over five laps of the average values of
the indicators over one lap. The dash symbol in the results table indicates that the controller
could not complete the path. This usually occurs when the number of blockades per meter is
high (greater than 5 blockades in a short period of time) or when the robot completely deviates
from the path.

Moreover, in order to evaluate the performance of a controller with a numerical value a
general quality measure was defined. It is based on the error measure defined in [80], but
including the number of blockades:

quality =
1

1+(1+#Blockades) · (0.9 · |Dist−dwall |+0.1 · |Vel− vmax|)
(2.18)

where dwall is the reference distance to the wall (50 cm) and vmax is the maximum value of
the velocity (50 cm/s). The higher the quality, the better the controller. This measure takes
the number of blockades into account in a linear form for comparison purposes. However, it
should be noted that controllers with just a single blockade are not reliable and should not be
implemented on a real robot.
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Table 2.7: Average results (x±σ ) for each simulated environment

Alg. Prepr. Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

IQFRL −

home 55.70±0.25 27.00±0.66 5.59±0.14 164.63±5.26 0.00±0.00 0.12
gfs b 55.98±1.70 22.37±0.92 7.01±0.74 163.90±9.72 0.00±0.00 0.11
dec 57.33±1.02 32.47±0.67 5.83±0.18 168.63±1.76 0.00±0.00 0.11

domus 54.84±0.53 29.97±0.19 5.97±0.49 198.80±1.39 0.00±0.00 0.14
citius 54.80±0.87 26.11±0.78 6.28±0.64 249.50±8.25 0.00±0.00 0.13
raid a 59.56±0.72 25.35±0.14 6.87±0.55 262.00±6.15 0.00±0.00 0.08
wsc8a 56.96±1.00 27.45±0.84 7.70±0.33 233.10±5.28 0.00±0.00 0.11

home b 58.41±0.72 25.53±0.46 7.06±0.36 300.07±8.15 0.00±0.00 0.09
raid b 58.22±0.44 28.57±0.40 6.60±0.47 242.23±3.82 0.00±0.00 0.09
rooms 57.38±0.34 30.97±0.34 6.38±0.43 261.93±4.60 0.00±0.00 0.10
flower 53.46±0.25 33.85±0.40 4.13±0.34 290.77±4.13 0.00±0.00 0.17
office 51.37±0.57 24.20±0.18 6.65±0.25 578.27±2.92 0.00±0.00 0.21

autolab 52.91±0.20 28.75±0.31 5.57±0.48 499.33±9.74 0.00±0.00 0.17
maze 52.43±0.22 35.88±0.40 3.64±0.28 567.73±5.29 0.00±0.00 0.22

hospital 51.09±0.19 26.68±0.10 6.18±0.35 3608.07±21.72 0.00±0.00 0.23

MOGUL

min 16

home 55.12±0.69 30.43±1.30 5.40±0.45 181.10±12.70 7.33±2.05 0.05
gfs b 54.75±0.96 24.44±1.02 6.81±0.39 208.87±12.86 14.00±2.16 0.04
dec 55.46±1.14 36.13±0.43 5.17±0.15 190.50±6.29 8.67±1.25 0.07

domus 55.75±0.64 31.44±1.80 5.47±0.33 224.60±10.25 8.33±0.47 0.09
citius 53.47±1.27 29.48±0.13 5.60±0.53 302.57±13.58 18.33±2.62 0.05
raid a 57.53±0.32 26.53±0.28 6.41±0.09 363.87±10.21 27.33±3.40 0.02
wsc8a 54.80±0.35 27.57±0.63 6.26±0.59 346.90±29.40 26.67±5.44 0.02

home b 56.75±0.49 27.49±0.62 6.58±0.37 379.57±2.05 22.00±1.41 0.05
raid b 57.48±0.70 32.38±0.17 5.84±0.38 280.17±14.29 14.67±3.40 0.03
rooms 54.79±0.38 30.57±1.04 5.14±0.37 350.33±28.04 20.00±5.89 0.02
flower 53.33±0.39 38.05±1.00 3.70±0.71 310.27±13.41 11.67±4.03 0.05
office 51.48±0.29 25.09±0.49 6.77±0.20 762.20±5.28 49.67±1.25 0.10

autolab 51.95±0.71 30.54±1.24 5.23±0.27 612.00±23.46 31.00±2.45 0.07
maze 52.25±0.55 37.55±1.53 2.87±0.25 690.93±53.92 32.00±6.38 0.04

hospital 51.33±0.06 26.86±0.08 5.89±0.29 4908.07±56.12 313.33±10.34 0.02

sample 16

home 56.76±0.20 29.57±0.35 4.73±0.15 161.97±0.69 1.67±0.47 0.08
gfs b 56.16±1.62 23.66±0.88 8.16±0.51 160.80±9.65 1.67±1.25 0.05
dec 57.69±0.66 37.95±0.96 6.03±0.25 148.87±3.94 0.67±0.47 0.08

domus 56.04±0.20 36.61±1.14 6.35±0.57 165.63±8.93 1.00±0.82 0.08
citius 51.38±1.72 27.40±0.21 6.13±0.52 241.53±3.38 1.00±0.82 0.14
raid a 57.44±0.51 26.18±1.39 6.61±0.44 275.63±18.82 3.67±2.05 0.03
wsc8a 54.67±0.24 30.18±0.65 9.03±0.42 220.87±2.26 1.67±0.94 0.08

home b 57.17±0.36 26.80±0.91 6.73±0.72 303.77±9.52 3.00±0.82 0.06
raid b 60.38±0.38 34.73±1.26 6.15±0.41 206.20±10.12 0.33±0.47 0.06
rooms 56.05±0.09 32.11±1.49 6.39±0.64 254.50±18.03 0.67±0.94 0.07
flower 55.24±0.58 41.58±0.32 3.92±0.27 244.67±6.56 2.00±1.41 0.07
office 50.33±0.10 22.76±0.56 6.22±0.46 655.40±21.32 11.33±2.36 0.09

autolab 50.57±0.27 29.62±0.69 5.29±0.32 498.67±8.12 2.33±1.25 0.15
maze 55.05±0.34 40.22±0.78 3.25±0.18 512.33±8.86 0.67±0.47 0.11

hospital 51.54±0.25 25.97±0.14 6.11±0.34 3964.70±15.81 64.67±8.18 0.03

MPNN min 8 home 58.34±1.07 29.34±2.66 4.12±0.11 122.73±6.36 6.33±0.47 0.07
gfs b 58.56±1.41 28.14±0.71 7.66±0.28 149.20±11.03 4.33±1.70 0.04
dec 56.10±0.32 35.13±0.38 4.28±0.19 173.37±5.58 3.33±0.94 0.07

domus − − − − − 0.00
citius 55.73±0.90 27.22±0.68 4.97±0.28 324.37±31.51 15.00±3.56 0.03
raid a 57.90±0.61 23.05±1.01 6.85±0.26 403.60±13.17 27.33±1.70 0.04
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wsc8a 56.24±0.81 30.96±1.03 7.97±0.11 238.77±5.45 7.33±0.47 0.08
home b 58.02±0.54 24.19±1.81 7.13±0.45 922.87±568.90 66.33±41.02 0.00
raid b 59.99±1.57 27.98±2.64 5.07±0.63 1137.37±842.79 38.33±20.53 0.00
rooms − − − − − 0.00
flower − − − − − 0.00
office 55.84±0.48 28.48±0.19 8.18±0.32 626.33±5.59 32.00±1.41 0.05

autolab − − − − − 0.00
maze 52.75±0.32 42.53±1.09 2.81±0.38 621.07±45.13 28.00±3.56 0.06

hospital 55.94±0.02 28.45±0.33 7.47±0.17 3730.00±166.69 205.00±13.93 0.01

sample 8

home − − − − − 0.00
gfs b 62.11±0.47 21.96±0.35 7.22±0.14 172.00±0.78 1.00±0.00 0.07
dec 64.67±2.80 30.23±4.21 6.03±0.49 285.70±118.55 1.00±0.82 0.04

domus − − − − − 0.00
citius 68.36±5.48 20.98±2.23 6.69±0.18 603.33±243.12 16.33±11.81 0.00
raid a 74.58±8.62 19.36±3.61 6.41±1.03 450.60±259.59 5.00±3.56 0.01
wsc8a 61.04±0.62 23.70±0.41 7.90±0.52 279.37±6.70 1.00±0.82 0.04

home b 85.20±8.36 16.95±3.09 6.40±0.62 2477.03±1471.27 26.33±15.15 0.00
raid b 70.10±4.50 21.41±1.56 7.18±0.48 1780.97±1445.69 49.00±43.69 0.00
rooms 60.75±0.47 34.39±0.65 6.81±0.22 237.53±5.88 0.00±0.00 0.08
flower 61.77±2.11 28.82±0.35 7.54±0.21 912.67±231.62 51.33±13.02 0.01
office 57.22±1.31 21.01±0.31 5.58±0.15 783.03±7.34 28.33±0.47 0.07

autolab − − − − − 0.00
maze − − − − − 0.00

hospital 74.51±11.21 21.74±3.14 5.33±1.18 555.43±721.71 16.33±23.10 0.00

ν-SVR

min 16

home − − − − − 0.00
gfs b 57.82±0.58 26.35±0.81 8.67±0.52 140.20±3.94 0.00±0.00 0.10
dec 59.14±0.05 39.01±0.98 6.59±0.48 143.03±3.39 0.00±0.00 0.10

domus − − − − − 0.00
citius 55.14±0.78 25.65±0.29 5.90±0.28 258.87±2.23 0.00±0.00 0.12
raid a 58.52±0.29 30.31±0.67 9.36±0.28 208.97±4.84 0.00±0.00 0.09
wsc8a 58.33±0.24 30.09±0.27 10.70±0.38 218.33±1.56 0.00±0.00 0.10

home b 61.26±0.46 27.87±0.50 8.05±0.10 289.40±2.94 1.00±0.00 0.07
raid b − − − − − 0.00
rooms − − − − − 0.00
flower 58.66±0.11 38.42±0.64 4.76±0.22 257.10±4.64 0.00±0.00 0.10
office 51.37±0.47 23.92±0.40 7.67±0.10 582.23±5.47 0.00±0.00 0.21

autolab 54.18±0.25 28.04±0.22 6.38±0.19 522.07±3.83 0.67±0.47 0.10
maze 61.07±0.70 32.60±1.02 3.06±0.17 675.67±63.68 1.00±0.82 0.04

hospital 53.42±0.36 25.42±0.08 6.58±0.21 3833.90±13.48 6.67±1.70 0.06

sample 16

home − − − − − 0.00
gfs b 57.63±0.24 27.77±0.64 8.21±0.62 132.20±3.00 0.00±0.00 0.10
dec 57.31±0.03 39.00±0.29 5.72±0.10 142.47±0.66 0.00±0.00 0.12

domus − − − − − 0.00
citius 55.31±0.82 29.69±0.58 6.28±0.24 221.00±3.99 0.00±0.00 0.13
raid a 56.89±0.09 31.38±0.20 8.37±0.35 201.27±0.59 0.00±0.00 0.11
wsc8a 56.27±0.03 32.09±0.21 9.37±0.31 203.50±1.84 0.00±0.00 0.12

home b 60.62±0.70 29.24±0.06 8.27±0.09 275.70±6.91 0.33±0.47 0.06
raid b 57.54±1.24 36.64±0.70 6.25±0.44 273.67±9.39 12.33±1.25 0.05
rooms 57.95±0.49 34.88±0.26 6.37±0.26 233.53±0.12 0.00±0.00 0.10
flower 56.64±0.14 40.23±0.13 5.16±0.06 244.13±1.13 0.00±0.00 0.13
office 51.34±0.13 26.54±0.11 7.65±0.16 522.00±3.41 0.00±0.00 0.22

autolab 53.26±0.17 31.50±0.38 6.19±0.04 462.23±3.94 0.00±0.00 0.17
maze − − − − − 0.00

hospital 52.54±0.13 28.57±0.15 6.71±0.19 3359.17±13.58 0.00±0.00 0.18



54 Chapter 2. Learning Fuzzy Controllers in Mobile Robotics

Table 2.8: Average results (x±σ ) for all simulated environments

Alg. Prepr. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) # Blockades quality

IQFRL − 55.36±2.57 28.34±3.60 6.10±1.04 0.00±0.00 0.14±0.05

MOGUL
min 16 54.42±1.99 30.30±4.13 5.54±1.05 40.33±73.78 0.05±0.02

sample 16 55.10±2.83 31.02±5.76 6.07±1.39 6.42±15.78 0.08±0.03

MPNN
min 16 56.86±1.87 29.59±5.09 6.05±1.76 39.39±55.37 0.03±0.03

sample 16 67.30±7.88 23.69±4.99 6.64±0.76 17.79±18.12 0.02±0.03

ν-SVR
min 16 57.17±3.05 29.79±4.83 7.07±2.05 0.85±1.88 0.07±0.06

sample 16 56.11±2.49 32.29±4.27 7.05±1.23 1.05±3.40 0.10±0.06

Table 2.9: Non-parametric test for quality of table 2.7.

Alg. Preprocessing Ranking Holm p-value

IQFRL − 1.53 −

MOGUL
min 16 4.9 0.012

sample 16 3.47 0.025

MLPNN
min 8 5.57 0.010

sample 8 6 0.008

ν-SVR
min 16 3.83 0.017

sample 16 2.7 0.05

Friedman p-value = 0.00
Holm’s rejects hypothesis with p-value <= 0.05

Table 2.10: Average results (x±σ ) of IQFRL for the real environments

Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

real env 1 54.13±2.59 19.86±1.52 1.36±0.21 100.70 0.00±0.00 0.13

real env 2 59.29±2.74 21.94±1.43 1.72±2.50 118.50 0.00±0.00 0.08

In general, all the algorithms except MPNN with Sample 16 preprocessing, produced a
distance that is very close to the reference (between 40 cm and 60 cm to the wall at its right).
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Note that in cases where the best distance is very different from that obtained by IQFRL, this
is because several blockades happened. Therefore, those controllers have the advantage of
being continually repositioned into the perfect situation. The best results in speed are those
obtained by ν-SVR and MOGUL but, in general, due to a worsening in the distance to the wall
or an increase in the number of blockades. The same applies to the speed change. In those
cases where it is too low, like in some cases for MOGUL or MPNN, the robot is not able to
trace some curves safely. IQFRL is the approach that gets the best quality values, reflecting
not only the adequate values for the distance, velocity and smoothness in all the environments
but, also, its robustness: it is the unique approach that never blocked or failed to complete the
laps in any of the environments.

In order to compare the experimental results, non-parametric tests of multiple comparisons
have been used. Their use is recommended in those cases in which the objective is to compare
the results of a new algorithm against various methods simultaneously. The Friedman test with
Holm post-hoc test was selected as the method for detecting significant differences among the
results. The test is performed for the quality indicator in table 2.7.

The statistical test (table 2.9) shows that the difference of the quality of the IQFRL ap-
proach is statistically significant. Only ν-SVR and MOGUL with sample 16 preprocessing are
comparable to IQFRL, as the number of blockades is very low or null in some environments.

Additionally, table 2.10 shows the results obtained by IQFRL in two real environments.
As in the previous tables, the results are the average and standard deviation over 5 laps. The
distance to the wall is lower than 60 cm, showing a good behavior, although the velocity
seems to be low, this is because corners are very close to each other and the robot does not
have time to accelerate. Also, the velocity change reflects a very smooth movement as changes
in velocity take more time in the real robot.

Finally, the IQFRL proposal was compared with the proposals presented in [80] for learn-
ing rules for the wall-following behavior. The purpose of this comparison is to check if
IQFRL is competitive against other methods which use expert knowledge for sensor data pre-
processing. Four different approaches were used: the COR methodology, the weighted COR
methodology (WCOR), Hierarchical Systems of Weighted Linguistic Rules (HSWLR) and a
local evolutionary learning of Takagi-Sugeno rules (TSK). For these approaches, four input
variables were defined by an expert: right distance, left distance, velocity, and the orientation
(alignment) of the robot to the wall at its right. Moreover, the granularities of each variable
were also defined by the expert. Table 2.12 presents the comparison between these approaches
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and the IQFRL proposal on those environments which are common.

The IQFRL approach exhibited the highest quality in the two most complex environments
(office and hospital). Moreover, table 2.11 shows the non-parametric tests performed over
quality. The Friedman p-value is higher than in table 9, due to the low number of environ-
ments available for comparisons. As can be seen, there is no statistically significant difference
regarding the quality. That is, the controllers learned with embedded preprocessing has simi-
lar performance to the methods that use expert knowledge to preprocess the data.

2.6.4 Complexity of the Rules

An example of a rule learned by IQFRL is presented in Fig. 2.19. The antecedent part is
composed of a single QFP. The linguistic value A5, 1

d indicates a low distance, while A4, 1
b

denotes that the beams sector of the proposition is formed by the frontal and right parts of the
robot. Therefore, the rule describes a situation where the robot is too close to the wall and,
if it continues, it will collide. Because of that, the consequent indicates a zero linear velocity
and a turn of the robot to the left, in order to get away from the wall without getting the robot
into risk.

Table 2.13 shows the number of rules learned for the different situations by each of the
methods based on rules. MOGUL is implemented as a multiple-input single-output (MISO)
algorithm, therefore for each output, different rule bases were learned. Moreover, table 2.14
shows the complexity of the learned rules in terms of mean and standard deviation of the
number of propositions and granularities for each input variable.

Table 2.11: Non-parametric test for quality of table 2.12.

