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Notations

Table 0.1: Table of Notations used in this thesis

R
2 � Euclidean 2D plane

R
3 � Euclidean 3D space

x � 2D vector in R
2

x � 3D vector in R
3

A � Matrix

li � 2D straight line segment (projection of a 3D segment in image) with index i.
Γi � 3D straight line segment with index i.
ϒ j � Camera plane with index j.
R � Set of intersections of coplanar lines, projected in 3D.

P � Projection matrix.

K � Camera calibration matrix.

R � Camera rotation matrix.

t � Camera translation vector.

E � Essential matrix.

F � Fundamental matrix.

Table 0.2: Table of acronyms used in this thesis

PCA � Principal Component Analysis.

kNN � k Nearest Neighbors.

DLT � Direct Linear Transformation.

RANSAC � Random Sample Consensus.

SBA � Sparse Bundle Adjustment.

SLAM � Simultaneous Localization and Mapping.

RMS � Root Mean Squared.

GNSS � Global Navigation Satellite System.

ALS � Airborne Laser Scanning.
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Chapter 1

Introduction

1.1 Motivation

Implementing environment comprehension into machines is a challenge for mankind. The

ability to fetch, classify and interrelate the perceptible elements captured by cameras is the

link between our global net of cameras and the Artificial Intelligence. Therefore, the next

giant leap will occur when the digital captures of the outside world are observed by neural

networks, without requiring a human interpreter and translator. In order to make pictures

understandable by machines, these have to be reduced to atomic describable concepts like

points, lines or ellipses. The most simple forms, like points or lines, are referred to as prim-

itives. The most traditional techniques detect primitives and classify them attending to their

apparent attributes. During these early stages many problems had to be solved, originated

by limitations of the digital technology, the similarity between primitives in the same image,

the impossibility of characterizing them unequivocally, and the nature of the capture of light

with changes on illumination or contrast. These approaches for description and matching of

primitives have been developed in parallel with spatial abstraction methods, in such a way

that nowadays it is common to derive from a series of pictures an unique 3D representation

3



4 CHAPTER 1. INTRODUCTION

including estimations for some of the captured primitives with the relative position and ori-

entation of the cameras. This memory is focused on a single kind of primitives: the straight

line segments. It goes through straight segment matching between images and the other oper-

ations that lead to the creation of 3D representations from these detected primitives. Straight

line segments are frequently found in captures of man-made environments. The inclusion of

straight lines in 3D representations provide structural information about the captured shapes

and their limits, such as the intersection of planar structures.

Photogrammetry is an accurate, inexpensive, and non-contact metrology technique which

involves estimating the three-dimensional coordinates of points on an object from multiple

overlapping photographs taken from different poses. It has many different applications for

unmanned vehicles, computer vision, robotics, measurement techniques, remote sensing or

cartography. Photogrammetry is taking the place of other large scale metrology systems that

have been developed during the last decades. such as coordinate measuring machines [51],

LIDAR [25] or optical scanners [106]. Unlike photogrammetry, these other systems are either

expensive or impracticable in many industrial environments, such as shipbuilding or in the

inplace repairing of windmill turbine blades, where very large pieces are handled [27] under

uncontrolled illumination conditions.

One of the key steps to obtain three-dimensional coordinates of points from multiple im-

ages is to identify homologous features, such as points or lines, across the different views. To

achieve a reliable feature matching, most of the industrial photogrammetric systems usually

require to manually place a set of retro-reflective landmarks on the surface of the object and

control the illumination conditions. These retro-reflective targets are often illuminated by a

light source near the lens, in order to produce images with a high contrast between the target

and the background. Moreover, the combination of low aperture and high shutter speed virtu-

ally suppresses background details allowing a reliable segmentation of the targets [24]. The

main drawback of the use of targets is the need to attach them to the object surface in such

numbers that the presence of a target is required wherever a measurement is required. This
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manual placement of targets becomes complicated and expensive in many industrial environ-

ments with difficult access, or where large pieces are handled. On the other hand, controlled

lighting is difficult to set in many outdoor settings when large focal lengths are handled and

where the light conditions can not be controlled.

1.2 Challenges

Research about straight segments have always been developed after works related to feature

points. Lines have often been left as a complement for applications of these works devoted

to feature points. There are reasons for the line based SfM to be more complex than the point

based one:

1. Detection of points is restrained to sole coordinates in images, while line detection ex-

tends to several pixels that are ideally adjacent to other pixels of the line. Nevertheless

this condition does not always apply in real images, caused by digital noise, occlusions

or changes in illumination. Various different continuity criteria must be verified in

order to obtain a reliable edge detection in the image. Then, detected edges have to

be fit to straight lines. Fitting to straight segments can be accomplished applying linear

regression for the points comprising an edge in the image.

2. A set of pictures of the same scene may feature different kinds of viewpoint changes

among captures, including camera rotations, zooms and translations. These changes in

the camera viewpoint produce a morphological transformation of the primitives

in the captured frame, which translates into displacements of the detected primitives,

changes on their shape, distortions, fragmentation or even the impossibility to detect

the same primitive in another image by employing the same operations that served

to detect it in one of the pictures. Some of these transformations are not applicable

to points, for instance a fragmentation. A point is either fully present or not, but it
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should not be such a thing as a detected fragmented point. Therefore, there are more

morphologic transformations that can affect 2D line segments than the ones that

can affect points, due to camera viewpoint change. Generally, prominent viewpoint

transformations increase the difficulty in matching primitives, because the greater the

transformation of the same primitives among different images of the scene, the greater

the difficulty to match them.

3. Matching primitives between images is not always accurate, specially when dealing

with line segments. When finding counterparts for primitives detected in other images,

it is common to come out with several mismatched primitives. These wrongly matched

primitives are referred to as matching outliers. Matching outliers can produce that the

description of the structure of groups of primitives will not be correctly compared to

others, and employing inaccurate structure descriptions to propagate the matching to

other images may cause problems. In the last point it was explained how line segments

are subject to more morphological transformations than points. The description

of individual lines are therefore more subject to these transformations, and less

truthfully at the end. This fact forces line matching methods to rely more on

structure of neighborhoods than points. The accuracy of the description of these

neighborhoods compared with the real morphological transformation of the lines it

comprises are highly dependent on the ratio of matching outliers.