Alg. Ranking Holm p-value

IQFRL 2.9 −
COR 3.9 0.01

WCOR 3.7 0.017
HSWLR 2.8 0.05

TSK 1.7 0.006

Friedman p-value = 0.19
Holm’s rejects hypothesis with p-value <= 0.005
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Table 2.12: Average results (x±σ ) of IQFRL and several approaches with preprocessing based on expert
knowledge [80]

Alg. Env. Dist.(cm) Vel.(cm/s) Vel.ch.(cm/s) Time(s) # Blockades quality

IQFRL

wsc8a 56.96±1.00 27.45±0.84 7.70±0.33 233.10±5.28 0.00±0.00 0.11
rooms 57.38±0.34 30.97±0.34 6.38±0.43 261.93±4.60 0.00±0.00 0.10
autolab 52.91±0.20 28.75±0.31 5.57±0.48 499.33±9.74 0.00±0.00 0.17
office 51.37±0.57 24.20±0.18 6.65±0.25 578.27±2.92 0.00±0.00 0.21

hospital 51.09±0.19 26.68±0.10 6.18±0.35 3608.07±21.72 0.00±0.00 0.23

COR

wsc8a 53.20±1.33 39.86±0.71 5.67±0.83 174.98±1.79 0.00±0.00 0.17
rooms 46.80±0.59 37.82±0.41 6.76±0.31 227.16±1.03 0.00±0.00 0.16
autolab 56.88±0.91 25.69±0.79 10.79±0.21 587.96±39.72 0.00±0.00 0.09
office 55.97±1.65 32.48±0.90 4.06±0.28 457.58±15.00 0.00±0.00 0.11

hospital 54.12±0.92 35.63±0.77 6.95±0.28 2864.92±45.27 0.00±0.00 0.14

WCOR

wsc8a 52.79±1.36 36.98±1.85 7.37±0.62 187.90±9.78 0.00±0.00 0.17
rooms 51.17±0.77 37.19±0.27 9.15±0.24 234.04±2.70 0.00±0.00 0.23
autolab 52.97±1.10 33.47±0.89 7.12±0.52 455.98±41.60 0.00±0.00 0.16
office 54.59±1.10 33.13±0.97 6.76±0.53 448.16±10.36 0.00±0.00 0.13

hospital 55.26±1.01 33.71±0.14 6.52±0.12 3073.98±23.63 0.00±0.00 0.12

HSWLR

wsc8a 51.42±0.78 30.46±1.01 3.36±0.13 222.34±6.09 0.00±0.00 0.19
rooms 50.09±0.88 28.71±0.29 3.04±0.20 290.70±3.66 0.00±0.00 0.24
autolab 51.50±0.34 23.50±0.97 3.05±0.14 618.40±20.98 0.00±0.00 0.17
office 53.43±1.22 24.69±0.66 3.73±0.11 594.74±13.16 0.00±0.00 0.13

hospital 54.60±1.65 25.07±0.49 3.89±0.06 4209.68±166.14 0.00±0.00 0.12

TSK

wsc8a 51.43±1.36 37.54±1.53 5.20±0.50 182.54±8.35 0.00±0.00 0.22
rooms 49.07±1.08 37.05±0.82 4.96±0.21 227.58±4.46 0.00±0.00 0.24
autolab 51.87±2.99 33.05±1.33 4.61±0.11 465.56±15.33 0.00±0.00 0.19
office 53.75±0.97 34.26±0.65 5.24±0.22 432.38±10.48 0.00±0.00 0.14

hospital 54.50±1.49 34.31±0.32 5.01±0.11 3053.74±123.72 0.00±0.00 0.13

The IQFRL approach is able to learn knowledge bases with a much lower number of rules
than MOGUL, even though it is learning both outputs at the same time. The learning of QFRs
results in a low number of propositions per rule, thus demonstrating its generalization ability,
in spite of the huge input space dimensionality. Moreover, the granularities of each of the
input variables are, in general, also low. Therefore, the learned knowledge bases show a low
complexity without losing accuracy.
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IF

d(h) is A5, 1
d in 50 percent of A4, 1

b

THEN

vlin is A1
vlin and

vang is A19
vang

Figure 2.19: A typical rule learned by IQFRL. A5, 1
d indicates a low distance and A4, 1

b indicates the frontal and right
sectors.

Table 2.13: Number of rules learned

Alg. Preproc. Output #Rstraight #Rconvex #Rconcave

IQFRL − Both 108.00±18.88 47.80±16.09 40.40±10.65

MOGUL

min 16 vlin 548.60±25.60 308.20±12.12 680.20±24.43

vang 547.00±16.37 302.80±21.57 712.40±23.79

sample 16 vlin 507.80±29.88 268.20±12.66 664.80±8.52

vang 530.20±26.48 252.80±8.28 709.80±34.19

Table 2.14: Complexity of the rules

Alg. Preproc. Dataset Output Propositions gd gb gv

IQFRL −
Straight

Both
2.74±0.94 7.02±10.52 5.98±5.62 6.21±1.53

Convex 2.68±0.69 15.37±23.59 11.22±8.50 6.55±1.03
Concave 2.78±1.18 3.80±1.79 7.07±6.86 6.16±1.42

MOGUL

min 16

Straight
vlin 17.00±0.00 24.35±109.80 16.00±0.00 39.44±137.45
vang 17.00±0.00 24.49±107.66 16.00±0.00 35.19±117.75

Convex
vlin 17.00±0.00 32.34±125.75 16.00±0.00 51.68±172.27
vang 17.00±0.00 38.99±144.86 16.00±0.00 45.07±146.38

Concave
vlin 17.00±0.00 22.93±100.76 16.00±0.00 32.79±106.77
vang 17.00±0.00 23.35±103.39 16.00±0.00 37.56±122.75

sample 16

Straight
vlin 17.00±0.00 26.23±117.41 16.00±0.00 33.98±108.16
vang 17.00±0.00 26.25±116.18 16.00±0.00 37.60±126.86

Convex
vlin 17.00±0.00 25.68±103.29 16.00±0.00 49.61±160.18
vang 17.00±0.00 31.06±119.50 16.00±0.00 46.56±151.27

Concave
vlin 17.00±0.00 23.50±105.79 16.00±0.00 33.62±112.09
vang 17.00±0.00 23.95±106.27 16.00±0.00 34.63±121.52
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2.7 Real World Applications

Two of the most used behaviors in mobile robotics are path and object tracking. In recent years
several real applications of these behaviors have been described in the literature in different
realms. For instance, in [63], a tour-guide robot that can either follow a predefined route or
a tour-guide person was shown. With a similar goal, an intelligent hospital service robot was
presented in [104]. In this case, the robot can improve the services provided in the hospital
through autonomous navigation based on following a path. More recently, in [69] a team
of robots that cooperate in a building developing maintenance and surveillance tasks was
presented.

More dynamic environments were described in [40, 66], where the robot had to operate in
buildings and populated urban areas. These environments introduce numerous challenges to
autonomous mobile robots as they are highly complex. Finally, in [45] the authors presented
a motion planner that was able to generate paths taking into account the uncertainty due to
controls and measurements.

In these and other real applications, the robot has to deal with static and moving ob-
jects, including the presence of people surrounding the robot, etc. All these difficulties make
necessary the combination of behaviors to perform tasks like path or people tracking in real
environments. In order to implement these tasks in a safe way, the robot must be endowed
with the ability to avoid collisions with all the objects in the environment while implementing
the tasks. These behaviors are challenging tasks that allow us to show the performance of the
IQFRL-based approach in realistic conditions. The following behaviors are considered in this
section, in order of increasing complexity:

(a) Path tracking with obstacles avoidance. In this behavior, the mobile robot must follow
a path with obstacles in it. A typical application of this behavior is a tour-guide robot
that has to follow a predefined tour in a museum. Although in the initial path there were
no obstacles in the trajectory, the modification of the environment with new exhibitors
and the presence of people make it necessary that the robot modify the predefined route,
avoiding the collision with the obstacles and returning to the predefined path as quickly
as possible.

(b) Object tracking with fixed obstacles avoidance. In this case, the robot has to follow the
path of a moving object while being at a reference distance to the object. For instance,
a tour-guide person being followed by a robot with extended information on a screen.



60 Chapter 2. Learning Fuzzy Controllers in Mobile Robotics

If the followed object comes too close to an obstacle, the robot must avoid the collision
while maintaining the tracking behavior.

(c) Object tracking with moving obstacle avoidance. This behavior is a modification of the
previous one, and presents a more difficult problem. In addition to the fixed obstacles
avoidance, the robot has to track an object while preventing collisions with moving
obstacles that are crossing between the robot and the tracked object. These moving
obstacles can be persons walking around or even other mobile robots doing their own
behaviors.

In order to perform these behaviors, a fusion of two different controllers has been de-
veloped. On one hand, a tracking controller [82] was used in order to follow the path or the
moving object. On the other hand, the wall-following controller learned with the IQFRL algo-
rithm was used as the collision avoidance behavior. Section 2.6.3 showed that this controller
is robust and operates safely while performing the task. There were no blockades during the
behavior in all the tests, neither from collisions nor from other reasons. The way in which
the wall-following behavior is used in order to avoid collisions is: given an obstacle that is
too close to the robot, it can be surrounded following the border of this obstacle in order to
avoid a collision with it. The controller described in this paper follows the wall on its right,
while for this task, the obstacle can be on both sides. This can easily be solved by a simple
permutation of the laser beams depending on which side the obstacle is detected.

The wall-following behavior is only executed when the robot is too close to an object —a
value of 0.4 m has been used as threshold. The objective of the controller is to drive the robot
to a state in which there is no danger of collision —a value of 0.5 m has been established
as a safe distance. As long as the robot is in a safe state the tracking behavior is resumed.
This behavior controls the linear and angular velocities of the robot in order to place it at an
objective point in every control cycle. This point is defined using the desired distance between
the robot and the moving object. The tracking controller uses four different input variables:

• The distance between the robot and the objective point:

d =

√
(xr− xob j)2 +(yr− yob j)2

dre f
(2.19)

where (xr,yr) are the coordinates of the robot, (xob j,yob j) are the coordinates of the
objective point and dre f is the reference distance between the robot and the objective
point.
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• The deviation of the robot with respect to the objective point:

dev = arctan
(

yob j− yr

xob j− xr

)
−θr (2.20)

where θr is the angle of the robot. A negative value of the deviation indicates that the
robot is moving in a direction to the left of the objective point, while a positive value
means that it is moving to the right.

• The difference of velocity between the robot and the objective point:

∆v =
vr− vm

vmax
(2.21)

where vr, vm and vmax are the linear velocities of the robot, the moving object, and the
maximum velocity attainable by the robot.

• The difference in angle between the object and the robot:

∆θ = θm−θr (2.22)

where θm is the angle of the moving object.

The reference distance (dre f ) is different depending on the type of behavior. For the path
tracking behavior, there is no moving object tracking and, therefore, the robot follows the
path with dre f = 0 in order to do a perfect path tracking. In the other two behaviors the robot
follows a moving object, so it is necessary to keep a safe distance —a value of dre f = 0.5 m
was used in the experiments shown in this section.

The three behaviors have been validated in two different environments (M1 and Domus)
which try to reproduce the plant of a museum (Fig. 2.20). Figs. 2.20(a) and 2.20(b) show the
path tracking with obstacles avoidance behavior. The orange (medium grey) path represents
the trajectory that has to be followed by the robot. This path also includes information of the
velocity that the robot should have at each point. The higher the concentration of marks, the
lower the linear velocity in that point of the path. Moreover, the path was generated without
obstacles and, once the obstacles were added to the environment, the robot was placed at the
beginning of the path in order to track it. The cyan (light grey) path indicates the trajectory
implemented by the robot using the proposed combination of controllers (wall-following and
tracking). It can be seen that the robot avoids successfully all the obstacles in its path, i.e.,
the wall following behavior deviates the robot from the predefined path when an obstacle
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(a) Path tracking with obstacles
avoidance in M1.

(b) Path tracking with obstacles avoidance in Domus.

(c) Object tracking with fixed ob-
stacles avoidance in M1.

(d) Object tracking with fixed obstacles avoidance in Do-
mus.

(e) Object tracking with moving
obstacle avoidance in M1.

(f) Object tracking with moving obstacle avoidance in Do-
mus.

Figure 2.20: Experiments on real applications. Colors code: 1) Original path to be tracked in orange (medium
grey); 2) Robot path in cyan (light grey); 3) Moving obstacle path in blue (dark grey). The arrows
along the path in Figs. 20(e) and 20(f) indicate the places in which the moving obstacle interferes with
the robot.
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generates a possibility of collision. When the robot overcomes the obstacle, it returns to the
predefined path as quickly as possible.

In the case of the moving object tracking with fixed obstacles avoidance behavior (Figs.
2.20(c) and 2.20(d)), the cyan (light grey) line represents the path of the robot due to the
combination of the controllers. Also, the orange (medium grey) path shows the trajectory of
the moving object tracked by the robot. In this behavior, the moving object goes too close
to some obstacles in several situations, forcing the controller to execute the wall following
behavior in order to avoid collisions. Moreover, the wall-following controller is also executed
when the moving object turns the corners very close to the obstacles, at a distance that is
unsafe for the robot.

The last and most complex behavior is moving object tracking with moving obstacle
avoidance (Figs. 2.20(e) and 2.20(f)). The cyan (light grey) path shows, once again, the
path followed by the robot when it tracks the moving object (orange / medium grey path)
while avoiding static and moving obstacles. Also, the path followed by the moving obstacle
that should be avoided by the robot is shown in blue (dark grey). The arrows along the path
indicate the places in which the obstacle interferes with the robot. This behavior shows the
ability of the controller learned with the IQFRL algorithm to avoid collisions, even when the
moving obstacle tries to force the robot to fail: the controller can detect the situation and
perform the task safely, avoiding collisions.

2.8 Conclusions

This paper describes a new algorithm which is able to learn controllers with embedded pre-
processing for mobile robotics. The transformation of the low-level variables into high-level
variables is done through the use of Quantified Fuzzy Propositions and Rules. Furthermore,
the algorithm involves linguistic labels defined by multiple granularity without limiting the
granularity levels. The algorithm was extensively tested with the wall-following behavior both
in several simulated environments and on a Pioneer 3-AT robot in two real environments. The
results were compared with some of the most well-known algorithms for learning controllers
in mobile robotics. Non-parametric significance tests have been performed, showing a very
good and a statistically significant performance of the IQFRL approach.
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2.A IQFRL for Classification (IQFRL-C)

This section describes the modifications that are necessary to accomplish for adapting the
IQFRL algorithm for classification problems.

2.A.1 Examples and Grammar

The structure of the examples used for classification is very similar to the one described in
expression 2.4:

el = (d (1) , . . . , d (Nb) , velocity, class) (2.23)

where class represents the class of the example.
Furthermore, the consequent production (production 3) of the grammar (Fig. 2.4) must be

modified to:

3. consequent −→ Fc

where Fc is the linguistic label of the class. The output variable (class) has a granularity
g#class

c .

2.A.2 Initialization

The consequent of the rules is initialized as Fc = Aγ
c where γ is the class that represents the

example. Only those examples whose class is different from the default class (A f
c ) are used in

the initialization of a new individual.

2.A.3 Evaluation

For each individual (rule) of the population, the following values are calculated:

• True positives (tp):

– #tp =
∣∣{el : Cl =C j ∧DOF j

(
el
)
> 0
}∣∣, where Cl is the class of example el , C j

is the class in the consequent of the j-th rule, and DOF j
(
el
)

is the DOF of the
j-th rule for the example el . #tp represents the number of examples that have been
correctly classified by the rule.

– tpd = ∑l DOF j
(
el
)

: Cl = C j, i.e., the sum of the DOFs of the examples con-
tributing to #tp.
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– tp = #tp+ tpd/#tp

• False positives (fp):

– #fp =
∣∣{el : Cl 6=C j ∧DOF j

(
el
)
> 0
}∣∣: number of patterns that have been clas-

sified by the rule but belong to a different class.

– fpd = ∑l DOF j
(
el
)

: Cl 6= C j, i.e., the sum of the DOFs of the patterns that
contribute to #fp.

– fp = #fp+ fpd/#fp

• False negatives (fn):

– #fn = n
C j
ex −#tp, where n

C j
ex =

∣∣{el : Cl =C j
}∣∣. #fn is the number of examples that

have not been classified by the rule but belong to the class in the consequent of
the rule.

The values of tp and fp take into account not only the number of examples that are cor-
rectly/incorrectly classified, but also the degree of fulfillment of the rule for each of the ex-
amples. In case that tpd ≈ 0, then tp ≈ #tp, while if it is high (tpd ≈ #tp) then tp ≈ #tp+ 1.
Taking into account these definitions, the accuracy of an individual of the population can be
described as:

confidence =
1

10fp (2.24)

while the ability of generalization of a rule is calculated as:

support =
tp

tp+#fn
(2.25)

Finally, fitness is defined as the combination of both values:

fitness = confidence · support (2.26)

which represents the strength of an individual.

2.A.4 Mutation

For classification, the probability that an example matches the output associated to a rule (Eq.
2.7) is binary. Therefore, in order to select the example (esel) that is going to be used for
mutation, the following criteria is used:
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Table 2.15: Number of rules learned for dataset by IQFRL-C

#Rstraight #Rconvex #Rconcave

− 21.20±4.35 10.00±1.41

• For generalization, the probability for an example el to be selected is:

P(el = esel) = 1 −
∑ j DOF j

(
el
)
· confidence j

∑ j DOF j (el)
(2.27)

where confidence j is the confidence (Eq. 2.24) of the j-th individual. This probability
measures the accuracy with which the individuals of the population cover the example
el .

• For specialization, the mutated individual uncovers the example esel . The probability to
select el for specialization is calculated as follow:

P(el = esel) = 1 − DOF j

(
el
)

(2.28)

Finally, the consequent is mutated considering the class of the examples covered by the
individual. Thus, the probability that the consequent of the individual j change to the class Cγ

is defined as:

P
(

j |Cγ

)
=

∑l DOF j
(
el
)

: Cl =Cγ

∑l DOF j (el)
(2.29)

2.A.5 Performance

The parameters used for IQFRL-C are the same as for regression (Sec. 2.6.2). Moreover,
the default class is straight wall. Tables 2.15 and 2.16 show the number of rules learned by
the classification method IQFRL-C and the complexity of the rules learned in terms of mean
and standard deviation of the number of propositions and granularities for each input variable.
The number of rules for each situation is very low, resulting in very interpretable knowledge
bases. Furthermore, the complexity of the rules is also low, as the number of propositions and
granularities learned show that the rules are very general.

Table 2.17 shows the confusion matrix for the learned classifier. The matrix was obtained
as the average of a 5-fold cross-validation over the sets. Moreover, the performance of the
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Table 2.16: Complexity of the rules learned by IQFRL-C

Propositions gd gb gv

2.67±0.90 7.58±12.65 8.41±8.49 5.83±1.65

Table 2.17: Confusion matrix for the classifier

Actual/Predicted Straight Convex Concave

Straight 30.85 2.40 0.23
Convex 0.70 30.97 0.00
Concave 0.23 0.06 34.55

Accuracy = 0.96
Cohen’s κ = 0.94

classifier was analyzed with the accuracy and the Cohen’s κ [14]. Both measures are very
close to 1, showing the high performance of the classifier obtained with IQFRL-C.





CHAPTER 3

FRULER: FUZZY RULE LEARNING

THROUGH EVOLUTION FOR REGRESSION

In this chapter the work is focused on the application of GFSs to regression problems in a gen-
eral manner. In this case, no knowledge about the nature of the input variables is considered.
TSK fuzzy system is used as the FRBS model in this phase of the thesis. The use of TSK
fuzzy systems is widely extended in regression problems due to the precision of the obtained
models. Moreover, Pittsburgh approach is followed in order to improve the ability to obtain
low complex models, as it can control the number of rules. Low complex TSK models are
good choices in many real problems due to the easy understanding of the relationship between
the output and input variables.