4. In the frame of 3D reconstruction from relations between feature points, known the

relative position of two cameras and the position of one point on the first image, there

is a constraint that forces the counterpart of this point on the second image to lay

on a line. It is called epipolar constraint. But a single infinite 2D line represented

in two images does not feature epipolar constraint. The only point-to-point valid

correspondences in matched segments under a viewpoint change are their end-

points. For this case of a line segment, in order to be able to estimate its position in
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3D, is required to detect in the images both endpoints of the line segment. In some

cases it may be difficult to accurately detect the end of a line segment in an image.

For instance, a segment can end by merging with another edge under a different slope,

progressively dimming until it vanishes, by intermittent occlusions, or being abruptly

fragmented. Moreover, one or both segment endpoints may lay in the limits of the

frame, and in this case it will not be possible to extract the 3D pose of the line.

The above mentioned tasks portrait the main differences between lines and points raised

out during the engineering of a complete line-based 3D sketch generation method from im-

ages. For each stage of the method described in this thesis, the author encountered specific

tasks and problems that had to be solved in the frame of the current state-of-the art. These

difficulties are highlighted in this section for the reader to understand the challenges faced

by the author during the last years. Most of the work of the author was centered on the key

tasks: detection of borders, matching lines over pairs of views, comparing the line matching

performance against competition, relate the matched primitives among sets of more than two

images, estimation of spatial lines, optimizing the abstraction and exploiting the resulting 3D

structure.

Reliable edge detection on images

The problem encountered on many of the published edge detection methods[47, 10, 126, 16,

112], as they are based on gradients, is that the image contrast determines whether an edge is

detected or not. A graphic example of this challenge is shown in Fig. 1.1. The plots show the

intensity values on the pixels close to an edge in the presence of noise. Digital captures use to

show higher level of noise in dark regions, and regions with higher gradients. Nevertheless,

finding these in a region does not imply the presence of edges, so the challenge here is to

be able to discriminate edges in the presence of noise, high contrast or abrupt changes of

illumination. Another difficulty raised with these approaches is that the location of the edge
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Figure 1.1: Gradient-based edge detectors lead to false edges in regions with changes of illu-

mination or noise.

may not be accurate due to the Gaussian smoothing. Some solutions taken for these problems,

like special thresholds or using masks[128], revealed themselves too restrictive and missed

important edges that would be observed by humans.

Straight segments matching using groups of segments

Line matching is rarely reported in the literature. Methods that look for segment counter-

parts by using trifocal tensor[49] among sets of three images, or the epipolar constraint[121]

for pairs of lines, require known relative geometry for the cameras that sourced the images.

Another group of approaches employ descriptors for the appearance of segments, based ei-

ther on their surrounding texture [159, 143], colors[9], supposing coplanarity with matched

feature points to create projective invariants[81, 62], rooted on affine transformations[29]

or constructing the invariants attending to the distance from segments to matched feature

points[31]. For the methods of this second group, the difficulty yields on the requirement

of a specific kind of scene for satisfactory matching results. In scenes that show man-made

objects with high repeatability of segments featuring similar length and orientation it is com-

plicated to distinguish the right correspondences. This can be worked out by embedding the

groups of segments into polygons that take the lines as their sides[142].
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Figure 1.2: Example of line matching using the method described in this thesis, shown to

highlight the difficulties due to line occlusions on a viewpoint change. Segment

6, colored in magenta, is mismatched due to occlusion by the limits of the frame.

Segment 17, colored in cyan, is mismatched due occlusion by viewpoint change.

Images from the dataset [74].

Line segments are usually matched independently over pairs of images attending to their

appearance and the structure plotted by the group of lines of its surroundings[80]. On other

methods, the appearance of each segment is embed into a line descriptor[159, 143]. For this

latter group of approaches, the descriptor matrices extracted from one image are compared to

the ones obtained from line detections in other images. Nevertheless, if the line structure is

employed, it can be more reliable for matching between pairs of images, but in sets compris-

ing three or more views, the structure of detected lines surrounding a segment might change

for its counterpart in other images. This is illustrated in the line matching in Fig. 1.2: Firstly,

partial occlusion produces that segment numbered 17 is not correctly matched, therefore the

shape of this line neighbourhood is different for both images. The problem escalates when

a new image of the scene is added, and the matching algorithm looks for a counterpart for

segment 17. The second photo leaves the segment 6, on the left of the image, out of frame.

Therefore this segment is incorrectly matched to the most similar detection in the neighbor-

hood.
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In the previous example it was shown how the usage of structure for line matching can

be a two edged sword. It can be profitable for matching lines in a pair of pictures featuring

a slight viewpoint change, while for wider viewpoint translations segments might see their

neighborhood changed in a way that it no longer resembles the original one. A promising

matching algorithm adapts to the scene according to average measures of morphology for

the structure drawn by straight segments in the images. This ideal algorithm uses the average

measures to dynamically update its preferred attributes employed to distinguish similarity be-

tween segments and their neighborhoods. An option to distinguish right matches in different

kinds of scenes is to give different weight to the measures that show the least variability in

the particular scene. This approach for measuring similarity between lines is computationally

more expensive than using fixed routines, because the first one requires component analysis

and subsequently repeating the operations to measure segment attributes after the weights are

updated. Nevertheless, finding the right counterparts in this stage and minimizing the match-

ing outliers will ease the following processes that involve matching these lines in groups of

more than two segments, and estimating the 3D pose in the abstraction.

Measuring the performance of line matching methods

Line matching methods must be experimentally proved against datasets that include synthetic

images, real scenes featuring camera translations, rotations and changes of illumination con-

ditions. Different kinds of scenes are classified in Fig. 1.3, with examples taken from public

databases[29, 123, 74, 61].