This chapter presents FRULER (Fuzzy RUle Learning through Evolution for Regression),
a new GFS algorithm for obtaining accurate and simple linguistic TSK-1 fuzzy rule base mod-
els to solve regression problems. The simplicity of the fuzzy system aims to improve both the
generalization ability and the readability of the model. For that, FRULER generates linguis-
tic fuzzy partitions with few labels, a low number of rules, and regularizes the consequents
—which reduces the number of input variables that contribute to the output. The algorithm
consists of three stages: instance selection, multi-granularity fuzzy discretization of the input
variables, and the evolutionary learning of the rule base that uses the Elastic Net regularization
to obtain the consequents of the rules.

FRULER was validated using 28 real-world datasets and the results were compared with
three state of the art GFSs, which comprise both Mamdani and TSK linguistic and approxi-
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mative fuzzy systems. Experimental results show that FRULER achieves the most accurate
and simple models compared even with approximative approaches.

In this chapter, a full copy of the following publication is presented:

I. Rodrı́guez-Fdez1, M. Mucientes1, and A. Bugarı́n1. FRULER: Fuzzy Rule Learning
through Evolution for Regression. Information Sciences, Elsevier, No. 354, pp. 1-18,
2015.

3.1 Abstract

The use of Takagi-Sugeno-Kang (TSK) fuzzy systems in regression problems is widely ex-
tended due to the precision of the obtained models. Moreover, the use of simple linear TSK
models is usually referred as a good choice in many real problems since it provides a straight-
forward functional relationship between the output and input variables. In this paper we
present FRULER (Fuzzy RUle Learning through Evolution for Regression), a new genetic
fuzzy system for automatically learning accurate and simple linguistic TSK fuzzy rule bases
for regression problems. FRULER achieves a low complexity of the learned models while
keeping a high accuracy, by following three stages: instance selection, multi-granularity fuzzy
discretization of the input variables, and evolutionary learning of the rule base combined with
Elastic Net regularization to obtain the consequents of the rules. Each of these stages was val-
idated using 28 real-world datasets. FRULER was also experimentally compared with three
state of the art genetic fuzzy systems, showing the most accurate and simple models even
when compared with approximative approaches.

3.2 Introduction

Predictive models usually have two complementary requirements: accuracy and interpretabil-
ity [7, 6]. On the one hand, accuracy indicates the ability of the model to predict values close
to the real ones. On the other hand, interpretability refers to the easiness with which people
understand the model [7]. A number of predictive models involving fuzzy rule-based systems
have aimed to combine the interpretability and expressiveness of the rules with the ability

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela, Santiago de Compostela, Spain.
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of fuzzy logic for representing uncertainty [20, 21]. In this regard, interpretability for fuzzy
systems involves two main issues [7]:

• Readability: it is related to the simplicity of the structure of the fuzzy system itself, i.e.,
the number of variables, linguistic terms per variable, fuzzy rules, premises per rule,
etc. It represents the quantitative or objective part of the model interpretability.

• Comprehensibility: it is determined by the general semantics of the fuzzy system and
the fuzzy inference mechanism. It is associated with the meaning of the fuzzy partitions
for the user. It represents the qualitative or subjective part of the interpretability.

In fuzzy systems, the most important aspect to be considered in terms of interpretability is
the definition of the fuzzy partition for each variable, also called the data base definition. Two
different approaches can be used for this definition: (i) the linguistic approach, in which all
rules share the same fuzzy partition for each variable; (ii) the approximative approach, which
may have a different definition of the fuzzy labels for each rule in the rule base. The former
implies more interpretability through a higher simplicity and comprehensibility, while the
latter usually obtains more accurate solutions. However, approximative approaches can lead
to complex partitions of the input space, which makes harder to understand and capture the
insights of the relationship between inputs and outputs. Moreover, strong linguistic partitions
are labelled as the most interpretable choice in this regard, since they fulfil all the relevant
semantic constraints such as distinguishability, coverage, normality, convexity and others [7].

In the case of fuzzy models for regression problems, two different approaches have been
proposed in the literature: Mamdani fuzzy systems (where both antecedent and consequent are
represented by fuzzy sets) and Takagi-Sugeno-Kang (TSK) fuzzy systems [108, 106], where
the antecedents are represented by fuzzy sets, while the consequents are a weighted combi-
nation of the input variables. Although Mamdani systems are well-known because of their
interpretability, the linear model in TSK rules is also a good choice since it is straightforward
to understand the relationship between the output and input variables. This is of particular in-
terest in many fields, such as robotics [93, 90, 85], medical imaging [91], industrial estimation
[86] and optimization of processes [112].

One of the most widely used learning algorithms for automatic building of fuzzy rule bases
are Genetic Fuzzy Systems (GFSs) [26], i.e., the combination of evolutionary algorithms and
fuzzy logic. Evolutionary algorithms are appropriate for learning fuzzy rules due to their flex-
ibility —that allows them to codify any part of the fuzzy rule base system—, and due to their
capability for managing the balance between accuracy and simplicity of the model. In par-
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ticular, recent developments using multi-objective evolutionary fuzzy systems can be found
in [3, 39, 98, 8], where both Mamdani and TSK systems were proposed to solve large-scale
regression problems. Moreover, in [76] an adaptive fuzzy inference system was proposed to
cope with high-dimensional problems.

The simplicity of the models obtained by GFSs for regression has been mostly achieved
in the literature through keeping the number of rules and/or the number of labels in the rule
base as low as possible using multi-objective approaches [33, 54]. More recently, the use of
instance selection techniques has received more attention in both classification [41, 34] and
regression [92] problems. This approach faces two problems at once: decreases the complex-
ity for large-scale problems and reduces the overfitting, as the rules can be generated with a
part of the training data and the error of the rule base can be estimated with another part (or
the whole) training set. Moreover, when no expert knowledge is available to determine the
fuzzy labels, two different approaches can be applied: uniform discretization combined with
lateral displacements [2], or non-uniform discretization [55]. Recently, [32, 42] have shown
the application of non-uniform discretization techniques to classification problems.

The use of TSK fuzzy rule bases implies another complexity dimension: the polynomial
in the consequent —usually with degree 1 (TSK-1) or 0 (TSK-0). The most widely used
approach for learning the coefficients of the polynomial is the least squares method. However,
this choice often leads to models that overfit the training data and misbehave in test. This
problem can be solved by shrinking (Ridge regularization) or setting some coefficients to
zero (Lasso regularization), thus obtaining simpler models. Moreover, a combination of both
regularizations, called Elastic Net [119] can be used.

In this paper we present FRULER (Fuzzy RUle Learning through Evolution for Regres-
sion), a new GFS algorithm for obtaining accurate and simple linguistic TSK-1 fuzzy rule base
models to solve regression problems. The simplicity of the fuzzy system aims to improve the
readability of the model —and, therefore, its interpretability— by obtaining linguistic fuzzy
partitions with a low number of labels, a low number of rules, and through the regulariza-
tion of the consequents —which reduces the number of input variables that contribute to the
output. The main contributions of this work are: i) a new instance selection method for re-
gression, ii) a novel multi-granularity fuzzy discretization of the input variables, in order to
obtain non-uniform fuzzy partitions with different degrees of granularity, iii) an evolution-
ary algorithm that uses a fast and scalable method with Elastic Net regularization to generate
accurate and simple TSK-1 fuzzy rules.
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This work is structured as follows. Section 3.3 defines the TSK model used by FRULER.
Section 3.4 describes the different stages of the GFS: the instance selection method, the dis-
cretization approach, and the evolutionary algorithm. Sec. 3.5 shows the results of the ap-
proach in 28 regression problems, and the comparison with other proposals involving statisti-
cal tests. Finally, the conclusions are presented in Sec. 3.6.

3.3 Takagi-Sugeno-Kang fuzzy rule systems

Takagi, Sugeno, and Kang proposed in [106, 108] a fuzzy rule model in which the antecedents
are comprised of linguistic variables, as in the case of Mamdani systems [73, 74], but the
consequent is represented as a polynomial function of the input variables. These type of rules
are called TSK fuzzy rules. The most common function for the consequent of a TSK rule is a
linear combination of the input variables (TSK-1), and its structure is as follows:

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then

Y = β0 +X1 ·β1 +X2 ·β2 + · · ·+Xp ·βp (3.1)

where X j represents the j-th input variable, p the number of input variables, A j is the linguistic
fuzzy term for X j, Y is the output variable, and β j is the coefficient associated with X j in the
consequent part of the rule.

The matching degree h between the antecedent of the rule rk and the current inputs to the
system (x1,x2, . . . ,xp) is calculated as:

hk = T (Ak
1(x1),Ak

2(x2), . . . ,Ak
p(xp)) (3.2)

where Ak
j is the linguistic fuzzy term for the j-th input variable in the k-th rule and T is the

t-norm conjunctive operator, usually the minimum function. The final output of a TSK fuzzy
rule base system composed by m TSK fuzzy rules is computed as the average of the individual
rule outputs Yk weighted by the matching degree:

ŷ =
∑

m
k=1 hk ·Yk

∑
m
k=1 hk

(3.3)

Linguistic TSK fuzzy rule systems represent a good trade-off between accuracy and inter-
pretability, since:

• The use of linguistic terms in the antecedent of the rules provides a full description of
the input space due to the shared definition of the fuzzy partitions in the data base of
the system.
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• The linear representation of the output allows the system to obtain accurate solutions
using different well-studied statistical methods.

• The consequent of the rules represented by a linear combination of the input variables
facilitates the understanding of the relationship between the inputs and the output.

Thus, even if the TSK fuzzy rule systems are less comprehensible in natural language terms
than Mamdani approaches, the system can provide useful and understandable information,
and is the preferable choice in some domains. In this article we focus on developing simple
and accurate TSK fuzzy rule models based on a linguistic representation of the antecedents.

3.4 FRULER description

This section presents the three main components of FRULER: a two-stage preprocessing —
formed by the instance selection and multi-granularity fuzzy discretization modules—, and a
genetic algorithm, which contains an ad-hoc TSK-1 (first order) rule generation module (Fig.
3.1). Both preprocessing techniques are executed to improve the simplicity of the fuzzy rule
bases obtained by the evolutionary algorithm. On the one hand, instance selection reduces
the variance of the models focusing the generated rules on the representative examples. On
the other hand, multi-granularity fuzzy discretization decreases the complexity of the fuzzy
partitions, thus making unnecessary to establish an upper bound in the number of rules in the
evolutionary stage.

The evolutionary learning process obtains a definition of the data base for each knowledge
system. Then a novel ad-hoc TSK-1 rule generation module calculates the antecedents and
consequents of each rule using only the representative examples. Finally, each knowledge
base is evaluated using the full training dataset.

3.4.1 Instance Selection for Regression

The instance selection method for regression is an improvement of the CCISR (Class Condi-
tional Instance Selection for Regression) algorithm [92], which is an adaptation for regression
of the instance selection method for classification CCIS (Class Conditional Instance Selec-
tion) [75]. The main differences between the FRULER instance selection process and CCISR
are:
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Preprocessing

Etra

✓  e1: x1, …, xp, y
1

✘  e2: x1, …, xp, y
2

✘  e3: x1, …, xp, y
3

✓  e4: x1, …, xp, y
4

Instance Selection

Multigranularity
Fuzzy Discretize

g3

g2

ES

Evolutionary 
Learning 
Process

Ad-hoc TSK 1-order 
Rule Generation

Evaluation
(MSE)

Data Base

Rule Base

Figure 3.1: FRULER architecture showing each of the three separated stages. Dashed lines indicate flow of
datasets, dotted lines multigranularity information and solid lines represent process flow.

• The error measure is based on the 1−nearest neighbor (1NN) approach for regression,
thus reducing the complexity of the calculations compared with CCISR, which uses an
ad-hoc fuzzy system to evaluate the instances.

• The stopping criteria is more flexible, allowing more iterations without improvement
until the termination of the process.

• The size of the initial set of selected examples is also different due to the previous
improvements.

The instance selection process is based on a relation called class conditional nearest neigh-
bor (ccnn) [75], defined on pairs of points from a labeled training set as follows: for a given
class c, ccnn associates to instance a its nearest neighbor computed among only those in-
stances (excluded a) in class c. This relation, therefore, describes proximity information
conditioned to a class label.

In regression problems, the outputs are real values instead of labels and, therefore, they
must be discretized in order to use the ccnn relation. Traditionally, an unsupervised dis-
cretization process needs the definition of either the number of intervals or their shape [29].
In FRULER, the shape of the intervals takes the output density into account, i.e., the intervals
are selected such that they represent dense clusters. In other words, the split points between
intervals are selected in the zones where the output density is locally minimum.
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We use Kernel Density Estimation (KDE) with a gaussian kernel in order to estimate the
probability density function of the output variable (y) in a non-parametric way. In order to
select the appropriate kernel bandwidth, Scott’s rule is applied. [100]. Once the probability
density function is obtained, the local minimum determines the split points, and, therefore,
which labels/classes are used for the ccnn relation. Thus, each instance is associated with one
of the labels obtained by this process, and the instance selection method can follow the CCIS
procedure.

Two different graphs can be constructed using this relation, as proposed in CCIS:

• Within-class directed graph (Gwc): consists of a graph where each instance has an edge
pointing to the nearest instance of the same class.

• Between-class directed graph (Gbc): is a graph where each instance has an edge pointing
to the nearest instance of any different class.

These graphs are used to define an instance scoring function by means of a directed
information-theoretic measure (the K-divergence) applied to the in-degree distributions of
these graphs. The Score scoring function is defined as:

Score(ei) = pi
w · log

(
pi

w

(pi
w + pi

b)/2

)
− pi

b · log
(

pi
b

(pi
w + pi

b)/2

)
(3.4)

where ei is the example considered, pi
w is the in-degree of ei in Gwc divided by the total in-

degree of Gwc, and pi
b is the inner degree of ei in Gbc divided by the total in-degree of Gbc.

This scoring function is used to develop an effective large margin instance selection method,
called Class Conditional selection (Fig. 3.2).

The instance selection algorithm starts from a set of training examples E. The method
uses the leave-one-out mean squared error (MSE) with 1NN (this error is called ε) in order to
estimate the information loss. Thus, although the scoring function and the graphs are based
on the labels obtained by KDE, the error measure is based on the original regression problem.

First, an initial core of instances from E is selected, sorted by Score (Fig. 3.2, lines 1-2).
The size of this initial set is:

k0 = max
(

c,
⌈

εE · |E|
max(y)−min(y)

⌉)
(3.5)

where c is the number of classes obtained from KDE and εE is the error using the set of ex-
amples in E. This choice is motivated by (i) at least one example for each class is considered,
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1: E = {e1, . . . ,en} sorted in decreasing order of Score (Eq. 3.4)
2: S = {e1, . . . ,ek0}
3: itwi = 0
4: repeat
5: Temp = S∪{el}
6: if εTemp < εS then
7: itwi = 0
8: Sbest = Temp

9: else
10: itwi = itwi +1

11: S = Temp

12: until E = S∨ itwi >
√
|E|/|S|

13: return Sbest

Figure 3.2: Pseudocode of Class Conditional selection [75].

and (ii) the error in the second part can be interpreted as the miss-classification probability di-
vided by the range of the output max(y)−min(y). Thus, the second part indicates that at least
the miss-classified examples must be selected in order to be correctly classified. After this,
the instance selection method iteratively selects instances and adds them to the set S (lines
4-12), choosing in the first place those with the highest score. The process terminates when
all the examples of E are in S or when itwi —the number of consecutive iterations for which
the empirical error (εS) increases— is greater than

√
|E|/|S| (line 12). This threshold allows

more iterations without improvement at the beginning of the selection process, when the error
is more sensitive, and stops earlier when the number of selected instances is high.

In order to further improve the number of selected instances, CCIS uses the Thin-out post-
processing (Fig. 3.3). This algorithm selects points close to the decision boundary of the 1NN

rule. This is achieved by selecting instances having positive in-degree in the between-class
graph set S (GS

bc) and storing them in S f . Then, an iterative process is performed as follows:
points having positive in-degree in the GS1

bc are added to S f in case they were not “isolated” in
the previous iteration, that is, if their in-degree was non-null (line 6). This iterative process
terminates when the empirical error increases (line 7).
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1: S f = {el ∈ S with in-degree in GS
bc > 0}

2: Sprev = S

3: S1 = S\S f

4: go on = true

5: while go on do
6: St = {e ∈ S1 with in-degree in GS1

bc > 0 and with in-degree in GSprev
bc > 0}

7: go on = ε
S f∪St < ε

S f

8: if go on then
9: S f = S f ∪St

10: Sprev = S1

11: S1 = S\S f

12: return S f

Figure 3.3: Pseudocode of Thin-out selection [75].

3.4.2 Multi-granularity Fuzzy Discretization for Regression

The definition of the fuzzy partition of each input variable is a critical step in the design
of TSK fuzzy rule bases. When no knowledge is available, the set of fuzzy labels for a
variable is automatically obtained through fuzzy discretization. Moreover, if the number of
labels is unknown, then a multi-granularity approach may be used. In a multi-granularity
proposal, each regarded granularity has a different fuzzy partition. Specifically, a granularity
gi

var divides the variable var in i fuzzy labels, i.e., gi
var = {A

i,1
var, . . . ,A

i,i
var}.

The generation of the fuzzy linguistic labels can be divided into two stages. First, the
variable must be discretized to obtain a set of split points Cg for each granularity g. Then,
given the split points, the fuzzy labels can be defined for each granularity. In a top-down
approach, the split points are searched iteratively, i.e., only a new split point is added at each
step, obtaining two new intervals. Therefore, the approach proposed in this work aims to
preserve interpretability between contiguous granularities: adding a new label to the previous
granularity and modifying the flanks of the adjacent labels (Fig. 3.4). In regression problems
(TSK-1 in our case), the discretization process must search for the split point that minimizes
the error when a linear model is applied to each of the resulting intervals.

In order to select the maximum number of split points for a variable, we used the well-
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Figure 3.4: Top-down approach for the multi-granularity discretization. Only one label is divided into two new
labels in order to obtain the next granularity.

known Bayesian Information Criterion (BIC). This criterion takes two issues into account: the
error produced when applying the model to the data and its complexity. In our case, the error
is obtained from the summation of the mean squared error (MSE) of a least squares model
fitted for each interval of the discretization. The complexity of the model is determined by
the number of parameters, in this case the number of inner splits and the parameters fitted by
each regression applied in each interval.

The pseudocode of the discretization method for a variable is shown in Fig. 3.5. First,
the split points for granularity 1 are initialized using the domain limits (line 2). The BIC
measure for this first granularity is calculated (line 3) using MSE, a function that gets a set of
examples X , learns a linear regression model using least squares and, finally, calculates the
mean squared error of the model. In this case, the number of parameters is two, corresponding
to the coefficients of the linear model. After that, an iterative process is executed: at each
step, the split points of a new granularity are defined adding a new split point to the previous
granularity (lines 5-16).

In order to obtain the split point for the new granularity, first, the best split point (ci) for
each interval between the split points of the previous granularity ([Cg

i ,G
g
i+1]) is obtained (line

6). The best split point is defined as the point that obtains the global minimum of the function
LinearError (Fig. 3.6) in an interval (Fig. 3.5, line 7). LinearError gets a set of
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1: g = 1
2: Cg = {min(X),max(X)}
3: BICg = |X | · log(MSE(X))+2 · log(|X |)
4: itwi = 0
5: repeat
6: C =

{
ci | ci = argminc LINEARERROR({x ∈ X : Cg

i < x <Cg
i+1},c), ∀i = 0, ...,g,

∀c ∈ [Cg
i ,C

g
i+1]
}

7: imin = argmini LINEARERROR({x ∈ X : Cg
i < x <Cg

i+1}, ci), ∀ci ∈C

8: Cg+1 =Cg∪{cimin}
9: g = g+1

10: BICg = |X | · log(∑g
i=0 MSE({x ∈ X : Cg

i < x <Cg
i+1})+(|Cg|−2) ·2 · log(|X |)

11: if BICg < BICmin then
12: itwi = 0
13: min = g

14: else
15: itwi = itwi +1

16: until itwi >
√
|X |
30 /min

17: return C1, . . . ,Cmin

Figure 3.5: Pseudocode of the discretization method.

examples X and a split point c and calculates the total squared error (SE) of X , considering
the corresponding linear regression models at each side of the split point. Only split points
that obtain intervals with size of at least 30 are taken into account to assure that the obtained
linear regressions are statistically valid.

The selected split point is added to the new granularity split points (lines 8-9), and the
BIC measure is calculated (line 10). The number of parameters used for the BIC measure is
2 (coefficients of the linear regression for a single variable) for each interval. The number of
intervals is calculated as |Cg|−2, where 2 is subtracted to disregard the split points at the end
of the domain of variable X .

Finally, when the number of consecutive iterations without improvement in the BIC value

(itwi) is greater than
√
|X |
30 /min, the algorithm stops (lines 11-16). This criterion ensures that at
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1: function LINEARERROR(X , c)
2: Xl = {x ∈ X : x < c}
3: Xr = {x ∈ X : x > c}
4: return SE(Xl) · |Xl |

|X | +SE(Xr) · |Xr |
|X |

Figure 3.6: Pseudocode of the function to be minimized by the discretization method.

the beginning of the discretization process —the granularity is low—, the BIC may worsen for
more iterations, while with larger granularities, the algorithm becomes stricter in the stopping
criterion. The number of data points is divided by 30 in order to get the maximum number of
intervals.

After obtaining the discretization of the variable for each granularity, the method proposed
in [55] is applied for each Cg —set of split points for the granularity g— in order to get
the multi-granularity fuzzy partitions. This method uses a fuzziness parameter: fuzziness
0 indicates crisp intervals, while fuzziness 1 indicates the selection of a fuzzy set with the
smallest kernel —set of points with membership equal to 1.

3.4.3 Evolutionary Algorithm

The evolutionary algorithm learns a linguistic TSK model. The integration of the evolutionary
algorithm with the preprocessing stage is as follows (Fig. 3.1):

• First, the instance selection process is executed over the training examples Etra in order
to obtain a subset of representative examples ES.

• Then, the multi-granularity fuzzy discretization process obtains the fuzzy partitions for
each input variable.

• Finally, the evolutionary algorithm searches for the best data base configuration using
the obtained fuzzy partitions, generates the entire linguistic TSK rule base using ES and
evaluates the different rule bases using Etra.

Figure 3.7 shows the evolutionary learning process and how it uses the fuzzy partitions
and the training examples. In what follows, we describe in detail the different components of
the evolutionary algorithm.
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Evolutionary Process
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Figure 3.7: The Evolutionary learning process used in FRULER. Dashed lines indicate flow of datasets, dotted lines
are for multigranularity information and solid lines represent process flow.

Chromosome Codification

The chromosome codification represents the parameters needed to create the data base and
the rule base. Each individual has to codify a single fuzzy partition for each input variable
from the fuzzy partitions obtained in the multi-granularity fuzzy discretization (Sec. 3.4.2).
Moreover, the individuals also use the 2-tuple representation of the labels [52]. This approach
applies a displacement of a linguistic term within an interval that expresses the movement of
a label between its two adjacent labels. In our case, a different displacement is going to be
applied to each of the split points.

Thus, the chromosome is codified with a double coding scheme (C =C1 +C2):

• C1 represents the granularity of each input variable. It is codified with a vector of p

integers:

C1 = (g1,g2, . . . ,gp) (3.6)

where gi is the granularity of input variable i. When the granularity of a variable is
equal to 1, then it is not used in the antecedent part. However, this variable can still be
part of the consequent, since it may be relevant for calculating the output.

• C2 represents the lateral displacements of the split points of the input variables fuzzy
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partitions. Thus, the length of C2 depends on the granularity of each input variable:
|C2|= ∑

p
j=1 (|g j|−1),∀g j ∈C1:

C2 = (α1
1 , . . . ,α

g1−1
1 , . . . ,α1

p, . . . ,α
gp−1
p ) (3.7)

where α
j

i is the lateral displacement of the j split point of variable i. Each lateral
displacement can vary in the (0.5,0.5) interval, which represents half of the distance
between each split point (Fig. 3.8). An example of a lateral displacement can be seen in
Figure 3.9. The fuzzy partitions are always strong —the sum of the degree of fulfillment
for each point of the domain is always equal to 1— and, therefore, interpretability is
maintained.
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Figure 3.8: An example of lateral displacement intervals for limits equal to (0.5,0.5). The split points can move a
maximum of half of the distance to the next split point.
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Figure 3.9: A lateral displacement example. The dashed lines indicate the original fuzzy partition, while the solid
lines indicate the obtained partition after the displacement has been applied.
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Initialization

The initial pool of individuals is generated by a combination of two initialization procedures.
A half of the individuals are generated with the same random granularity for each variable,
while the other half is created with a different random granularity for each variable. The
lateral displacements are initialized to 0 in all cases.

After that, when the product of the granularities indicated in C1 (i.e., the maximum number
of rules that can be obtained) is greater than the number of input variables times the highest
maximum granularity of the variables, then a variable is randomly selected to be removed
from the antecedent part —its granularity is set to 1— until the previous condition is satisfied.
This is done in order to avoid too complex solutions in the initialization stage —during the
evolutionary learning this upper bound to the number of rules does not apply.

TSK Rule Base Generation

An ad-hoc method is used to construct the rule base from the data base codified in the chro-
mosome, i.e. the fuzzy partitions indicated in C1 after applying the displacement in C2. The
Wang & Mendel algorithm [113] is used to create the antecedent part of the rule base for each
individual. The method is quick and simple, and obtains a representative rule base given the
definition of the data base and a set of examples.

The consequent part of the rules is learned using the Elastic Net method [119] in order to
obtain the coefficients of the degree 1 polynomial for each rule. Elastic Net linearly combines
the `1 (Lasso regularization) and `2 (Ridge regularization) penalties of the Lasso and Ridge
methods to overcome some of their limitations. This combination allows to obtain sparse
models —forces variables with low or null correlation with the output to have coefficients
equal to 0— while learning a smooth linear regression —the coefficients are shrunk towards
0.

Elastic Net obtains the coefficients of a linear regression minimizing the following equa-
tion:

β̂ = argmin
β

||Y −X ·β ||22 +λ ·α · ‖β‖2
2 +λ · (1−α) · ‖β‖1 (3.8)

where β is the coefficients vector (β0,β1, . . . ,βp), Y is the outputs vector (y1, . . . ,yn), X is
the inputs matrix with size n× p —rows represent examples while columns are the input
variables—, λ is the regularization parameter and α represents the trade-off between `1 and
`2 penalization.
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In order to use Elastic Net for learning the consequents, the coefficients for each rule
cannot be calculated separately due to the aggregation function used to obtain the output of
the system (Eq. 3.3). Therefore, all the coefficients must be optimized at the same time, taking
into account the degree of fulfillment of each rule (Eq. 3.2) for each input vector xi. Thus, the
matrix X is modified as follows:

• The normalized degree of fulfillment for each rule rk and each example ei is calculated
as:

zi
k =

hk(xi)

∑
m
u=1 hu(xi)

(3.9)

where the denominator is the normalization term for each input vector xi, i.e., the sum-
mation of the degree of fulfillment of all rules.

• Then, the matrix X is defined as:

X =


z1

1,x
1
1 · z1

1,. . . ,x
1
p · z1

1,. . . ,z
1
m,x

1
1 · z1

m,. . . ,x
1
p · z1

m
...

...
zn

1,x
n
1 · zn

1,. . . ,x
n
p · zn

1,. . . ,z
n
m,x

n
1 · zn

m,. . . ,x
n
p · zn

m

 (3.10)

where each row replicates the input vector xi = (1,xi
1,x

i
2, . . . ,x

i
p) —a 1 was added to

take into account the independent term— as many times as the number of rules (m),
weighting each rule rk by zi

k.

• Finally, the coefficient vector is the concatenation of the coefficients of all rules:

β =
(

β 1
0 ,β

1
1 ,. . . ,β

1
p ,. . . ,β

m
0 ,β m

1 ,. . . ,β m
p

)
(3.11)

In order to solve the minimization problem of Elastic Net (Eq. 3.8), the Stochastic Gradi-
ent Descent (SGD) optimization technique was used [17, 110]. This gradient descent method
is characterized by updating each coefficient separately using only one example at a time.
This is particularly suited for sparse datasets, which is a common case when X is constructed
using Eq. 3.10 —zi

k is 0 when a rule does not cover an example.

The pseudocode of the method is shown in Figure 3.10. SGD needs three parameters to
solve the Elastic Net approach: the regularization (λ ), the trade-off between Lasso and Ridge
(α) and the initial learning rate (η0). On the one hand, α usually takes a low value in order
to behave like `1 but with the shrinkage of `2 in the features with coefficient not equal to 0.
On the other hand, λ and η0 can be obtained using a grid search —testing a set of possible
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values in a predefined interval— using only a small subset of examples since the convergence
properties are maintained [17].

The algorithm is composed of three different loops: i) lines 3-27, which represent an
iteration over the whole dataset, ii) lines 6-17, which iterate over each example and iii) lines
11-17, which iterate over the coefficients. Note that, in this case, the number of coefficients
is the number of columns in X (p ·m), i.e., the number of input variables of the problem (p)
times the number of rules (m). First, the examples are shuffled (line 5) each time the whole
dataset is used. Then, for each example ei, t is incremented by 1 and the learning rate (η t )
and the shrinkage portion for both `1 and `2 (s and u respectively) are updated (lines 6-10).
After that, for each coefficient w j, line 12 applies Ridge regularization [17], while lines 13-17
apply the Lasso approach [110]. The Lasso approach uses thresholds in order to decide if the
variable is going to be selected (weight different from 0) and updates the threshold for each
input variable for the next iterations (q j in line 17). Finally, the coefficient of determination
R2 is calculated (line 18) and compared with the best obtained so far. If it is better, then
the estimated coefficients β̂ are updated and, if it is not, the number of iterations without
improvement (itwi) is incremented by 1. When itwi exceeds the threshold defined in line 27,
the algorithm stops. This threshold is directly proportional to the number of examples, and
decreases with the number of iterations.

Only those examples in Es are used to obtain the rule base from the codified chromosome.
In this manner, those examples that are not representative are not taken into account for the
rule generation. Thus, the method avoids the generation of too specific rules, and reduces the
time needed to create the rule base.

Evaluation

The fitness function is based on the estimation of the error of the generated rule base:

fitness = MSE(Etra) =
1

2 · |E|

|E|

∑
i=1

(F(xi)− yi)2, (3.12)

where Etra is the full training dataset and F(xi) is the output obtained by the knowledge base
for input xi. Using all the examples for evaluation can be seen, in some way, as a validation
process, as the rule base was constructed with a subset of them (ES).
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1: function SGD-ELASTICNET(X, Y, λ , α , η0)

2: it = 0, t = 0, s = 1, u = 0, w0 = 01×p, q = 01×p

3: repeat
4: SHUFFLE ROWS(X) . SGD needs to reorder the rows of X

5: for i = 1, . . . ,n do
6: t = t +1 . t counts how many updates of the weights have been applied

7: η t = η0 · (λ · t)−1 . Updates the learning rate to be more conservative

8: ŷi = xi ·wt · s . Obtains the estimated output

9: s = s · (1−α ·η t ·λ ) . Updates how much of `2 was applied

10: u = u+(1−α) ·η t ·λ . Updates how much of `1 was applied

11: for j = 1, . . . , p do
12: w

t+ 1
2

j = wt
j−η t · (ŷi− yi) · xi

j/s . Applies the `2 regularization

13: if s ·wt+ 1
2

j > 0 then . Applies `1 regularization and thresholds

14: wt+1
j = max(0,w

t+ 1
2

j − (u+q j)/s) . Positive threshold

15: else if s ·wt+ 1
2

j < 0 then

16: wt+1
j = min(0,w

t+ 1
2

j +(u−q j)/s) . Negative threshold

17: q j = q j + s · (wt+1
j −w

t+ 1
2

j ) . Updates thresholds

18: R2
i t = 1− 1

n ∑
n
i=0(x

i ·wt+1 · s− yi)2 . Calculates R2

19: if R2
i t > R2

best then . Updates bests values and iter. without improvement

20: β̂ = wt+1 · s
21: R2

best = R2
t

22: itwi = 0

23: else
24: itwi = itwi +1

25: it = it +1 . it counts how many times the full dataset was used

26: until itwi > sqrt(|X |/it)

27: return β̂

Figure 3.10: Pseudocode of SGD for Elastic-Net.

Selection and Replacement

The selection is performed by a binary tournament. On the other hand, the replacement
method joins the previous and current populations, and selects the N best individuals as the
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new population.

Crossover and Mutation

Two crossover operations are defined: one-point crossover for exchanging the C1 parts (it also
exchanges the corresponding C2 genes) and, when the C1 parts are equal, the parent-centric
BLX (PCBLX) [51] is used to crossover the C2 part. In order to prevent the crossover of too
similar individuals, an incest prevention was implemented. When the euclidean distance of
the lateral displacements is less than a particular threshold L, the individuals are not crossed.

The mutation (with probability pmut ) applies two possible operations with equal proba-
bility to a randomly selected gene of the C1 part: i) decreasing the granularity by 1 or ii)
increasing the granularity to a more specific granularity —all the granularities have the same
chance. In order to calculate the new lateral displacements in the corresponding C2 part, the
displacements of the previous granularity are taken into account. The displacement associ-
ated with a particular split point is calculated adding the displacements of the two nearest
split points of the previous granularity (before mutation) weighted by the distance between
the split points.

Local Search

After the replacement, all the new individuals (their C1 part of the chromosome was not gen-
erated before) go to a local search process. This stage generates nls new C1 parts with equal or
less granularity —with equal probability— for each variable. Then, the C2 part is generated
randomly with a uniform distribution in the (−0.5,0.5) interval. The new chromosomes are
decoded and evaluated and, if there is a solution that obtains better fitness, then it replaces the
original individual.

Restart and Stopping Criteria

The restart mechanism uses the incest prevention threshold L as a trigger. First, L is initialized
as the maximum length of the C2 part, i.e. the product of the number of input variables times
the largest maximum granularity of the variables, divided by 4. This implies that the incest
prevention allows crossovers between individuals that have a distance higher than a quarter of
the maximum euclidean distance. Then, at each iteration, L is decreased in different ways in
order to accelerate convergence:
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• L is decreased by 0.4 in all the iterations, in order to increase convergence.

• If there are no new individuals in the population, then L is decreased by 0.2.

• If the best individual does not change, L is also decreased by 0.2.

Finally, when L reaches 0, the population is restarted, and L is reinitialized. Only the best
individual so far is kept, and the local search process is executed with the best individual in
order to generate new individuals until the population is complete. When the restart criterion
is fulfilled twice, the algorithm stops, i.e., one single restart is executed. Moreover, if the
number of evaluations reaches a threshold, then the algorithm is also stopped. When the
evolutionary algorithm stops, the best rule base consequents are optimized applying the SGD
algorithm (Sec. 3.4.3) using all the training examples.

3.5 Results

In order to analyze the performance of FRULER, we have used 28 real-world regression
problems from the KEEL project repository [4]. Table 3.1 shows the characteristics of the
datasets, with the number of instances ranging from 337 to 40,768 examples, and the number
of input variables from 2 to 40. The most complex problems —large scale— due to both the
number of examples and variables are the ones in the last 8 rows (Table 3.1).

Table 3.1: The 28 datasets of the experimental study stating their number of input
variables (#Variables) and examples (#Cases).

Problem Abbr. #Variables #Cases

Electrical Length ELE1 2 495
Plastic Strength PLA 2 1,650
Quake QUA 3 2,178
Electrical Maintenance ELE2 4 1,056
Friedman FRIE 5 1,200
Auto MPG6 MPG6 5 398
Delta Ailerons DELAIL 5 7,129
Daily Electricity Energy DEE 6 365
Delta Elevators DELELV 6 9,517
Analcat ANA 7 4,052
Auto MPG8 MPG8 7 398
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Abalone ABA 8 4,177
Concrete Compressive Strength CON 8 1,030
Stock prices STP 9 950
Weather Ankara WAN 9 1,609
Weather Izmir WIZ 9 1,461
Forest Fires FOR 12 517
Mortgage MOR 15 1,049
Treasury TRE 15 1,049
Baseball BAS 16 337
California Housing CAL 8 20,640
MV Artificial Domain MV 10 40,768
House-16H HOU 16 22,784
Elevators ELV 18 16,559
Computer Activity CA 21 8,192
Pole Telecommunications POLE 26 14,998
Pumadyn PUM 32 8,192
Ailerons AIL 40 13,750

In the following subsections we show the results obtained by the different parts of the
algorithm. Moreover, the results obtained by FRULER are compared with other state of the
art approaches.