The length of the matched segments or the similarity between counterparts are quanti-

tative measures that can be automatically computed. Nevertheless, in order to quantify and

compare the performance of a matching method, there are more characteristics that should

be screened in order to highlight differences between methods. Moreover, not all the char-

acteristics can be obtained with the computer. Indeed, a fraction of the score given to seg-
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Scene No camera translation Viewpoint change

Synthetic

Changes of illumination

Rotation and scale

Figure 1.3: Classification of scenes employed for quantitative experiments. Taken from public

datasets[29, 123, 74, 61]

ment matching in quantitative results unavoidably has to be obtained from human assessed

Ground-Truth. This is the case of the inlier count for the matching. Simple decision rules

can be predefined to be followed by a human assessment, like the maximum perpendicular

distance in pixels from the line segment to the human Ground-Truth observation for being

considered an inlier. This distance is often set to around 5 pixels[138]. In order to accu-

rately assess the correctness of a line correspondence, the human can be instructed to set a

minimal angle of deviation compared to the actual perceived line, which uses to be around

5 degrees[138]. In Fig. 1.4 a matching result with the method described in this thesis. The

rotation and translation of the camera is evident between both pictures. There are literally

hundreds of similar human-perceivable line segments in both images, and these are separated

by few pixels. A human has to assess if the algorithm was able to correctly assess the same

line with a predefined reasonable error in slope and normal distance to the human-perceived

line.
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Figure 1.4: Example of line matching using the method described in this thesis against pic-

tures of the dataset [74]. The high density of short segments in the images raises

the need of specific rules for discerning correct correspondences using the Ground

Truth human assessment.

A good scoring system must comprise a blend of evaluations of similarity between coun-

terparts, namely inlier ratio, fragmentation of segments, number of correspondences, differ-

ence in length between counterparts and processing times.

Merging counterparts from three or more views into unique multi-view entities

Multi-view line matching can be performed by matching lines among all the possible pairs of

images available, or alternatively employing a line descriptor for describing all the detected

line segments and then look for coincidences throughout all the images.

Moving from pairwise matching to a set of entities referring to three or more views might

carry complex relations. Matching two views implies to deal with a single global transforma-

tion of each kind, meaning that it will carry a single translation, a single rotation and a single

zoom or scaling. Nevertheless, including more than two captures of the scene in the set can

bring different transformations between the views. For instance, two views can be related by

a camera rotation, while the next view keeps the same rotational angle with respect to the
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second view, while translating the camera transversally to its optical axis. Therefore, the ob-

served characteristics that are optimally chosen to relate the lines between these views differ.

These characteristics that may be common to pairs of views in a dataset comprising more

images, are related to the structure of line neighborhoods and the individual morphology of

the lines:

1. Structural characteristics of line neighborhoods that are valid to distinguish similarities

between two views might no longer work well when relating the same structures to the

ones drawn by the lines detected in a third view. The neighborhoods that are common

to a set of views of a scene might be difficult to relate to a third view that incorporates

new neighbors to the first ones, like occurred when a large camera zoom is revealing

new details of the scene. These newcomers might not have a counterpart in other view

because the detail of the picture did not reveal it. Therefore in this case adding a view to

the scene produces that the relations between neighborhoods that are working for other

views are not valid for the newly appended view. Fig. 1.5 shows different kinds of

neighborhoods or groups of lines, and an example of how these may not be completely

detected for all the views of the scene.

2. Morphological attributes of individual line segments are extracted when matching two

views because these offered the least variability for the global population of detected

line segments among both views. These are the attributes to exploit in order to distin-

guish potential counterparts. Nevertheless when matching among three or more views,

there may be different global transformations involved. For instance, a case in which

a global rotation of 20 degrees between detected lines is persistent between two views,

while these views are related to a third view by a global reduction on the length of the

detected segments. Therefore, attributes that are good for both views might not be the

most relevant for a third view that feature a different kind of global transformation.

Fig. 1.6 shows examples of individual attributes and a scenario with different global



14 CHAPTER 1. INTRODUCTION

Figure 1.5: On the top, examples of kinds of neighborhoods, defining the structure of groups

of line segments. On the bottom a simplified visual representation showing how

the orange line was not detected in the third image, and therefore the description

of this neighborhood can just be used with the first two pictures

transformations. In this case the attributes of slope and length cannot be employed

globally to define a line segment in the three images.

Line matching outliers in pairs of images might compromise the understanding of the 2D

segments structure. Moreover, for a 3D reconstruction which takes three or more images,

pairwise matchings have to be put together into an unique multi-view entity which can have

a counterpart in each image. Unfortunately, this merging process might propagate errors of

matching, aggravating the generated issues. A segment that was correctly matched in a pair

of images might be wrongfully related to another segment in a third view. This line that was

otherwise meant to be projected in space with the correct pose from the first pair of cameras,

might be distorted into a wrong pose after adding the geometric information from the third
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Figure 1.6: On the top, examples of individual appearance attributes that serve to distinguish

spare segments independently of their neighboring lines. On the bottom, a dataset

featuring different zooms and rotations between images. It is an example for

which the slope and length of the segments are transformed differently and

hence have to be compared separately for each possible pair of images of the
set.

camera. Matching outliers will produce inconsistencies, logic errors or incorrectly posed

3D segments. Ultimately, when the geometric outlier counterpart is put together with pose

estimations from other views they can waste an otherwise correct portrait of a recognizable

3D structure, like a planar surface. This is why it is crucial to detect line matching outliers

when all the segment matching information is put together.

Estimate 3D lines

Each multi-view entity relates a perceivable line segment in the real world to its counterparts

in images, as long as these have been correctly detected and matched. The process of generat-

ing a 3D representation from different pictures of the scene is visually represented in Fig. 1.7.

For the SfM problem, the poses of the cameras that took the pictures are not provided,
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Figure 1.7: Representation of the challenge of converting a set of 4 pictures into a 3D sketch

featuring the line segments and camera axis.

and it is up to SfM to simultaneously estimate the poses for the cameras and primitives. In

the present case, SfM must estimate the pose of the lines in space relative to the cameras.

The first requirement is the camera calibration matrix K for each camera, which provides the

transformation between each point in one image, in homogeneous coordinates, to a ray in

Euclidean three-dimensional space. Secondly, SfM has to estimate the projection matrices P

for the cameras, representing a map from 3D to 2D:

x = PX, (1.1)

where x is a 2D point on the image, and X its projection in 3D space. K is intrisic to each

camera, while P is extrinsic and embeds the 3D translation and rotation of the camera’s image

plane. The estimated translation is valid up to scale.