3.5.1 Experimental Setup

FRULER was designed to keep the number of parameters as low as possible. For the instance
selection technique, no parameters are needed. In the multi-granularity fuzzy discretization
stage, the fuzziness parameter for the generation of the fuzzy intervals was set to 1, i.e., the
highest fuzziness value. For the evolutionary algorithm, the values of the parameters were:
population size = 61, maximum number of evaluations = 100,000, pcross = 1.0, pmut = 0.2,
and nls = 5. For the generation of the TSK fuzzy rule bases, the weight of the tradeoff between
`1 and `2 regularizations of Elastic Net was α = 0.95, and the regularization parameter λ was
obtained from a grid search in the interval [1,1E − 10]. η0 was obtained halving the initial
value (0.1) until the result worsens.
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A 5-fold cross validation was used in all the experiments. Moreover, 6 trials (with different
seeds for the random number generation) of FRULER were executed for each 5-fold cross
validation. Thus, a total of 30 runs were obtained for each dataset. The results shown in the
next section are the mean values over all the runs. The run times were measured using a single
thread in an Intel Xeon Processor E5-2650L (20M Cache, 1.80 GHz, 8.00 GT/s Intel QPI).

3.5.2 Performance of the Instance Selection Process

We considered two different measures to evaluate the instance selection process:

• Reduction: is the percentage of reduction in the number of examples, defined as:

Reduction =

(
1− |Es|
|Etra|

)
·100 (3.13)

where |Es| is the number of examples in the subset of selected examples and |Etra| is
the original number of examples in the training set.

• Increase in error: is the increment in the error after applying the instance selection
process, defined as:

Increase =
εEs

εEtra

(3.14)

where εE is the mean squared error of a leave-one-out 1NN regression.

Table 3.2: Average (5-fold cross validation) results of reduction (percentage of reduction
in the number of examples), error increase (increment in the error after
applying the instance selection process) and runtime obtained by the instance
selection method for each dataset.

Datasets Reduction (%) Increase in error Time (m:s)

ELE1 83.4 0.85 00:54
PLA 91.8 0.76 01:54
QUA 70.9 1.07 03:50
ELE2 84.9 4.08 02:09
FRIE 79.5 1.53 01:33
MPG6 81.6 1.24 00:45
DELAIL 96.9 1.04 10:59
DEE 77.7 1.14 00:42
DELELV 94.0 0.97 15:44
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ANA 98.8 16.61 05:09
MPG8 81.4 0.92 00:44
ABA 91.7 0.96 06:13
CON 88.0 1.33 02:04
STP 73.6 2.35 02:07
WAN 85.4 1.58 02:03
WIZ 64.2 1.36 02:37
FOR 93.3 0.54 00:58
MOR 83.4 4.28 02:12
TRE 81.6 5.35 02:20
BAS 83.5 1.61 00:38
CAL 91.6 1.27 39:44
MV 98.7 3.87 40:33
HOU 95.4 1.12 46:08
ELE 96.0 1.33 30:49
CA 98.9 7.40 11:57
POLE 98.7 18.36 27:15
PUM 80.3 1.01 14:48
AIL 95.4 1.12 24:31

Table 3.2 shows the average values of instances reduction and error increase for each
dataset. The percentage of reduction achieved is over 80% in most of the datasets. In four
of the datasets (QUA, FRIE, DEE, STP) the reduction is in the range 70-80%, and only one
dataset (WIZ) has a reduction under 70% (64.2%). The reduction rate does not depend nei-
ther on the size of the dataset, nor on the number of variables, but on the complexity of the
data. On the other hand, the increase in 1NN error is very low, as it is greater than 2 for
only eight datasets (ELE2, ANA, STP, MOR, TRE, MV, CA, POLE). The run time of the
instance selection process is generally low, and only the large scale problems take more than
15 minutes.

3.5.3 Performance of the Multi-Granularity Fuzzy Discretization Process

We evaluated the discretization with three different measures:
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• Average maximum granularity (over all the variables) for each dataset. This measure
summarizes the complexity of the fuzzy partitions generated by the discretization.

• Maximum granularity among the variables for each dataset. This represents the upper
bound of the fuzzy partitions obtained for each dataset. It is expected that the smaller
this value, the simpler the models obtained by FRULER.

• The number of variables that have not been discretized at all, i.e., their maximum gran-
ularity is equal to 1.

Table 3.3: Results of the multi-granularity fuzzy discretization process for each dataset
—5-fold cross validation. The table shows the average granularity of all the
input variables (Average), the maximum granularity (Max), the number of
input variables with granularity 1 (#Not Used), and the runtime (Time).

Problem Average Max #Not used Time (s:ms)

ELE1 2.30 2.40 0.00 00:11
PLA 3.50 4.40 0.00 00:17
QUA 3.93 7.80 0.00 00:26
ELE2 5.10 7.60 0.00 00:21
FRIE 2.00 2.00 0.00 00:18
MPG6 3.56 5.80 0.00 00:13
DELAIL 9.76 14.00 0.00 00:65
DEE 2.17 3.00 0.00 00:11
DELELV 7.80 15.40 0.80 00:63
ANA 1.97 6.60 5.00 00:13
MPG8 2.86 5.60 1.00 00:09
ABA 3.95 7.80 1.00 00:35
CON 5.95 14.00 1.00 00:29
STP 4.27 9.40 0.00 00:24
WAN 5.04 14.80 0.00 00:28
WIZ 4.27 9.00 0.00 00:25
FOR 2.43 6.00 4.00 00:15
MOR 3.95 8.00 0.00 00:27
TRE 3.71 6.20 0.00 00:35
BAS 2.58 5.20 4.00 00:13
CAL 5.13 13.80 0.00 01:40
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MV 3.38 18.60 3.00 02:91
HOU 3.68 12.20 5.00 02:20
ELE 8.03 17.20 2.00 01:57
CA 4.14 14.40 8.00 00:73
POLE 4.52 16.00 5.00 01:05
PUM 2.04 3.20 0.00 01:41
AIL 6.69 19.00 6.20 02:01

Table 3.3 summarizes the results for each dataset. The average maximum granularity is
below 9 in all the cases except for DELAIL dataset. Moreover, the maximum granularity is
always below 20 and only in 11 cases (DELAIL, DELELV, CON, WAN, CAL, MV, HOU,
ELE, CA, POLE, AIL) it is above granularity 10. Even in the datasets with high granularities,
the maximum number of fuzzy sets does not generate a huge search space for the evolutionary
algorithm. Finally, the number of variables without discretization is 0 in most of the cases.
In terms of run time, the discretization module has almost no cost, as the most expensive
discretization process is less than 3 seconds.

3.5.4 Statistical Analysis

In this section we compare FRULER with three of the most accurate genetic fuzzy systems
for regression in the literature:

• FSMOGFS
e+TUNe [3]: a multi-objective evolutionary algorithm that learns Mamdani

fuzzy rule bases. This algorithm learns the granularities from uniform multi-granularity
fuzzy partitions (up to granularity 7) and the lateral displacement of the labels. It in-
cludes a post-processing algorithm for tuning the parameters of the membership func-
tions and for rule selection.

• L-METSK-HDe [39]: a multi-objective evolutionary algorithm that learns linguistic
TSK-0 fuzzy rule bases. The algorithm learns the granularities from uniform multi-
granularity fuzzy partitions (up to granularity 7).

• A-METSK-HDe [39]: a multi-objective evolutionary algorithm that learns approxima-
tive TSK-1 fuzzy rule bases. The algorithm starts with the solution obtained on the first
stage and applies a tuning of the membership functions, rule selection and a Kalman-
based calculation of the consequents of the rules.
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Table 3.4: Average number of rules (#Rules) and test MSE (Test Error) for the compared algorithms. The test errors
in this table should be multiplied by 105,10−8,10−6,109,108,10−6,10−4,10−8 in the case of ELE1,
DELAIL, DELELV, CAL, HOU, ELV, PUM, AIL respectively.

algorithms FRULER FSMOGFS
e+TUNe L-METSK-HDe A-METSK-HDe

#Rules Test Error #Rules Test Error #Rules Test Error #Rules Test Error

ELE1 4.1 2.012 8.1 1.954 15 1.925 11.4 2.022

PLA 1.4 1.219 18.6 1.194 23 1.218 19.2 1.136
QUA 7.8 0.0181 3.2 0.0178 35.9 0.019 18.3 0.0181

ELE2 4.3 6,729 8 10,548 59 20,095 36.9 3,192
FRIE 8.0 0.731 22 3.138 95.1 3.084 66 1.888

MPG6 13.7 3.727 20 4.562 99.6 4.469 53.6 4.478

DELAIL 2.5 1.458 6.2 1.528 98.3 1.621 36.8 1.402
DEE 7.9 0.080 18.3 0.093 96.4 0.095 50.6 0.103

DELELV 5.8 1.045 7.9 1.086 91 1.119 39.1 1.031

ANA 3.9 0.008 10 0.003 48.9 0.006 33.3 0.004

MPG8 12.7 4.084 23 4.747 98.7 5.61 64.2 5.391

ABA 4.5 2.393 8 2.509 42.4 2.581 23.1 2.392
CON 8.9 20.598 15.4 32.977 96.5 38.394 53.7 23.885

STP 42.4 0.353 23 0.912 100 0.78 66.4 0.387

WAN 5.6 0.888 8 1.635 91.1 1.773 48 1.189

WIZ 8.9 0.663 10 1.011 55.4 1.296 29.1 0.944

FOR 5.6 2,214 10 2,628 93.7 4,633 40.6 5,587

MOR 7.9 0.007 7 0.019 40.9 0.028 27.2 0.013

TRE 4.5 0.027 9 0.044 42.8 0.052 28.1 0.038

BAS 6.2 305,777 17 261,322 95.7 320,133 59.8 368,820

CAL 15.4 2.110 8.4 2.95 99.8 2.638 55.8 1.71
MV 6.0 0.083 14 0.158 76.4 0.244 56.5 0.061
HOU 12.1 8.005 11.7 9.4 68.9 10.368 30.5 8.64

ELE 5.4 2.934 8 9 76.4 8.9 34.9 7.02

CA 7.1 4.634 14 5.216 71.3 5.88 32.9 4.949

POLE 40.8 110.898 13.1 102.816 100 150.673 46.3 61.018
PUM 7.8 0.367 17.6 0.292 87.5 0.594 63.3 0.287
AIL 8.5 1.404 15 2 99.1 1.822 48.4 1.51
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Table 3.4 shows the average results of FRULER and the three algorithms selected for
comparison. Two different results are shown for each algorithm and dataset: the number of
rules of the obtained rule base, and the test error measured using equation 3.12 over the test
data. These indicators allow to compare both the simplicity and the accuracy of the learned
models. The values with the best accuracy —lowest error— and best number of rules in table
3.4 are marked in bold.

It can be seen that the number of rules of FRULER is the lowest in the majority of
the datasets. It should be noted that the number of rules in the large scale problems (the
last 8 problems) is also low despite the high number of examples. Only in 5 problems the
FSMOGFS

e+TUNe Mamdani proposal produces the lowest number of rules. In the case of ac-
curacy, in 15 of the 28 problems FRULER achieves the best results. In the other 13 datasets,
the best results are for FSMOGFS

e+TUNe (best in 4 problems) and A-METSK-HDe (best in 9
problems). From the results, we did not find any influence in the performance of FRULER by
neither the training dataset size nor the dimensionality of the problem.

In order to analyze the statistical significance of these results, we used the STAC platform
[89] to apply the statistical tests. A Friedman test was used for both the number of rules and
the test error in order to get a ranking of the algorithms and check whether the differences
between them were statistically significant.

Table 3.5: Friedman test ranking results and test p-value for the test error in table 3.4.

Algorithm Ranking

FRULER 1.714
A-METSK-HDe 2.036
FSMOGFS

e+TUNe 2.786
L-METSK-HDe 3.464

p-value < 1E−5

Table 3.6: Wilcoxon comparison for the two most accurate algorithms in table 3.5.

Comparison p-value

FRULER vs A-METSK-HDe 0.079
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Table 3.5 shows the ranking for the test error, with the p-value of the test. Our proposal
—generates linguistic TSK-1 rules— gets the top ranking, i.e., it has the best results in accu-
racy among all the algorithms. Then, the next algorithm in the ranking is the approximative
approach, due to its fine tuning of the rules, followed by the linguistic approaches. In order
to compare whether the difference between FRULER and the second ranked algorithm (A-
METSK-HDe[39]) was significant, we performed a Wilcoxon test (Table 3.6). The p-value
indicates that the difference is statistically significant when using a significance level of 0.1.
Thus, even with linguistic rules, FRULER obtains a great accuracy compared to approxima-
tive approaches, while getting simpler models.

Table 3.7: Friedman test ranking and test p-value results for the number of rules in table 3.4.

Algorithm Ranking

FRULER 1.214
FSMOGFS

e+TUNe 1.786
A-METSK-HDe 3
L-METSK-HDe 4

p-value < 1E−5

Table 3.8: Wilcoxon comparison of the number of rules for the two most accurate approaches in table 3.7.

Comparison p-value

FRULER vs A-METSK-HDe < 1E−4

To analyze the complexity of the models obtained for each algorithm, the same Friedman
test was performed to the number of rules in table 3.4 (Table 3.7). Once again, FRULER
has the lowest ranking. The next algorithm in the ranking is FSMOGFS

e+TUNe Mamdani
approach, followed by the METSK-HDe approaches with a big difference in the ranking. We
applied a Wilcoxon test (Table 3.8) in order to assess whether the difference in complexity
among the most accurate proposals (Table 3.5) was significant. The difference is statistically
significant (p-value equal to 1E−4) in the number of rules. This shows that FRULER obtains
accurate solutions with simpler models.
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Table 3.9: Average runtime and number of evaluations per run of FRULER.

Datasets ELE1 PLA QUA ELE2 FRIE MPG6 DELAIL

Time (h:m:s) 0:00:51 0:01:41 0:09:48 0:03:05 0:05:46 0:02:12 0:09:58
Evaluations 8,885 7,345 13,020 16,798 17,283 21,556 19,236

Datasets DEE DELELV ANA MPG8 ABA CON STP

Time (h:m:s) 0:02:26 0:25:01 0:05:05 0:03:29 0:17:45 0:05:55 0:27:41
Evaluations 24,131 24,386 27,107 29,355 31,537 32,318 38,468

Datasets WAN WIZ FOR MOR TRE BAS CAL

Time (h:m:s) 0:10:27 0:26:03 0:02:28 0:27:50 0:23:30 0:04:41 1:57:03
Evaluations 35,812 36,168 45,367 60,101 57,569 59,362 33,951

Datasets MV HOU ELE CA POLE PUM AIL

Time (h:m:s) 1:17:02 4:15:17 3:01:30 0:38:12 1:53:15 31:14:27 12:50:38
Evaluations 35,001 61,709 68,055 78,036 99,827 96,543 100,000

Table 3.9 shows the average run time of FRULER in each dataset. We also display the
number of evaluations until the stopping condition was met. Although each of the stages
of FRULER increases the computational complexity, they contribute to focus the search on
the simplest models. Our method obtains solutions in the range between 1-23 minutes for
datasets 1-20 (the most simple ones) and solutions in the range from 1-30 hours for datasets
21-28 (the most complex ones). Moreover, the number of evaluations is below the limit
(100,000), except for the largest problem (AIL). The run time of FRULER is in the same
order of magnitude as A-METSK-HD, being only worse in six datasets (QUA, WIZ, MOR,
TRE, PUM and AIL) 2.

In order to demonstrate the simplicity of the models generated by FRULER, Figure 3.11
shows an example of one of the rule bases generated for the WAN dataset. There are two
columns for each rule: the fuzzy sets in the antecedent and the weight of the variables in the
consequent. For the sake of simplicity and understandability, the consequents are represented

2A quantitative comparison with the computational times of [39] has not been performed, since the processors
are different
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Figure 3.11: An example of TSK fuzzy rule base for the WAN dataset. The system uses only 2 variables for the
antecedent part and has 6 different rules. For the sake of simplicity and understandability, the
consequents are represented with their absolute value and have been scaled to have the maximum
weight equal to 1. The test error obtained by this example is 0.885.

with their absolute value and have been scaled to a maximum weight of 1. The antecedent
only uses two variables with granularity 3 and 2 respectively, thus 6 rules are needed to cover
all the combinations. On the other hand, the consequent column shows the importance of each
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input variable for each rule, providing a qualitative understanding of the model. In this case,
the first three variables (X1, X2 and X3) have the greatest importance in the consequent. Note
that, even though this is one of the simplest models obtained by FRULER, the test error is
very low (0.885).

3.6 Conclusions

In this paper, a novel genetic fuzzy system called FRULER was presented. FRULER learns
simple and linguistic TSK-1 knowledge bases for regression problems following a new ap-
proach than involves two general-purpose preprocessing stages: a new instance selection
for regression and a novel non-uniform multi-granularity fuzzy discretization. Furthermore,
FRULER’s evolutionary learning algorithm incorporates an automatic generation of the TSK
fuzzy rule bases from fuzzy partitions, and uses Elastic Net in order to obtain consequents
with low overfitting.

FRULER was compared with three state of the art algorithms that learn different types
of fuzzy rules: linguistic Mamdani, linguistic TSK-0 and approximative TSK-1. The results
were analyzed using statistical tests of significance, which show that FRULER obtains high
accuracy, but with a lower number of rules and with a linguistic data base. This is of particular
interest in problems where both high accuracy and interpretability are demanded, in order to
provide simple and understandable regresssion models to the users.



CHAPTER 4

S-FRULER: SCALABLE FUZZY RULE

LEARNING THROUGH EVOLUTION FOR

REGRESSION

This chapter focuses on the scalability of FRULER, the proposed GFS that learns simple
and linguistic TSK-1 knowledge bases for regression problems (in chapter 3). Although the
runtime of FRULER is acceptable (between 1-23 minutes) for the simplest datasets, it does not
scale properly when solving large scale problems (from 1 to 30 hours). Moreover, with larger
problems it may not converge to a good solution. The goal is to obtain models with similar
characteristics than those generated by FRULER —accurate and simple—, but reducing the
runtime of the algorithm to converge.

In GFSs the size of the problem has a huge influence in the performance of the obtained
models, since i) the learned fuzzy rule bases suffer from exponential rule explosion when the
number of variables increases, and ii) the convergence time increases with the number of ex-
amples. This chapter presents S-FRULER, a scalable distributed version of FRULER, which
uses the Spark software. S-FRULER focuses on splitting the problem into smaller partitions
and incorporates a feature selection process for reducing the number of variables used in each
partition. Each partition is then solved independently using the FRULER algorithm. Then,
an aggregation function is used to obtain linguistic TSK fuzzy rule bases from the rule bases
generated for each dataset partition.