A common space can be built to host the cameras and spatial lines. For this new common

space the camera that took the first processed picture takes the place of the origin, and for

the rest of cameras P can be estimated from the lines matched between the captured images.

Alternatively, camera poses can also be retrieved from a feature-point based SfM pipeline and

these cameras be employed for the estimation of spatial lines. For instance, the feature-point

descriptor SIFT[82] can be used to match points in images with a low ratio of outliers. These
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feature point relations are obtained both in the foreground and background. Having a set of

relations between points or lines in two images allows to estimate the homography constraints

between both views by applying the 5-point algorithm[102] using the points or the segment

endpoints. A purge of outliers can be performed employing RANSAC[38] for robust estima-

tion. Therefore, a set of stereo 3D projections is obtained combining the available images

pairwisely, and each stereo system featuring both camera poses and a point cloud. The objec-

tive is to obtain an unique 3D point cloud sketch, embedding all cameras and point matches.

Hence, camera poses are sequentially stacked, and the 3D estimations for the feature points

in the new 3D space can be computed as the center of gravity for their position relative to

the common camera in both stereo systems. Finally a sparse bundle adjustment[137] is used

to minimize the pixel distance of the back-projected 3D point and the original observation of

this point on each image in homogeneous coordinates. These reprojection errors on the planes

of the cameras are minimized employing the Levenberg-Marquardt algorithm. The resulting

keypoint-based 3D reconstruction contains the optimized 3D estimations for the cameras and

the point cloud.

Several straight segment matching methods are based on texture descriptors[159, 143],

coloring[9] or in keypoint-line projective invariants[81, 62]. It was also pointed out that under

these conditions, matching results will be influenced by the level of texture in the images. In

the case that a low number of detected segments can be distinguished by employing image

texture based descriptor, or in the case that a low number of feature points are identified

throughout the set of images, the resulting set of matched lines will not be satisfactory. On

the other hand, if line matching is rooted on weak epipolar constraints[56], line matching will

be highly dependent on the accuracy of the camera poses.

The extrinsic parameters for cameras are needed to project the matched lines into space.

Having the same segment completely detected and without fragmentation for both views

under viewpoint change, endpoints are the only points in a segment with known exact coun-

terpart in the other image. Unfortunately, segment detection is not accurate in the location of
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the endpoints. Therefore, the most accurate abstractions will be the ones built rooted on cam-

era extrinsics obtained from a dense feature point based SfM. As written above, known the

projection matrices P of two cameras, a point on an image projects as a 3D ray in Euclidean

space. And this 3D ray projects like an infinite 2D line on any plane different than the one

that contains the point. Therefore, each 3D point Xp will have its image into an epipolar line

ep contained in the image. As the unknown point is constrained into a line in the other image

plane, analogously a segment will be constrained between both epipolar lines correspond-

ing to the segment endpoints. This weak epipolar constraint can be employed for matching

segments between images[56].

Bundle adjustment for line segments

In the case of feature points, the final position of the projected features relative to the camera

poses is estimated throughout an optimization process. As a part of most SfM pipelines,

bundle adjustment[137] is based on Levenberg-Marquardt, and it rearranges the poses of the

cameras and 3D points. The cost function of this optimization process is engineered to find

the minimum distance error between the reprojection of every 3D point onto each camera

plane and their original observation. A limit value for the residual is usually set to stop

the iterative process for the event of convergence, while another threshold is set to end the

optimization when reaching a maximum number of iterations.

Along matched segments under a viewpoint change, the only point-to-point valid cor-

respondences are their endpoints. Segment’s endpoint location are noticeably less accurate

than a rotation and scale invariant feature point. Employing line endpoints as the sole set of

geometrical constraints in the adjustment might not be adequate to improve the 3D sketch.

Recurrent segment mismatches, fragmentation or the inaccurate placement of counterparts

may prevent the convergence of the optimization.

It is possible to perform a line-based Bundle Adjustment by converting the primitives into
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Plücker coordinates[109, 7] within the cost function of the optimisation process. This allows

a reduction in the number of parameters.

1.3 Objectives of the work behind this thesis

The objectives of the work is to develop a method that inputs images of a scene and is able to

build a straight line based 3D abstraction comprised by the estimations of the poses in space

of the segments and the cameras. Three more specific checkpoints have been set to reach the

goal:

1. Implement a robust straight line detection method for images based on the state of the

art edge detection. This segment detection method will be to some extent resilient to

the presence of low texture, different illumination conditions, blurring and noise in the

images. It will also avoid fragmentation line segments as far as it goes.

2. Engineer a line matching method for pairs of images that employs the individual seg-

ment appearance and the structural description of groups of segments. This will input

the detected segments in both images and look for the counterparts of each one, mini-

mizing redundancy.

3. Design a method for generation of straight line based 3D abstractions of a scene from

sets of three or more images. The system will aim for difficult datasets with low number

of images of the scene or object, captures showing low texture, blurring or noise.

1.4 Contributions of this thesis

The contributions of the method presented in this thesis are related to the following tasks in

the current state-of-the-art:
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1. A detection method for straight segments in images, engineered to overcome the com-

mon problems found in the methods based on gradient, complications described in

Subsection 1.2.

2. New ways to describe groups of straight line segments based on their individual ap-

pearance characteristics and the ones of groups of segments.

3. A novel method for finding counterparts for the detected straight lines among different

images of a common scene. The matching method is engineered to solve the problems

depicted in Subsection 1.2, and commonly found in line matching methods.

4. A novel method to minimize line matching errors in scenes with flat surfaces is pre-

sented. It is based on grouping segments according to 3D structures.

5. A method that build 3D sketches or abstractions based on the lines matched through

different images. The method obtains spatial representations of the objects, scenes or

synthetic models captured in the photos. The 3D sketch features a spatial represen-

tation of the cameras and lines. Moreover, the 3D structures in the obtained sketch is

exploited to extract geometrical information. The difficulties encountered in the current

state-of-the-art are explained in Subsections 1.2 and 1.2.