S-FRULER has been validated in terms of scalability, precision and complexity using 10
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large-scale datasets and has been compared with three state of the art GFSs. Experimental re-
sults show that S-FRULER scales well and achieves simple linguistic models with a precision
comparable with approximative models. Moreover, S-FRULER has been applied to a bioin-
formatics problem that was proposed as a benchmark for scalability of regression problems,
obtaining good results in both accuracy and complexity.

In this chapter, a full copy of the following publication is presented:

I. Rodrı́guez-Fdez1, M. Mucientes1, and A. Bugarı́n1. S-FRULER: Scalable Fuzzy Rule
Learning through Evolution for Regression. Knowledge-Based Systems, Elsevier, Avail-
able online 26 July 2016, DOI:10.1016/j.knosys.2016.07.034

4.1 Abstract

In genetic fuzzy systems (GFS) the size of the problem has a huge influence in the perfor-
mance of the obtained models, since i) the fuzzy rule bases learned suffer from exponential
rule explosion when the number of variables increases, and ii) the convergence time incre-
ments with the number of examples. In this paper we present S-FRULER, a scalable dis-
tributed version of FRULER which is a GFS that learns simple and linguistic TSK-1 knowl-
edge bases for regression problems. S-FRULER obtains models with high accuracy and low
complexity, whilst reducing the algorithm runtime. S-FRULER focuses on splitting the prob-
lem into smaller partitions and incorporates a feature selection process for reducing the num-
ber of variables used in each partition. Each partition is then solved independently using the
FRULER algorithm. Afterwards, an aggregation function obtains the final linguistic TSK
fuzzy rule base from the information generated in each partition. S-FRULER has been vali-
dated in terms of scalability, precision and complexity using 10 large-scale datasets and has
been compared with three state of the art GFSs. Experimental results show that S-FRULER
scales well while achieving simple models with a linguistic approach and a precision compa-
rable with approximative models. Moreover, S-FRULER has been applied to a bioinformatics
problem that was proposed as a benchmark for scalability of regression problems, obtaining
good results in both accuracy and complexity.

1Centro Singular de Investigación en Tecnoloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela, Santiago de Compostela, Spain.
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4.2 Introduction

The vast majority of techniques in statistical learning and data mining were traditionally de-
signed to work with a limited amount of data [47]. The adaptation of these approaches to large
scale datasets has been a huge challenge addressed in the last years [43]. Usually, all the prob-
lems that emerge with the use of big amounts of data are labelled under the term Big Data,
which covers distributed processing and storing of data. Statistical learning algorithms in a
Big Data context suffer from the problem of scalability, that is, the capability of the algorithm
to maintain competitive performance as the size of the problem increases. Performance of the
algorithms refers in this context to the computational cost, the precision of the obtained mod-
els, and their complexity. Also, the size of the problems can grow in two different dimensions:
the number of examples available in training and the number of variables considered.

Recently, the use of Fuzzy Systems in the Big Data paradigm has attracted attention [35].
The first approach in this field was to scale the fuzzy c-means algorithm [48]. More recently,
fuzzy modeling was applied to medical big data problems, using a neuro-fuzzy classifier for
dimensionality reduction [9]. In [70], the authors propose an algorithm for Big Data binary
imbalanced classification problems using the MapReduce scheme. Finally, in [30] it is intro-
duced the first approach of a fuzzy rule based associative classifier based on the MapReduce
approach.

Particularly, in a genetic fuzzy system (GFS) approach, the size of the problem has a huge
influence in the performance of the obtained models [26, 49]. The fuzzy rule bases learned
suffer from exponential rule explosion when the number of variables increases. Thus, with
huge search spaces, the convergence time towards precise and simple models rises. Moreover,
evolutionary algorithms are computationally expensive by themselves due to the large number
of evaluations needed to reach convergence. Furthermore, in many cases, the evaluation pro-
cess to obtain the fitness may take a long time. There are different techniques to improve the
scalability of GFS that can be classified into three categories [36]: i) algorithm oriented that
adapts the structure of the evolutionary algorithm, ii) data oriented that modifies the training
data to reduce the computational cost of the learning process, and iii) distributed approaches
that take advantage of the availability of several machines to reduce the runtime.

To scale the learning process of a GFS in an algorithm-oriented manner, several papers in
the literature focused in the control of the search space, by reducing the number of rules and/or
the number of labels used in the rule base through a multi-objective approach [2, 3, 33, 8].
Specifically, in linguistic approaches where the partition of each variable into fuzzy labels is
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defined equally for all rules, rule explosion can be controlled by limiting the number of labels
considered in the learning process [2, 94, 95]. Moreover, in recent years, the data oriented
approach has received increasing attention. The use of instance selection techniques decreases
the complexity of large scale problems and reduces overfitting. In [2] was introduced an
estimation error mechanism which selects randomly a subset of examples to estimate the real
error, and the complete training dataset was only used for the most promising individuals.
Also, in [92], a new instance selection method for regression was applied to generate the rules
with the selected examples and the error of the rule base was estimated with the whole training
dataset.

From a Big Data point of view, the distributed computing approach is the most appropriate
for scaling GFS. Among the most frequently used frameworks in Big Data analytics [88],
the most popular ones are: i) MPI (Message Passing Interface) which efficiently exploits
multi-core clusters architectures, and ii) Apache Spark [118], a recently developed platform
that can be executed in traditional clusters such as Hadoop [115]. Spark was designed to
perform distributed processing and other workloads like streaming, interactive queries, and
machine learning focused algorithms. While MPI provides a solution mostly oriented to high
performance computing, Spark also deals with failures and straggler nodes effectively but with
an impact on speed. From the perspective of GFS, only a few works use Big Data frameworks
to solve the scaling problem [36].

The extended use of Spark is closely linked to the success of Hadoop, which processes
vast amounts of data in parallel on large clusters, usually implemented using the Hadoop Dis-
tributed File System. Hadoop popularized the approach of MapReduce, a distributed method-
ology based on the definition of two different functions: Map and Reduce [28]. On one hand,
a Map function distributes a block of data to several Worker Nodes, and executes the same
process — called Task — in each data partition. On the other hand, the Reduce function
aggregates the results of the Map functions by means of a Key-Value representation of the
results and performs some operations to obtain the final result. Spark adds to this framework
the capability to use other data-flows with an improvement of in-memory computing and an
easy-of-programming high-level functions that facilitate to build parallel applications.

Solving large scale regression problems with GFSs can be found in some of the most re-
cent works in the field [2, 3, 94, 95]. However, the number of variables and/or number of ex-
amples in the datasets used in these works are still not high enough to be properly considered
labelled as Big Data. Among the different approaches, FRULER [95] obtains Takagi-Sugeno-
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Kang 1-order (TSK-1) fuzzy rule bases with high accuracy and the lowest number of rules.
Although the runtime of this approach is acceptable (between 1-23 minutes) for the most sim-
ple datasets, it does not scale properly when solving large scale problems (from 1 to 30 hours).
Moreover, with larger problems it may not converge to a good solution in reasonable time.

In this paper we propose a scalable version of FRULER, called S-FRULER, which allows
to obtain models with similar characteristics than those obtained by FRULER —accurate and
simple—, but reducing the runtime of the algorithm to converge. The main contributions of
this work are: i) a novel distributed GFS approach, ii) a random feature selection process to
reduce the number of variables used in each dataset partition, and iii) an aggregation function
to obtain linguistic TSK fuzzy rule bases from the rule bases obtained in each dataset partition.

This paper is structured as follows: Section 2 defines the TSK model used in this work
and its implications for a Big Data approach. Section 3 describes the different stages of S-
FRULER. Section 4 shows the results of the approach in 10 regressions problems and the
application of S-FRULER to a large bioinformatics problem. Finally, Section 5 presents the
conclusions.

4.3 TSK Fuzzy Systems and Big Data

In this section the factors to be taken into account when learning TSK fuzzy rule bases in
a Big Data environment are described. Takagi, Sugeno, and Kang proposed in [108, 106]
a fuzzy rule model in which the antecedents are comprised of linguistic variables, as in the
case of Mamdani [73, 74], but the consequent is represented as a polynomial function of the
input variables. This type of rules is called TSK fuzzy rules. The most common function for
the consequent of a TSK rule is a linear combination of the input variables (TSK-1), and its
structure is as follows:

If X1 is A1 and X2 is A2 and . . . and Xp is Ap then

Y = β0 +X1 ·β1 +X2 ·β2 + · · ·+Xp ·βp (4.1)

where X j represents the j-th input variable, p the number of input variables, A j is the linguistic
fuzzy term for X j, Y is the output variable, and β j is the coefficient associated with X j in the
consequent part of the rule.

The matching degree h between the antecedent of the rule rk and the current inputs to the
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system (x1,x2, . . . ,xp) is calculated as:

hk = T (Ak
1(x1),Ak

2(x2), . . . ,Ak
p(xp)) (4.2)

where Ak
j is the linguistic fuzzy term for the j-th input variable in the k-th rule and T is the

t-norm conjunctive operator, usually the minimum function. The final output of a TSK fuzzy
rule base system composed by m TSK fuzzy rules is computed as the average of the individual
rule outputs Yk weighted by the matching degree:

ŷ =
∑

m
k=1 hk ·Yk

∑
m
k=1 hk

(4.3)

In a regression analysis, the β coefficients are the relation that transforms the inputs into
the desired output. The most fitted coefficients to the data can be found minimizing the least
squares equation:

β̂ = argmin
β

||Y −X ·β ||22 (4.4)

where β is the coefficients vector (β0,β1, . . . ,βp), Y is the outputs vector (y1, . . . ,yn), X is
the inputs matrix with size n× p —rows represent examples while columns are the input
variables. The coefficients associated with each rule consequent cannot be learned separately
using Eq. 4.4 because the function that needs to be approximated is the aggregation of all
rules (Eq. 4.3). Therefore, all the coefficients must be optimized at the same time, taking into
account the degree of fulfillment of each rule (Eq. 4.2) for each input vector. Thus, the X

matrix is modified as follows:

• The normalized degree of fulfillment for each rule rk for each example ei is calculated
as:

zi
k =

hk(xi)

∑
m
u=1 hu(xi)

(4.5)

where the denominator is the normalization term for each input vector xi, i.e., the sum-
mation of the degree of fulfillment of all rules.

• Then, the X matrix is defined as:

X =


z1

1,x
1
1 · z1

1,. . . ,x
1
p · z1
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p · z1

m
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m

 (4.6)
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where each row replicates the input vector xi = (1,xi
1,x

i
2, . . . ,x

i
p) —where a 1 was added

to take into account the independent term— as many times as the number of rules (m),
weighting each rule rk by zi

k.

• Finally, the coefficient vector is the concatenation of the coefficients of all rules:

β =
(

β 1
0 ,β

1
1 ,. . . ,β

1
p ,. . . ,β

m
0 ,β m

1 ,. . . ,β m
p

)
(4.7)

The computational cost for automatic learning of the coefficients of a TSK fuzzy rule
base depends on the size of the X matrix (Eq. 4.6). The size of X not only depends on the
number of examples (n) and the number of variables (p), but also on the number of rules (m).
The number of rules increases exponentially with the number of variables, number of fuzzy
labels per variable and the number of examples to be covered due to rule explosion. Thus,
this process is the largest computational cost in a GFS that learns TSK Fuzzy rule bases and
the most critical point to take into account for scalability. This can be partly solved through
limiting the number of available labels — controlling the rule explosion and reducing the size
of X —, using instance selection — reducing the number of examples n — or by feature
selection — reducing the number of variables p.

Traditionally, an iterative Kalman filter was used to solve least squares to approximate the
most fitted solution to the data [108]. However this approach has the drawbacks of overfitting
and the high computational cost of the iterative Kalman filter. On one hand, the overfitting
problem can be solved by shrinking (Ridge regularization) [91] or setting some coefficients
to zero (Lasso regularization) to obtain simpler models. Moreover, a combination of both
regularizations, called Elastic Net [119], can be used [95].

On the other hand, new scalable approaches for solving regression problems, regularized
regression problems in particular, have been proposed in the recent years, such as coordinate
descent [38] and stochastic gradient descent (SGD) [110, 17]. SGD is characterized by updat-
ing each coefficient separately using only one example at a time. This is particularly suited
for sparse datasets, which is a common case when X is constructed using Eq. 4.6 —zi

k is 0
when a rule does not cover an example. For example, in [95], a SGD approach was developed
to solve Elastic-Net regularization to obtain the consequents of TSK-1 Fuzzy rule bases.
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4.4 S-FRULER

This section presents S-FRULER (Scalable Fuzzy Rule Learning through Evolution for Re-
gression), a distributed approach for applying FRULER [95] with scalability properties that
allow its application to large scale problems. FRULER is a GFS that learns simple and lin-
guistic TSK-1 knowledge bases for regression problems. It is composed of a two-stage pre-
processing — formed by an instance selection and a multi-granularity fuzzy discretization—,
and a genetic algorithm, which contains an ad-hoc TSK-1 rule generation module. Although
the runtime of this approach is acceptable for medium size datasets, it does not scale properly
when solving large scale problems as it may not converge. To solve that, S-FRULER divides
the problem into a set of smaller problems that are more tractable using a distributed approach.
Each of the divisions is then solved independently in the Map phase using FRULER. Then,
the solutions obtained in each Map are combined in the Aggregation phase in order to obtain
a final solution for the original data.

D
at

as
et

Multi-Granularity
Fuzzy

Discretization

MAP

...

D
a
ta

se
t 

Pa
rt

it
io

n
in

g AGGREGATION

Map Solution

Map Solution

Map Solution

Combination

Combination

Combination

... ...
Variable
Selection

Variable
Selection

Variable
Selection

FRULER

IS GA

FRULER

IS GA

FRULER

IS GA

Final
Knowledge

Base

Figure 4.1: S-FRULER architecture showing the preprocessing, Map and Aggregation phases.

The algorithm structure is shown in figure 4.1. First, the multi-granularity fuzzy dis-
cretization process is performed using the whole training dataset. Then, the training dataset is
splitted into nmap partitions, which correspond to the tasks to be distributed into the Working
Nodes. Also, for each dataset partition, only a subset of randomly selected variables is taken
into account. Each task is solved using FRULER —without the discretization phase—, as if it
was an independent problem. Thus, only the instance selection (IS) and the genetic algorithm
(GA) are executed. After obtaining the solutions for each task, these are combined completing
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the variables not used in one dataset partition with information of the others. The following
subsections describe each of these phases in more detail.

4.4.1 Preprocessing before mapping

This stage comprises the multi-granularity fuzzy discretization of the input variables and the
partition of the training dataset.

Multi-granularity Fuzzy Discretization

The first step of S-FRULER consists in the application of the Multi-granularity Fuzzy Dis-
cretization method used in FRULER [95] to discretize the input variables into fuzzy labels.
This method obtains non-uniform fuzzy partitions with different degrees of granularity. A
granularity gi

var divides the variable var into i fuzzy labels, i.e., gi
var = {A

i,1
var, . . . ,A

i,i
var}.
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Figure 4.2: Top-down approach for the multi-granularity discretization. Only one label is divided into two new
labels in order to obtain the next granularity.

The algorithm works as follows2:

2For the sake of completeness, the stages of the algorithm are sketched in this section. A detailed description
can be found in [95]
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• First, each variable is discretized to obtain a set of split points Cg for each granularity
g.

– The split points are searched iteratively, i.e., only a new split point is added at each
granularity, starting from the most general granularity. Therefore, the approach
proposed in this work aims to preserve interpretability between contiguous granu-
larities: adding a new label to the previous granularity and modifying the adjacent
labels (Fig. 4.2).

– The split points that minimize the error when a linear model is applied to each of
the resulting intervals are selected.

– The method keeps adding split points until a bayesian information criterion (BIC)
worsens. To calculate the BIC, the error is measured as the summation of the
mean squared error of a least squares fitted model for each interval of the dis-
cretization, while the complexity is determined by the number of inner splits and
the parameters fitted by each regression applied in each interval.

• Then, the method proposed in [55] is applied to each Cg —set of split points for the
granularity g— in order to get the multi-granularity fuzzy partitions. This method uses
a parameter that assesses the fuzziness of the linguistic labels. Fuzziness 0 indicates
crisp intervals, while fuzziness 1 indicates the selection of a fuzzy set with the smallest
kernel —set of points with membership equal to 1.

Dataset Partitioning

After the discretization of the input variables, the dataset is partitioned and distributed along
the Workers Nodes of the computation cluster. The training set is divided randomly into nmap

partitions with equal size n
nmap

, where n is the total number of examples in the training data.
In scalability terms, the higher the number of partitions nmap that can be used, the better.
However, when the number of partitions surpasses a certain problem-dependent threshold,
the obtained results worsen. This means that the problem has been divided too much, and
each Map has not enough information to get a valid result. Thus, the automatic definition of
the most adequate number of partitions for each problem can be useful when no information
about the underlying characteristics of the problem is known. In S-FRULER, the number of
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partitions nmap is defined heuristically as:

nmap = log2(p2 ∗ l ∗n) (4.8)

where p is the number of input variables, n is the number of examples and l is the maximum
granularity over all the input variables. Thus, nmap depends on the maximum size of X (Eq.
4.6) allowed in the initialization of FRULER, which is the critical part in scaling the algorithm
(See Sec. 4.3).

4.4.2 Map function

The Map function is applied independently and distributively to each training dataset partition.
For each training dataset partition, only a subset of selected variables is used. Thus, all the
process done in each task uses the corresponding subset of examples and subset of variables,
which is going to be referred as the dataset partition. For each task, FRULER is applied
without the discretization step, since it was already performed before the partition of the
data. It is composed by an instance selection of the most representative examples and a
genetic algorithm, which contains an ad-hoc TSK-1 rule generation module (Fig. 4.3). The
evolutionary learning process obtains a definition of the data base. Then an ad-hoc TSK-1
rule generation module obtains the antecedents and consequents of each possible rule using
only the representative examples.
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Figure 4.3: FRULER [95] architecture showing each of the two stages. Dashed lines indicate flow of data sets and
solid lines represent process flow.
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Variable Selection

To simplify the learning process in each task, only a subset of randomly selected variables is
used for each dataset partition. The probability of selecting a particular input variable X j in a
dataset partition is:

P(X j ∈ X i
s) =

pm

p
, (4.9)

where X i
s is the selected subset of input variables in the dataset partition i, pm is the subset size

of selected input variables and p is the total number of input variables. Thus, the probability
that a particular input variable is not selected for all the dataset partitions is:

P(X j 6∈ X i
s ,∀i = 1, . . . ,n) =

(
p− pm

p

)nmap

. (4.10)

where nmap is the total number of dataset partitions. Therefore, to define a subset size of
selected input variables pm that assures that a particular feature X j is selected in at least one
dataset partition with probability αpm , the following equation can be used:

pm ≥−p · ((1−αpm)
1/nmap −1) (4.11)

Therefore, each task uses a dataset formed by n
nmap

examples from the original training dataset
and pm randomly selected input variables.