In order to perform the edge detection, each image is downscaled in order to build a

Gaussian scale-space. Edges are extracted in the original image and in the downscaled oc-

taves. The resulting edge skeletons are fitted to straight lines by a robust linear regression,

followed by a threshold for the angle of curvature. Final line detections in the original image

are obtained by merging the straight segments detected in all the scaled images.

In this thesis we used both segment appearance and polygonization for describing the

structure of groups of segments to perform the line matching. We believed this approach will

perform better for scenes with low texture, poor visibility or blurring, where a dense point

cloud is not possible to obtain.
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The measurement of similarity between straight line segments includes both structure

and appearance. A voting mechanism is employed within every neighborhood in order to

relate one line to each potential counterpart on the other image. The number of votes and

the similarities of their neighborhood will determine the final score, and hence the definitive

counterpart for each segment that reached this stage.

Camera poses are known at this point, either estimated from a feature point based SfM

pipeline, or from the set of line endpoints. For each pair of views, line segments that were

matched between both images, are forward projected from the cameras into space. Therefore,

multiple stereo subsystems are built, and each one solely features the line segments they have

in common. These stereo systems are represented on the upper region of Fig. 6.3. Next, the

unique space is created. The first camera is located at the origin of the coordinate system.

From the geometrical information of all the subsystems, the rest of cameras are sequentially

stacked respect to the position of the first camera.

Human-made environments, indoor spaces and objects, often show geometric similari-

ties in their surfaces. These surfaces are commonly either contained in common planes or

are orthogonal to their neighboring surfaces. For instance, such similarities are observed in

windows of a building. Fitting lines to different planes allows to group features and classify

them. As a consequence of this geometrical grouping, different spatial lines and points are

related by simple 3D geometries.

The 3D sketch is exploited in order to find potential line matching outliers. As repre-

sented, 3D segments are fitted into planes by employing RANSAC as hypotheses generator

within the whole set of lines. After the plane with more inliers is fitted, the lines related to this

newly unveiled plane are discarded for the next iterations of the algorithm. Finally, several

planes may be fitted and their related lines grouped accordingly. The lines that are not refer-

ring to any fitted plane are not grouped. The grouped coplanar segments are intersected in

every original image. The line intersections are grouped according to the matched lines in the

group. Weak epipolar constraints are used to distinguish potential matching outliers, as the
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lines whose intersections with coplanar neighbors are not holding against these constraints.

1.5 Organization of the thesis

A short chapter with the main concepts and definitions used in this thesis is followed in

Chapter 2. A bibliographic survey including related works is included in Chapter 3, and it

goes through the most salient publications related to the topics covered in this thesis. This

comprises works about detecting edges in different images, straight segment detection and

their applications, line matching between different images, and multi-view 3D abstraction

from images. Chapter 4 is devoted to straight segment detection in images, and also covers

edge detection in images. Chapter 5 is about straight line segment matching between different

images. Chapter 6 goes through 3D abstraction from images based on lines. Finally, Chapter

5 exposes the conclusions of the present work, and the future prospects for this branch of

research.



Chapter 2

Background

Images are processed for fetching usable pieces of information. In order to understand the

represented scene or elements shown in the image, it is necessary to reduce the image to

pieces of information resembling geometric shapes that are perceivable by humans.

These pieces of information are referred to as primitives, and this is the first concept to

understand for the reader of this thesis, as shown in Fig. 2.1. The pixel coordinates com-

prising the primitives are fetched during the primitive detection process. The detection of

primitives in an image is an initial procedure towards the understanding of a scene.

Two or more images may reproduce the same primitives under different conditions. Re-

lating the coordinates of these primitives is a process named matching. Two primitives in

different images can be matched attending to characteristics in the images, such as their ap-

pearance in the image, the appearance of other detected primitives, or geometric constraints.

After a successful matching, a primitive is considered counterpart of other one in a differ-

ent image if, based on these characteristics, the matching algorithm has found evidences

that relate each other. The definition of counterpart is highlighted in Fig. 2.1.

A group of detected primitives of a predefined kind, with predefined characteristics, lo-

23
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cated in the same image and at a predefined distance from a primitive is defined as the neigh-

borhood of the latter. The neighborhood of a primitive can be used as a source of evidences

to relate the primitive to a different primitive in other image. This concept is included in the

forth point in Fig. 2.1.

Primitives can be matched between different images, so it is possible to create an instance

of a real spatial shape that links to every counterpart on their images. This spatial shape

projects onto each picture as the detected primitive. It is possible to estimate the location

of this spatial shape relative to the cameras that took the pictures, by using geometrical con-

straints. This estimation has three dimensions, includes representations for camera poses and

shapes, and is referred to as 3D sketch. The 3D sketch is the last main concept pointed out

in Fig. 2.1.
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Main concepts (In order of )ABSTRACTION

1
2
3
4
5

Primitive

A primitive is a geometrically irreducible atomic geometric shape
perceivable by a human in an image. Different classes of primitives can
be found in the same image. Several primitives can be combined in order
to form a more complex shape.

Examples of classes of primitives are: Points, lines or elliptical arcs.

Neighborhood of a primitive

The neighborhood of a primitive is a group of primitives whose image
coordinates are close or beside the primitive. Neighborhoods can be used for
nding the counterpart for primitives.

Neighborhoods can also be matched to other neighborhoods in different images.

Counterpart of a primitive

Two or more pictures of the same scene or object may reproduce the same
primitives, resembling the same points, lines or shapes from a different
perspective. The replications of a primitive on other images are referred
to as their counterparts. The process of looking for counterparts of a
primitive is the de nition of matching. Points or lines can be matched
between different images.

Detect primitives

A detection of primitives such as a point or a line in an image is a process
for nding the coordinates of the groups of pixels resembling the
primitive. The process should return the image coordinates of the pixels
that a human would point out as being part of the shape.

3D sketch

A 3D sketch is a three dimensional representation generated from the
matched primitives by exploiting geometrical constraints. A 3D
sketch is represented in a computer, and comprised by the spatial
estimation of the primitives and camera poses.

Figure 2.1: Definitions for the main concepts included in this thesis, in order of complexity.
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2.1 Detection of primitives

The detection of primitives on an image is the process aimed for separation of the groups

of pixels resembling the underlying human-perceivable primitive. It generally starts by

applying different convolutions on the original image in order to detect the target primitives.

The result of these operations highlight groups of pixels resembling the primitives attend-

ing to predefined criteria over appearance characteristics, such as pixel color, intensity,

contrast or phase congruency [71, 36]. Every preference or restriction on the characteristics

of the shape of interest is implemented in the selection criteria attending to predefined de-

scriptors. These descriptors are engineered as matrices that feature metrics into a predefined

scheme, and these metrics are measurements over the appearance characteristics. Finally, the

result of an operation(convolution) between the descriptor and the region of the image is used

to decide whether the region includes a shape matching a predefined pattern that resembles

the primitive. This detection process ends with the creation of a 2D map of pixels includ-

ing the detected primitives. Detected primitives are then characterised attending to their own

appearance attributes and the ones of groups of other detected primitives in the same image.

The resulting description and classification is necessary in order to distinguish two primitives

that may be related by a common measure or condition. This is the first step towards finding

counterparts of a detected primitive in other images or regions, process which is referred to

as matching.

2.2 Matching of primitives

A primitive matching method comprises a set of algorithms to find counterparts for segments

across different images showing common elements, environment or regions of interest. The

processes that interrelate the detected primitives are applicable if these can be found on more

than one image, or when one image features any kind of redundancy for a pattern, so differ-
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ent instances of the same region of interest can be observed in the unique frame. Therefore,

a matching process can be performed either on a single image, independently over pairs

of images, or by reducing the detected primitive to a descriptor and using it for locating

correspondences on other images. The detected primitives are described and characterised

attending to their apparent attributes, the ones of their neighboring primitives in the cap-

tured scene, and their geometrical distribution. This is the first process in which relations

are created between primitives. Prior to the search for relating primitives and redundancies,

an analysis of the degrees of freedom of the system has to be done. Therefore, this analysis

of the whole system takes into account characteristics of the scene whose imply a constraint

or restriction in the degrees of freedom. In the frame of line matching, this is the case of a

predefined preference for the alignment of features named in Computer Vision as Manhat-

tan World Assumption[17, 63] and aimed for urban scenes. Preferred directions are set for

straight lines, in such a way that they correspond to the projection on the camera plane of

parallel or orthogonal directions. These restrictions are exploited both for primitive matching

and for subsequent stages of the spatial reconstruction process. No analogy can be done with

points under the Manhattan World Assumption.

The proposed approach is framed in the group of line matching methods aimed for 3D

reconstruction from pictures of objects built by humans, buildings, urban structures, industrial

elements or computer generated models.

2.3 3D reconstruction

A 3D reconstruction is the result of an estimation for the position of singular primitives

matched among several images. In order to generate a proper 3D representation of the en-

vironment, primitives detected in the input images must be put in correspondence among

the rest of images. Secondly, the whole set of matched primitives is employed to estimate

the most probable poses for the cameras that took the pictures, by exploiting geometric con-
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straints.

Cameras can be geometrically parameterized, and these parameters condition the final

spatial abstraction. The group of characteristics of a camera defining its position and orienta-

tion in space are referred to as extrinsic parameters. The measures related to the construc-

tion of the optical geometry of the camera that will affect the final captures, such as the focal

length, are embed in the intrinsic parameters.

Structure-From-Motion (SfM) is the first step towards the generation of a 3D reconstruc-

tion of a scene or object. It estimates the unknown relative poses for the camera at the

instant when each photo was taken, altogether with the location of primitives relative to

these poses. The set of matched primitives is required as the only piece of geometrical

information that relate the different views of the scene. The geometric problem of esti-

mating the unknown camera extrinsics is solved differently depending on the configuration

for the cameras taking the pictures. If the setup comprises a set of cameras, each one with

known relative translation and orientation respect to the other cameras, the number of degrees

of freedom for the geometrical problem can be reduced due to the physical constraint between

the views. This is the case of a stereo system comprised of two parallel cameras attached to

the same rigid support. On the other side, the estimation of camera extrinsic parameters will

be more complex in the case of freely moving cameras. In this case, the extrinsic parameters

have to be estimated from cameras must be incrementally added to the spatial abstraction. An

example of this using points as primitives is shown in Fig. 2.3.

There are available SfM bundles that reproduce objects and scenes from photos, some

of these are free[147, 129, 1] and some others are commercial, like Agisoft Photoscan or

Autodesk ReCap. These software applications are usually computationally expensive. Nev-

ertheless SfM is getting very popular and is usually teamed with new desktop 3D printers and

high definition cameras. These allow to build a reconstruction of the shape of an object in the

real world by using just a smartphone with camera.

3D abstraction is included in this thesis about lines in order to exploit the line matching
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Figure 2.2: Real-time generation of 3D abstraction

results for the estimation of the location of a camera and their surrounding structures.

It can help as assistance for the guidance of autonomous robots or unmanned vehicles. The

generation of a line-based 3D sketch can be performed in real-time, using the newly captured

images to update the reconstruction, as represented in Fig. 2.2.
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Figure 2.3: Incremental addition of cameras to the 3D abstraction [133]

.



Chapter 3

Related works

In recent years, low-level image features have been proven useful for achieving reliable corre-

spondences among images. Several feature point based methods have been proposed such as

Moment Invariants [95], Steerable Filters [40], Differential Invariants [96] or multi-scale fea-

ture detection and description algorithms. The most popular multi-scale based approaches

are the Scale Invariant Feature Transform (SIFT [82]), the Speeded Up Robust Features

(SURF [8]) and KAZE [3].