Instance Selection for Regression

The instance selection method for regression used in FRULER [95] is an improvement of the
CCISR (Class Conditional Instance Selection for Regression) algorithm [92]. The method is
based on a relation called class conditional nearest neighbor which is used to obtain the nearest
example with the same class and the nearest example of a different class for each instance in
the dataset partition. With this information, two graphs can be built: one where each example
points to the nearest example with the same class and another where each example points to
the nearest example with a different class. Using these graphs, the method obtains the in-
degree for same-class and different-class for each example, and then an information measure
based on the K-divergence is calculated. This measure is then used to sort the examples by its
ability to represent its own class and to differentiate contiguous classes.

Since the class conditional relation uses classes, firstly it is necessary to discretize the
output variable. For that, the Kernel Density Estimation (KDE) with a Gaussian Kernel is
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used to estimate the probability density function of the output. Then, the local minima of this
function are used as the split points between classes, and, therefore, to determine which class
corresponds to each example.

Then the instance selection method obtains the subset of selected examples for a map

(Emap
S ) from the full training dataset partition (Emap

tra ). It performs the following three stages3:

• First, the k0 first examples —sorted by the K-divergence score— are picked as the initial
set of selected examples Emap

S , where k0 is defined as:

k0 = max

(
c,

⌈
εEmap

tra · |Emap
tra |

max(y)−min(y)

⌉)
(4.12)

where c is the number of classes obtained from KDE, Emap
tra is the complete training

dataset partition and εEmap
tra is the 1-nearest neighbor error for regression using Emap

tra .

• Then, the second stage adds examples in order, until the error worsens for more than√
|Emap

tra |/|E
map
S | iterations.

• Finally, the last stage removes points that are not close to the decision boundary of
the 1-nearest neighbor rule, that is, examples with zero in-degree in the different-class
graph — there is no other instance that points to the example.

Genetic Algorithm

The evolutionary algorithm is visually described in the Evolutionary Process box in Fig. 4.3.
Its objective is to obtain the best data base configuration using the obtained fuzzy partitions
(Fig. 4.1). To evaluate each individual, the algorithm generates the entire linguistic TSK-1
fuzzy rule base using the selected fuzzy partitions and the selected examples Emap

S (sec. 4.4.2),
and then calculates the Mean Squared Error (MSE) using the whole training dataset partition
Emap

tra . In the next sections each step of the evolutionary algorithm are described.

Codification
The chromosome codification represents the parameters needed to create the data base
using a double coding scheme (C =C1 +C2):

3For the sake of completeness, the stages of the algorithm are sketched in this section. A detailed description
can be found in [95]
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• C1 represents the granularity used in each input variable. It is coded as a vector of
pm integers:

C1 = (g1,g2, . . . ,gpm) (4.13)

where gi represents the granularity for input variable i. When the granularity
of a variable is equal to 1, then it is not used in the antecedent part. However,
this variable can still be used in the consequent, since it could be relevant for
calculating the output.

• C2 represents the lateral displacements of the split points of the input variables
fuzzy partitions. Thus, the length of C2 depends on the granularity for each input
variable: |C2|= ∑

p
j=1 (|g j|−1),∀g j ∈C1:

C2 = (α1
1 , . . . ,α

g1−1
1 , . . . ,α1

p, . . . ,α
gp−1
p ) (4.14)

where α
j

i represents the lateral displacement of the j-th split point of variable
i. Each lateral displacement are allowed to vary in the (0.5,0.5) interval which
represents half of the distance between each split point (Fig. 4.4).
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Figure 4.4: An example of lateral displacement intervals for limits equal to (0.5,0.5). The split points are allowed
to move a maximum of half of the distance to the next split point.

Initialization
The initial pool of individuals is generated by a combination of two initialization pro-
cedures. A half of the individuals are generated with the same random granularity for
each variable, while the other half is created with a different random granularity for each
variable. The lateral displacements are initialized to 0 in all cases. After that, when the
product of the granularities indicated in C1 (i.e., the maximum number of rules that can
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be obtained) is greater than the number of input variables times the highest maximum
granularity of the variables, then a variable is randomly selected to be removed from the
antecedent part —its granularity is set to 1— until the previous condition is satisfied.
This is done in order to avoid too complex solutions in the initialization stage —during
the evolutionary learning this upper bound to the number of rules does not apply.

Crossover
The iterative part of the evolutionary algorithm starts with a binary tournament selec-
tion process. Then, two crossover operations can be applied: one-point crossover for
exchanging the C1 parts (it also exchanges the corresponding C2 genes) and, when the
C1 parts are equal, the parent-centric BLX (PCBLX) [51] is used to crossover the C2

part. In order to prevent the crossover of too similar individuals, an incest prevention
was implemented. When the Euclidean distance of the lateral displacements is less than
a particular threshold L, the individuals are not crossed.

Mutation
After the crossover, the mutation is applied to each offspring with probability pmut . It
can apply two possible operations with equal probability to a randomly selected gene
of the C1 part: i) decreasing the granularity by 1 or ii) increasing the granularity to
a more specific granularity —all the granularities having the same chance. In order
to calculate the new lateral displacements in the corresponding C2 part, the algorithm
uses the displacements of the two nearest split points of the previous granularity (before
mutation) weighted by the distance between the split points.

Local Search
The offsprings are evaluated using the mechanism described in Sec. 4.4.2. Then, a local
search is performed for each offspring, generating nls new C1 parts with equal or less
granularity —with equal probability— for each variable and the C2 is generated ran-
domly. The new chromosomes are decoded and evaluated and, if there is a solution that
obtains better fitness, then it replaces the original individual. After that, the previous
and current populations are merged, and the N best individuals are selected as the new
population.

Incest Prevention and Restart Mechanism
The algorithm incorporates a restart mechanism that uses the incest prevention thresh-
old L as a trigger. First, L is initialized as the maximum length of the C2 part, i.e. the
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product of the number of input variables times the largest maximum granularity of the
variables, divided by 4. This implies that the incest prevention allows crossovers be-
tween individuals that have a distance higher than a quarter of the maximum euclidean
distance. Then, for each iteration, L is decreased always by 0.4, and by 0.2 if there are
no new individuals or the best individual does not change, in order to accelerate con-
vergence. When L reaches 0, the population is restarted, and L is reinitialized. Only the
best individual so far is kept, and the local search process is executed with the best indi-
vidual in order to generate new individuals until the population is complete. When the
restart criterion is fulfilled twice, the algorithm stops, i.e., one single restart is executed.

Evaluation

The evaluation process is described in the Evaluation box in Fig. 4.3. First, the real data base
is obtained applying the displacements in C2 to the fuzzy partitions selected in C1. Then, the
Wang & Mendel algorithm [113] is used to create the antecedent part of the rule base for each
individual. The consequent part of the rules is learned using the Elastic Net method [119] in
order to obtain the coefficients of the degree 1 polynomial for each rule. In order to solve the
minimization problem of Elastic Net, an Stochastic Gradient Descent optimization technique
was used [17, 110]. Only those examples in Emap

S are used to obtain the rule base from the
codified chromosome. In this manner, those examples that are not representative are discarded
for the rule generation.

Then, the resulting TSK-1 fuzzy rule base is evaluated using the following equation:

fitness = MSE(Emap
tra ) =

1
2 · |Emap

tra |

|Emap
tra |

∑
i=1

(F(xi)− yi)2, (4.15)

where Emap
tra is the full training dataset partition and F(xi) is the output obtained by the knowl-

edge base for the input xi. Using all the examples for evaluation can be seen, in some way, as
a validation process, as the rule base was constructed with a subset of them (Emap

S ).

4.4.3 Aggregation function

After the execution of FRULER for each dataset partition the reduction phase is applied in
order to get the final solution. Each of the FRULER executions obtains a TSK-1 Knowledge
Base, composed by a linguistic partition of the input variables — data base — and the TSK
fuzzy rule set — rule base. These Knowledge Bases may be combined using an ensemble
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technique, that takes into account the degree of fulfillment of the input data to each knowl-
edge base, to calculate a weighted average of the outputs. However, this approach increases
remarkably the complexity of the model, as the number of rules of the final solution increases
with the number of partitions of the data.

Thus, to combine the solutions generated in the Map phase without increasing signifi-
cantly the complexity, the properties of each of the obtained Knowledge Bases must be taken
into account. On one hand, the rule base strongly depends on the label partitions of the data
base. A change of granularity in one input variable partition can lead to a substantial change
on the rule consequents. On the other hand, the granularity for each input variable can be
easily combined, in a similar way to a crossover operation for integer valued individuals. This
combination of granularities can take into account the variables not used in each dataset parti-
tion. After combining the granularities, the rule base can be generated using the ad-hoc TSK
rule base Generation process of FRULER.

1: function AGGREGATION(S = {s1,s2, . . . ,snmap},ES = E1
S ∪E2

S ∪·· ·∪Enmap
S )

2: for i = 1, . . . ,nmap do
3: for k = 1, . . . ,nmap do

4: ri,k = ∪
j=1,...,p

ai,k, j : ai,k, j =


si, j if si, j 6= NULL
sk, jif si, j = NULL and sk, j 6= NULL
1 otherwise


5: R = ∪ ri,k, i = 1, . . . ,nmap, k = 1, . . . ,nmap

6: errormin = ∞

7: for each r ∈ R do
8: rb = Generate rule base from r using ES

9: if MSE(rb,Etra)< errormin then
10: errormin = MSE(rb,Etra)

11: Best = rb

12: return Best

Figure 4.5: Pseudocode of the Aggregation function.

Fig. 4.5 shows the pseudocode of the Aggregation function. The Aggregation function
uses two parameters: S contains the solutions generated by FRULER in each dataset partition
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as a list of granularities, and ES contains the union of all the selected instances in each dataset
partition. Thus, ES can be seen as the selected instances of the entire training dataset if a
stratification approach is used to perform the instance selection method taking each dataset
partition as a stratum. The solution obtained in each dataset partition contains the displace-
ments in addition to the granularity for each input variable 4.

The process is as follows: for each partition solution (line 2) the Aggregation function
completes the input variables not previously selected in the dataset partition with information
of the other solutions (line 3). Thus the Aggregation function generates a maximum of n2

map

final solutions. This combination is done, for each input variable j, as follows (line 4):

• The granularity si, j (and the displacements associated with it) is selected if it exists.

• If the value is not defined in si (si, j = NULL) but it is in sk, then sk, j is used.

• Finally, if the value is not defined neither si nor sk, this variable is not considered (gran-
ularity 1).

Note that the inner loop (line 4) takes also into account si, thus the original solution is also
kept. Then, R (line 7) is the set of the final solutions that combine the information of the
different results obtained in each dataset partition.

2 3 - 1

1 - 4 2

3 3 2 -

2 3 1 1

2 3 4 1

2 3 2 1

(a)

2 3 - 1

1 - 4 2

3 3 2 -

1 1 4 2

1 3 4 2

1 3 4 2

(b)

Figure 4.6: Visual illustration of the Aggregation function for three different solutions obtained in the Map phase.

Fig. 4.6 illustrates how the solutions obtained by three partitions are combined with this
Aggregation function. In the (a) case, the third input variable was removed in the feature
selection process and this information is completed with two choices: i) adding a granularity 1
to the variable (the variable is not used) and ii) the granularity indicated in the other solutions.
In the (b) scenario, we show the particular case where the other solutions indicate the same

4This information was omitted in the pseudocode for the sake of clarity
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granularity for the incomplete information of the selected solution. However, two solutions
are created because the lateral displacement information may not be the same.

Once all the possible combinations have been obtained, the Aggregation function gener-
ates the associated rule bases (line 10) using the ad-hoc TSK rule base generation process of
FRULER. This process uses the combination of selected instances for all dataset partitions
ES. Then, the error is measured using the whole training dataset Etra (line 11), so a validation
is performed due to the use of examples not seen in the TSK rule base generation process.
Finally, the solution with the lowest error (lines 8-15) is selected as the best solution and
returned by the Aggregation function (line 16).

4.5 Results

In order to analyze the performance of S-FRULER, two types of validation have been done:
a) a comparison with other GFSs using 10 regression problems (Sec. 4.5.2) from the KEEL
project repository [4]; and b) an application to a bioinformatics problem (Sec. 4.5.3), which
contains more than 250,000 examples and the number of input variables range from 60 to 180
— available in the Interdisciplinary Computing and Complex BioSystems (ICOS) research
group webpage [12]. Table 4.1 shows the characteristics of the regression datasets, with
the number of instances ranging from 7,129 to 40,768 examples, and the number of input
variables from 5 to 40. The datasets are sorted in incremental order of the number of variables.

Table 4.1: The 10 datasets of the experimental study.

Problem Abbr. # Variables # Cases

Delta Ailerons DELAIL 5 7,129
Delta Elevators DELELV 6 9,517
California Housing CAL 8 20,640
MV Artificial Domain MV 10 40,768
House-16H HOU 16 22,784
Elevators ELV 18 16,559
Computer Activity CA 21 8,192
Pole Telecommunications POLE 26 14,998
Pumadyn PUM 32 8,192
Ailerons AIL 40 13,750
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4.5.1 Experimental Setup

In terms of parameters, S-FRULER only adds to FRULER the parameter of the probability
that a particular feature is selected in at least one dataset partition (αpm ). For the experiments
performed in this section αpm = 0.9. Moreover, FRULER [95], which is embedded in S-
FRULER, was designed to keep the number of parameters as low as possible. In the multi-
granularity fuzzy discretization, the fuzziness parameter used for the generation of the fuzzy
intervals was 1, i.e., the highest fuzziness value. For the instance selection technique, no
parameters are needed. For the evolutionary algorithm, the values of the parameters were:
population size = 61, maximum number of evaluations = 100,000, pcross = 1.0, pmut = 0.2,
and the number of neighbours generated in the local search was nls = 5. For the generation
of the TSK fuzzy rule bases, the weight of the tradeoff between `1 and `2 regularizations on
the Elastic Net was α = 0.95, and the regularization parameter λ was obtained from a grid
search in the interval [1,1E − 10]. η0 was obtained halving the initial value (0.1) until the
result worsens.

S-FRULER5 was developed entirely using Java version 8. The data partitioning (Sec.
4.4.1), Map Function (Sec. 4.4.2) and Aggregation function (Sec. 4.4.3) were implemented
using Spark with standard functions.

For each dataset, we performed 10 trials (with different seeds for the random number
generation) of S-FRULER. For each trial, the dataset was divided randomly into training
(80%) and test (20%). The results shown in the next section are the mean values over all the
runs. The runtimes have been obtained in two different ways:

• Using the Spark Standalone mode, where the workers are simulated as threads, executed
in an HP Proliant composed by four processors AMD Opteron 6262 HE with a total of
64 cores and 128 GB of memory.

• Using the Spark Cluster mode executed in an Amazon Elastic MapReduce (EMR)
4.0.0 that deploys an Apache Hadoop NextGen MapReduce (YARN) system and uses
m3.xlarge machines (Intel Xeon E5-2670 v2 with 4 cores and 15 GB of memory). For
each dataset, a different configuration on the number of workers was used depending on
the number of dataset partitions, assuring that there is at least one core for each dataset
partition.

5The software is available at http://tec.citius.usc.es/fruler/

http://tec.citius.usc.es/fruler/
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4.5.2 Statistical Analysis

In order to evaluate the models learned by S-FRULER, we compared them with three of the
most accurate genetic GFSs for regression in the literature6:

• FSMOGFS
e+TUNe [3]: a multi-objective evolutionary algorithm that learns Mamdani

fuzzy rule bases. This algorithm learns the granularities from uniform multi-granularity
fuzzy partitions (up to granularity 7) and the lateral displacement of the labels. It in-
cludes a post-processing algorithm for tuning the parameters of the membership func-
tions and for rule selection.

• L-METSK-HDe [39]: a multi-objective evolutionary algorithm that learns linguistic
TSK-0 fuzzy rule bases. The algorithm learns the granularities from uniform multi-
granularity fuzzy partitions (up to granularity 7).

• A-METSK-HDe [39]: a multi-objective evolutionary algorithm that learns approxima-
tive TSK-1 fuzzy rule bases. The algorithm starts with the solution obtained on the first
stage and applies a tuning of the membership functions, rule selection and a Kalman-
based calculation of the consequents of the rules.

Tables 4.2 and 4.3 show the results obtained by S-FRULER and the other three GFSs
for the datasets in Table 4.1 for precision — the mean test error over the executions — and
complexity — the number of rules (# Rules) of the final solution. Moreover, in order to
analyze statistically the difference between the different approaches, a Friedman ranking test
followed by a Holm post-hoc test were performed for both measures. The Friedman ranking
test calculates a rank for each approach based on its performance, where the lower the rank,
the better. On the other hand, the Holm post-hoc method tests if the difference between two
rankings is significant. We applied the Holm post-hoc test using the S-FRULER approach as
a control method, thus calculating the p-value for each comparison of S-FRULER with each
of the other approaches.

In the case of precision (Table 4.2), both S-FRULER and A-METSK-HDe achieve the
best result in 5 of the datasets. A-METSK-HDe obtains the lowest rank (1.5) followed by
S-FRULER (1.8), however the difference between them is rather low, since the Holm p-value
is high (0.603). FSMOGFS

e+TUNe and L-METSK-HDe obtain worse errors than S-FRULER
(ranks 3 and 3.7 respectively) and the differences are statistically significant (Holm p-values

6Although FRULER [95] has a better accuracy than these GFSs, we excluded it from the comparison, since
S-FRULER is based on FRULER.
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Table 4.2: Average test errors for the different algorithms. The errors in this table should be multiplied by
10−8,10−6,109,108,10−6,10−4,10−8 in the case of DELAIL, DELELV, CAL, HOU, ELV, PUM, AIL
respectively. The best results are marked in bold face. It also shows the Friedman Ranking for each
approach and the Holm adjusted p-value comparing S-FRULER with the other algorithms.