SIFT [82] and SURF [8] features changed the way machine can extract relations between

images and regions of images. The first one obtains candidate keypoints as the maxima and

minima of the result of a difference of Gaussians through a scale-space. Keypoints are de-

scribed as invariant to both scale and rotation. It was shown that SIFT-based descriptors, that

match keypoints by using a scale invariant region detector and a descriptor based on the gra-

dient distribution, outperform the other mentioned approaches [93]. However, the drawback

of these SIFT-based methods is that by relying on properties like texture or local structure,

they become deficient with low-textured objects and homogeneous surfaces, which are typi-

cal in industrial environments. In these cases, it is essential to use line segments as matching

31
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features due to their abundance on man-made objects, and also because they bring us greater

structural information. SURF [8] exploits the fact that Gaussian derivatives at different scales

can be approximated by simple box filters, and a sum of Haar wavelet responses is computed

per region. This allowed SURF to obtain better repeatability, distinctiveness, robustness and

performance than SIFT. More recently, KAZE [3] substituted Gaussian scale space by non

linear diffusion filtering in order to obtain much higher repeatability and distinctiveness than

the previous algorithms of this kind.

The above mentioned multi-scale feature point detection and description algorithms cre-

ate relations between points in images, and one of the main applications is to build 3D ab-

stractions of the captured scenes. The vast majority of the current approaches for 3D scene

reconstruction are based on point clouds[151]. Hartley[50] solved the problem of triangula-

tion of matched points among different views, by assuming Gaussian noise model for pertur-

bation of the image coordinates, while knowing the camera intrinsic parameters. The same

work proposes different ways to estimate camera poses from a set of triangulated points. Few

years later, Triggs et al.[137] overviewed the Sparse Bundle Adjustment (SBA) optimization

to improve clouds , as a least-squares minimization. Commonly, points are matched between

pairs of views based on their descriptors, then triangulated to make an initial estimation of

their relative rotation and translation in 3D space, and finally their poses are adjusted by using

least squares minimization. A number of efficient point detectors and descriptors have made

possible to generate robust and detailed 3D reconstructions based on feature point clouds

[83] [8] [114] [3]. These algorithms made possible to evolve from simple 3D reconstructions

of the surfaces[108] to dense point reconstructions of extensive landscapes and cities[129].

The photogrammetric technique SfM has been used for mapping forested landscape fea-

tures from Unmanned Aerial Vehicles. This technique has similar operational requirements

than airborne laser scanning (ALS) and is capable of providing a representation with equiv-

alent level of accuracy[141]. In this study the main difference found was related with the

lack penetration of SfM through the upper canopy of the dense vegetation compared with the
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laser. The SfM technique applied to images acquired by a low-altitude UAV system has also

been proved comparable to GNSS survey data, with a low RMS error for the SfM result, and

just with some difficulties over small areas with sudden changes on topographic slopes [86].

3.1 Detection of lines in images

Straight line segments have been included in Computer Vision since back in early 1980s. The

applications at the time were line matching between pairs of views[89, 90] or tracking the line

segments through images[20]. The first works about Structure-from-Motion (SfM) based on

lines were focused on the mathematical bases[49] and showed experimental results from

low resolution and simple scenes[134]. The first works published in this century added new

applications for the detection of line segments, like crack detection in materials by analyzing

microscopic images[85]. Other application introduced during the change of century was

improving the compression of images[39]. With the popularization of the Internet, some

works employed lines for image indexation[46]. Matching lines between images is used to

find similarities and common geometries between views[80]. Popular applications for line

matching now are line based 3D abstractions[54]. A more specific application employing 3D

abstraction is the guidance of robots, referred to in the literature as odometry[151].

Edge detection

Kovesi[71] defines an edge as a location in the image where the local autocorrelation function

has a distinct peak. An operator that detects edges is usually based on convolutions to local

derivative filters on the original image.

The detection of edges is the process that returns a map of pixels marking where these

structures can be perceived by a human in the image. The detection of straight lines in images

is following the detection of edges, and it can not be made without the latter. The author wants
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to differentiate methods for edge detection in images and the ones of straight line segment

detections.

The first works about edge detection in images dates of the 1970s, and were focused on the

theory of color changes[111], intensity changes, scales, image filtering and derivatives[87].

The mentioned filters were used to discriminate orientations of edges and intensity changes.

Harris edge detector[47] is based in the local auto-correlation function. Canny edge

detector[15] classifies a pixel as an edge if the gradient magnitude of the pixel is larger than

those of pixels at both its sides in the direction of maximum intensity change. The Gray-level

edge detection[65] computes the curvature of edges altogether with the gradient of pixel value

of grey-scale images. Cooper et al.[16] published two edge detectors based on image gradient

magnitude. This magnitude is computed along different paths centered on a point which can

be an edge.

Edge detectors based on local energy are also proposed: The method from Rosenthaler

et al.[112] uses oriented filters with even and odd symmetry, and combines their convolution

outputs to oriented energy, in order to detect edges and keypoints.

At the end of last century, biometric applications promoted the usage of edges extensively,

for example for the analysis of human palmprints[155].

The origin of some of the problems to solve in the fields of application of straight line

segments is related to the way the segments are detected. Firstly, the fragmentation of lines

occurs when an uniquely perceived segment entity is detected as an array of shorter segments.

These sections have to be merged into an unique entity before searching for segment matching

hypothesis. A theoretical approach to obtain a more reliable detection is to deal an image as

a 2D generalization of the analytic signal, so it is possible to perform a transformation to

account for the local amplitude and local phase. In this case, edges are detected in the scale-

space, comprised by the original image and several downscaled versions of it. Adding this

third dimension allows to employ the monogenic signal[130] to detect edges, because the

maxima of differential phase congruency resemble the main edges on every picture in the
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scale-space. Another advantage of going into this frequency band for border detection is a

higher resilience to changes in contrast and intensity in the image. Detecting line segments in

different scales allows to access the frequency domain[71]. With this approach, edges are not

just marked according to to a greyscale map, but the locations where the image signal gets

maximal phase congruency[130].

The revolution in the way we exploit data started in the present century, and it opened

the gate to new kinds of techniques. It is possible to classify the methods attending to the

source of the data employed for the edge detection. During the writing of this literature

review of the state-of-the-art of edge detection the author found out that works devoted to

edge detection often get close to the topic of segmentation. Despite learning-based methods

for object segmentation is not the topic of this thesis, many of these works are rooted on their

own method for edge detection. In this way, the author found no reason to exclude the works

aimed for segmentation for this section. Therefore, it is possible to organize the existent

works about edge detection into three different groups:

1. Model based methods: In this group we can fit the above mentioned early methods,

characterized for being based on predefined thresholds, patterns and responses to oper-

ations. One example is the Sobel detector[66], which keeps being improved[45]. Other

early methods are based on zero-crossing[87]. In this group it has to be mentioned the

Canny detector[15] which is still very popular nowadays.