Algorithms S-FRULER A-METSK-HDe FSMOGFS
e+TUNe L-METSK-HDe

DELAIL 1.44 1.40 1.53 1.62
DELELV 1.12 1.03 1.09 1.12
CAL 2.18 1.71 2.95 2.64
MV 0.05 0.06 0.16 0.25
HOU 8.2 8.5 9.4 10.4
ELV 3.2 7.0 9.0 8.9
CA 4.6 5.0 5.2 5.9
POLE 124 61 103 151
PUM 0.349 0.287 0.292 0.594
AIL 1.4 1.5 2.0 1.8

Friedman Ranking 1.8 1.5 3 3.7
Holm p-value 0.603 0.075 0.003

below 0.1).

In terms of complexity (Table 4.3), S-FRULER obtains the best result in 9 of 10 datasets,
while FSMOGFS

e+TUNe obtains the best result in the remaining dataset (POLE). The Friedman
ranking test shows these results, where S-FRULER obtains the lowest rank (1.1) followed by
FSMOGFS

e+TUNe (1.9), while A-METSK-HDe and L-METSK-HDe obtain the worst ranking
(3 and 4 respectively). Comparing S-FRULER with FSMOGFS

e+TUNe, the Holm p-value is
rather low (0.166) showing a noticeable difference, while the difference with A-METSK-HDe

and L-METSK-HDe is remarkable (p-value below 0.005).

Finally, we compare S-FRULER with FRULER [95] in terms of runtime of the full learn-
ing process in order to highlight the obtained speedup. Table 4.4 shows the runtimes of
FRULER and S-FRULER and also shows the speedup obtained in each execution mode of
S-FRULER (Standalone using threads or in a Cluster) when compared with FRULER and the
number of dataset partitions nmap obtained for each dataset. We also show the runtime with
A-METSK-HDe, the single GFS which is not statistically different from S-FRULER (Table
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Table 4.3: Average number of rules for the different algorithms. The best results are marked in bold face. It also
shows the Friedman Ranking for each approach and the Holm adjusted p-value comparing S-FRULER
with the other algorithms.

Algorithms S-FRULER A-METSK-HDe FSMOGFS
e+TUNe L-METSK-HDe

DELAIL 3 37 6 98
DELELV 2 39.1 7.9 91
CAL 7 56 8 100
MV 4 56 14 76
HOU 11 30 12 69
ELV 5 35 8 76
CA 11 32 14 71
POLE 20 46 13 100
PUM 4 63 18 88
AIL 11 48 15 99

Friedman Ranking 1.1 3 1.9 4
Holm p-value 0.002 0.166 < 1E-3

4.2).

It can be seen that the number of dataset partitions depends on the problem, but, in gen-
eral, as the number of variables increases so does the number of dataset partitions used. S-
FRULER, in both Standalone (threads) and Cluster, obtains lower runtimes than FRULER, as
expected. The speedup depends on the problem, as datasets with a similar number of dataset
partitions (e.g., DELAIL, DELELV, CAL and MV with 21-23 partitions) have a very different
speedup (8, 15, 27 and 8 respectively in Standalone or 12, 21, 35 and 13 in Cluster mode). It
is worth emphasizing that for the problems with the worst runtime in FRULER (HOU, ELV,
PUM and AIL), S-FRULER achieves speedups far above the parallelization level given by the
number of dataset partitions. This is because the scalability obtained by S-FRULER is not
only given by the distributed approach, but also due to the faster convergence of FRULER in
each dataset partition as the partitioned problem is more simple.

These results show that S-FRULER not only reduces FRULER runtimes, but also is able
to learn the simplest models in terms of number of rules, using a linguistic approach, while
maintaining a high precision comparable to an approximative approach.
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Table 4.4: Runtime comparison between FRULER, S-FRULER and A-METSK-HDe (the single GFS which is not
statistically different from S-FRULER —Table 4.2). All times are formatted in hours:minutes:seconds.
Runtimes of A-METSK-HDe were obtained using a different computer (Intel Core 2 Quad Q9550
2.83GHz, 8GB RAM).

Algorithms FRULER S-FRULER Standalone Cluster A-METSK-HDe

Time nmap Time Speedup Time Speedup Time

DELAIL 0:09:58 21 0:01:18 8 0:00:48 12 2:30:39

DELELV 0:25:01 22 0:01:38 15 0:01:13 21 1:29:30

CAL 1:57:03 23 0:04:20 27 0:03:22 35 5:13:28

MV 1:17:02 23 0:09:27 8 0:05:49 13 3:17:54

HOU 4:15:17 25 0:04:06 62 0:03:09 81 5:07:58

ELV 3:01:30 26 0:03:10 57 0:03:14 56 3:06:58

CA 0:38:12 25 0:03:46 10 0:01:48 21 3:37:49

POLE 1:53:15 27 0:10:20 11 0:05:14 22 4:40:22

PUM 31:14:27 24 0:01:58 956 0:01:39 1,139 2:22:25

AIL 12:50:38 28 0:07:13 107 0:03:32 218 5:26:30

4.5.3 Application to Bioinformatics

As stated in the introduction, the large scale regression problems solved with GFSs in the lit-
erature are still far from those considered Big Data problems in terms of volume and velocity.
A high computational cost when the X matrix (Eq. 4.6) is huge, due to number of exam-
ples and/or number of variables, can be solved with parallelization approaches, e.g. solving
several X matrix at the same time. However, if the storage demand of various X cannot be
stored in memory of a single processor, it is necessary the use of Big Data approaches, such as
distributed computing. In order to demonstrate the capability of S-FRULER in a challenging
domain, we have applied our approach to a real bioinformatics problem with much higher
computational requirements than the datasets of the previous section.

The problem is focused on one of the main open problems in computational biology which
is the prediction of the 3D structure of protein chains [13]. One approach to this problem is to
predict some attributes of a protein, such as the secondary structure, the solvent accessibility
or the coordination number (CN), and then integrate this knowledge into a full 3D structure
predictor. Particularly, the CN problem is defined as the prediction, for a given residue, of
the number of residues of the same protein that are in contact with it in the native state.
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Two residues are said to be in contact when the distance between them is below a certain
threshold. Figure 4.7 shows a graphical representation of the CN — in this case the CN is 4—
for a particular residue, discarding trivial contacts.

Figure 4.7: Graphical representation of the CN of a residue [13].

In [64] was proposed a real-valued definition of contact, and linear regression is used to
predict the CN based on the amino acid type of the protein primary sequence and global in-
formation about the protein. The amino acid information can be extracted from the primary
sequence, where one amino acid is defined as one nominal variable with 20 possible values.
However, a Position-Specific Scoring Matrices (PSSM) representation derived from the pri-
mary sequence can be used to represent the amino acid information. The PSSM representation
is an statistical profile of the primary sequence that takes into account how this sequence may
have evolved. Thus, each amino acid is defined as 20 continuous variables.

The amino acids used to predict the CN can be extracted from a local context (a windows
of amino acids) of the target in the chain. Therefore, the number of variables used to solve
the problem can increase in blocks of 40 features as the window expands. For example,
with the first neighbors two amino acids are added (before and after the target), each with 20
new features. Given these characteristics, in [105] this problem is proposed as a benchmark
for testing the scalability of regression methods. In this manner, different datasets can be
constructed adjusting the number of examples and/or variables used. The available datasets
can be downloaded from the PSP Benchmark project web site [12].

S-FRULER was used to solve four versions of this dataset with different number of vari-
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ables, depending on the size of the window of amino acids considered (Table 4.5). We have
tested FRULER on these datasets, but it fails to converge —in less than three days— in the
three most complex problems. As the runtime of FRULER is usually lower than the GFSs
used for the comparisons in the previous section [39], it can be assumed that these GFSs
would also fail on these datasets. We compared S-FRULER with the regression methods im-
plemented in the Spark scalable machine learning library MLlib [78]. The methods available
in this resource include Ridge Regression (`2 regularization) and Lasso Regression (`1 reg-
ularization), both solved using distributed mini-batch SGD. The regularization parameter λ

was obtained in the same way as S-FRULER (see [95] for more details). The MLlib results
presented in Table 4.5 correspond to 1,500 iterations. Nevertheless these methods were run
for 3,000 iterations with no further improvement.

Table 4.5: Datasets characteristics for the four CN problems, Mean Squared Error (MSE), and runtime
(hours:minutes:seconds) for S-FRULER, Ridge and Lasso MLlib implementations.

S-FRULER Ridge SGD Lasso SGD

Dataset # Cases # Vars nmap Test Error Time Test Error Time Test Error Time

w1 257,560 60 33 12.45 04:42:08 15.09 00:42:56 19.01 00:45:05

w2 257,560 100 34 12.15 05:32:33 14.20 01:00:44 18.91 01:01:25

w3 257,560 140 35 12.23 05:48:42 14.18 01:04:36 18.89 01:04:43

w4 257,560 180 36 12.30 12:17:42 13.62 01:06:42 18.93 01:05:46

Table 4.5 shows the characteristics of these four datasets, with the mean squared test error
obtained by S-FRULER, Ridge and Lasso, and their runtime using an HP Proliant composed
of four processors AMD Opteron 6262 HE with a total of 64 cores and 128 GB of memory.
The test error in S-FRULER is lower than Ridge and Lasso approaches for all the datasets.
Furthermore, the precision obtained with the less informative dataset (w1) is better than the
result obtained by Ridge and Lasso with the dataset with more information (w4). Since the
error of S-FRULER is always better than the other approaches —11-21% better than Ridge
and 53-56% better than Lasso—, a statistical test is not necessary to confirm that S-FRULER
performs significantly the best. The highest test error using S-FRULER occurs for w1, as it
is the dataset with less information. On the other hand, when the number of input variables
is really high (w4), the test error worsens very slightly when compared to w3. In the case of
Ridge, the error improves even with the largest dataset (w4), since it uses all the variables in
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some degree. However, this has the drawback of increasing the complexity of the obtained
model, while a low complexity model based on rules can be used by the expert. Regarding
the runtimes, S-FRULER always takes longer times to get its best model. We have executed
Ridge and Lasso for longer runtimes (comparable to those of S-FRULER) but they did not
further improve.

We have also compared S-FRULER with four approaches presented in [18], where the
regression problem was transformed into a classification problem with two classes using an
uniform-frequency discretization. The algorithms in the comparison [18] are:

• GAssist[10]: is a Pittsburgh-style learning classifier system (LCS). It uses a standard
genetic algorithm to evolve a population of individuals, each of them being a complete
and variable-length rule set.

• BioHEL[11]: is an evolutionary learning system that follows the iterative rule learning
approach and is designed to handle large-scale bioinformatic datasets.

• C4.5[87]: builds decision trees from a set of training data using the concept of informa-
tion entropy. At each node of the tree, C4.5 chooses the attribute of the data that most
effectively splits its set of samples into subsets that maximize the presence of one class.

• PART[37]: iteratively builds a partial C4.5 decision tree in each iteration and transforms
the most promising leaf into a rule.

Table 4.6: Comparison of error (in percentage) for the four CN problems discretized into 2 classes. The Friedman
ranking and the p-value were obtained by comparing each approach with S-FRULER.

Algorithm S-FRULER BioHEL GAssist PART C4.5

w1 23.1 24.2 25.2 29.1 31.4
w2 22.7 24.0 25.3 29.1 31.4
w3 22.3 23.6 25.4 30.1 31.9
w4 22.6 23.5 25.2 24 31.8

Friedman Ranking 1 2 3.25 3.75 5
Holm Adj. p-value 0.371 0.088 0.042 0.001

In order to compare the regression models generated by S-FRULER with the classifica-
tion models [18], the output of the regression model is discretized using the same uniform-
frequency discretization that transformed the regression problem into a classification one.
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Table 4.6 shows the error (in percentage) obtained by S-FRULER compared to the other four
approaches. It also displays the Friedman ranking test followed by a Holm post-hoc test com-
paring S-FRULER with the other approaches. In this particular case, the statistical tests are
less reliable due to the low ratio between the number of datasets and the number of algorithms.
In spite of this, we show on Tables 4.6 and 4.7 the p-values for the sake of completeness. S-
FRULER obtains the best result in all the datasets and gets the best ranking in the Friedman
test, followed by the other genetic approaches BioHEL and GAssisst.

Table 4.7: Comparison of complexity (number of rules/leaf nodes) for the four CN problems discretized into 2
classes. The Friedman ranking and the p-value were obtained by comparing each approach with
S-FRULER.

Algorithm S-FRULER BioHEL GAssist PART C4.5

w1 31.6 110.0 40.2 6,271.9 22,662.1
w2 16.2 110.9 36.5 7,889.5 22,144.3
w3 7.6 113.0 35.4 7,450.8 21,342.7
w4 52.7 113.6 36.5 7,006.0 20,671.1

Friedman Ranking 1.25 3 1.75 4 5
Holm Adj. p-value 0.235 0.655 0.042 0.003

In order to compare the complexity of the models, the number of rules of the resulting
models are shown in table 4.7. In the case of C4.5, the complexity is measured as the number
of leaf nodes. S-FRULER obtains the best results in three datasets (w1, w2 and w3) and
the lowest ranking (1.25) while GAssist obtains the best result for w4 and the second lowest
ranking (1.75).

The results presented in this section show that S-FRULER can cope with large datasets
in both number of examples and number of attributes. It was also demonstrated that the
models learned by S-FRULER obtain the best results in both accuracy and complexity when
compared with other state-of-the-art techniques

4.6 Conclusions

In this paper, we have presented an scalable version of FRULER [95] —a GFS that learns
simple and linguistic TSK-1 knowledge bases for regression problems—, called S-FRULER.
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S-FRULER obtains simple models with high precision but reducing the runtime of FRULER.
The approach is based on a distributed computing methodology and was implemented using
the Spark software, thus providing both standalone and cluster modes. S-FRULER partitions
the dataset into small sets, which are more tractable, and executes FRULER for each of them.
Also, for each dataset partition, a random feature selection process to reduce the number
of variables is used. After the Map phase, the method implements an aggregation function
to obtain linguistic TSK-1 fuzzy rule bases from the rule bases generated in each dataset
partition. The use of Spark facilitates the building of parallel applications that can run on
different cluster solutions, e.g. Hadoop YARN, providing some Big Data desired properties
like fault tolerance. Nevertheless, further improvements may be applied to S-FRULER in
order to take advantage of this type of architecture, such as adopting a scheme more similar
to the MapReduce approach.

S-FRULER has speedups usually larger than the number of dataset partitions used, show-
ing an scalability higher than linear in both standalone and cluster mode. It was compared
with three GFSs in terms of complexity of the models (number of rules) and precision (mean
squared error), showing good results with less complex models. S-FRULER was also applied
to a large-scale problem in computational biology: the prediction of the coordinate number of
a residue in the context of prediction of the 3D structure of protein chains. Results demonstrate
the capability of S-FRULER to obtain precise and simple models in large scale problems.





CHAPTER 5

CONCLUSIONS

In this PhD dissertation the problem of automatic learning of FRBSs through the use of GFSs
to solve regression problems has been addressed. Particularly, the work has focused on design-
ing GFSs that obtain models with low complexity while maintaining high precision without
using expert-knowledge about the problem to be solved.

In the field of mobile robotics, a new algorithm was proposed, called Iterative Quantified
Fuzzy Rule Learning (IQFRL), whose main contributions are:

• It is based on the Iterative Rule Learning approach and uses Genetic Programming to
define the valid structures of the fuzzy rules.

• IQFRL is able to learn controllers with embedded preprocessing without expert knowl-
edge.

• The transformation of the low-level variables into high-level variables is done through
the use of Quantified Fuzzy Propositions and Rules.

• The algorithm involves linguistic labels defined by multiple granularity without limiting
the granularity levels.

Furthermore, the algorithm was extensively tested with the wall-following behavior both
in several simulated environments and on a Pioneer 3-AT robot in two real environments. The
results were compared with some of the most well-known algorithms for learning controllers
in mobile robotics. Non-parametric significance tests have been performed, showing very
good results and a statistically significant performance of the IQFRL approach.

A novel genetic fuzzy system called FRULER was also presented. The major contribu-
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tions of this approach are the following:

• FRULER learns simple and linguistic TSK-1 knowledge bases for regression problems
using a Pittsburgh GFS approach.

• This new approach has two general-purpose preprocessing stages for regression prob-
lems:

– A new instance selection algorithm for regression that helps the genetic algorithm
to focus the search on models with lower complexity and, therefore, with better
generalization.

– A novel non-uniform multi-granularity fuzzy discretization, which allows to gen-
erate linguistic data bases without bounding the maximum number of labels.

• The evolutionary algorithm incorporates an automatic generation of the TSK fuzzy rule
bases through Elastic Net, solved using Stochastic Gradient Descent, in order to obtain
consequents with low overfitting.

FRULER was compared with three state of the art algorithms that learn different types
of fuzzy rules: linguistic Mamdani, linguistic TSK-0 and approximative TSK-1. The results
were analyzed using statistical tests, which show that FRULER obtains high accuracy, but
with a lower number of rules and with a linguistic data base. This is of particular interest
in problems where both high accuracy and interpretability are demanded, in order to provide
qualitative understanding of the model to the users.

Finally, S-FRULER was presented in order to improve the scalability of FRULER. S-
FRULER obtains low-complex models with high precision but reducing the runtime of FRULER.
The main contributions of S-FRULER are as follows:

• S-FRULER is based on the MapReduce methodology and was implemented using the
Spark software, thus providing both standalone and cluster modes.

• S-FRULER partitions the dataset into small sets, which are more tractable, and executes
FRULER for each of them.

• For each dataset partition, a random feature selection process to reduce the number of
variables is used.

• After the Map phase, the method implements an aggregation function to obtain linguis-
tic TSK-1 fuzzy rule bases from the rule bases generated in each dataset partition.

S-FRULER has speedups usually larger than the number of dataset partitions used, show-
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ing an scalability higher than linear in both standalone and cluster mode. It was compared
with three GFSs in terms of complexity of the models (number of rules) and precision (mean
squared error), showing good results with less complex models. S-FRULER was also applied
to a large-scale problem in computational biology: the prediction of the coordinate number
of a residue in the context of the prediction of the 3D structure of protein chains. Results
demonstrate the capability of S-FRULER to obtain precise and simple models in large scale
problems.

The research accomplished in this thesis leads to a number of interesting new develop-
ments that could be taken into consideration to continue as a future work:

• The approaches proposed in this thesis might be adapted to work with nominal attributes
in order to be used in other fields where categorical data is provided.

• A trending topic in Big Data and predictive analytics is the shift from batch processing
to streaming data. GFS are computationally expensive and are more suited for batch
processing. However, the generated FRBs can be updated and corrected when new data
is badly predicted. This approach can lead to a more operational solution for long-term
predictive systems.
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