2. Data driven methods: These appeared with the change of century, and the detection

is based on probability distributions with examples like Statistical Edges[68]. The

method Pb[88] was aimed for natural scenes and was followed by gPb[4]. The former

one was improved by its author, and named as Multiscale-Combinatorial-Grouping

(MCG)[5]. It is based on bottom-up segmentation and object candidate generation.

In addition to edge extraction, it segments hierarchical regions and object candidates.

Pointwise-Mutual-Information (PMI)[59] is a method intended for unsupervised object
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segmentation, but includes its own method to find pixel-level accurate boundaries that

avoids to mark as edge the texture of the segmented objects.

3. Learning-based methods: For the methods in this group, learning is based on inputs

provided by humans. A relevant method in this group is Structured Edges[23]. Other

examples are BEL[22] and Sketch tokens[77].

In addition, there are methods based on Convolutional Neural Networks. The difference

compared with to the latter group in the list is that in this case the learning is automatized.

Examples are HED[149], N4[42], DeepContour[124] and DeepEdge[11].

Despite the new wave of works employing learning appeared during the last years, several

works of the first group also appeared, and these worth mentioning. For instance, in 2012 the

simple Edge Drawing (ED)[135] method ED was published. Firstly, the image is filtered

with Gauss. Secondly a gradient magnitude and orientation is computed. The peaks of the

gradient maps are the pixels with high probability of being part of the edge are marked.

The resultant continuous edge skeleton is drawn by joining the marked pixels. In the same

group and published in 2017, FENI[103] is aimed for edge detection in noisy images, and

takes the challenge of estimating on how faint can an edge be and still be detected, based

on the minimal detectable contrast in an image. Moreover it proposes separate methods for

straight line and curvy edge detections. Another example from 2017 is PLineD[118], aimed

for detection of power lines for Unmanned Aerial Vehicles, it follows a similar approach as

ED[135] for obtaining the edges for then chopping them. In order to highlight the power lines

in the images, it chops the edges according to its orientation, purge them according to their

length, and finally groups the resulting candidates.

Detect straight segments

The fragmentation of lines occurs when an uniquely perceived segment entity is detected

as an array of shorter segments. These sections have to be merged into an unique entity
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before searching for segment matching hypothesis. One approach is to fetch segments based

on edges detected in the scale-space and employ the monogenic signal ([130]), because the

maxima of differential phase congruency resemble the main edges on every picture in the

scale-space. Another advantage of going into this frequency band for border detection is a

higher resilience to changes in contrast and intensity.

Most classic methods employ Hough transform over the edges extracted by the Canny

edge detector[15]. The extracted straight lines with this transform are the ones contain-

ing a number of edge points higher than a threshold. Then lines are chopped according

to length and separation thresholds. One of the problems with the Hough transform is caused

by the impossibility of adjusting these thresholds dynamically according to the level of tex-

ture. Therefore, when trying detection on textured regions, it leads to false detections. No

matter how accurately thresholds are designed for a picture, there will be regions exceeding

its optimal working range. This problem related with the global thresholds is also negatively

affecting the results of other propositions of edge detection, like the work of Deriche et al.

[20], which merges edge pixels into curves, then joins them together into lines, according to

predefined thresholds. The process of joining is referred as chaining. The chaining method

from Etemadi[28] is able to segment edges into circular arcs and straight lines. It avoids

user-supplied thresholds, and is based on complex edge maps.

At the end of the last century, the work Meaningful Alignments (MA)[21] focused on ex-

tracting the significant geometric structures in a single image from the detected line segments.

It established the properties that allow to characterize meaningful segments. For this task the

authors assume that the gradient direction of all pixels in the image is an statistically uni-

formly distributed random variable. Secondly they set the conditions that pixels with aligned

direction have to meet in order to resemble a meaningful segment.

The popular Line Segment Detector (LSD)[140] appeared in 2010 and obtains the straight

segments by representing edges as regions of aligned orientation pixels. It was followed the

next year by EDLines[2], based on edge detected with ED. It includes false detection control
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due to the Helmholtz principle. An improvement over LSD aimed for robust line-based SfM

was presented by Salaün et al.[115], and has taken profit from edge detections over multiple

scales.

In 2015 Xu et al.[150] published a method for line segment extraction using minimum

entropy with the Hough transform. In the same year, Zhang and Huang[156] came out with

a simple method for straight line detection by using simple conditions and thresholds. In

2016 Budak et al.[14] improved LSD by teaming it with SIFT and the Fisher Vector[117] for

airport detection from aerial images.

3.2 Line matching

Few methods for automatic line matching are reported in the literature, due to several inher-

ent difficulties. These difficulties include the inaccurate locations of line endpoints, object

occlusions leading to missing line counterparts, the fragmentation of lines often causing the

loss of topological connections among line segments, and also the lack of a global geome-

tric constraint such as the epipolar constraint in point matching. Existing approaches for

line matching can be divided into three types: those that match individual line segments,

those that match groups of line segments, and those that use some point correspondences or

epipolar constraints of line endpoints, to perform line matching. The main drawbacks of the

last kind of approaches, such as the ones of Schmid and Zisserman[119] and Fan et al.[30],

are the requirement of knowing the epipolar geometry in advance, and the reliance on some

point correspondences which makes them inappropriate for low-textured scenes, typical in

industrial environments.

Most of the approaches to match individual line segments are based on appearance simi-

larities of the line segments, such as Bay et al.[9] where color histograms are used to obtain

an initial set of candidate matches which grows iteratively, or Wang et al.[144] which defines

the MSLD line descriptor by using a SIFT-like strategy. However, the sole reliance on the
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appearance of lines also makes these methods inappropriate for industrial scenes, with tex-

tureless surfaces. In this way, Zhang et al.[158] have presented a line matching algorithm

which considers not only the local appearance of segments but also the direction of lines. Di-

rection histograms are used to estimate whether there is an approximate global rotation angle

among image pairs, and if so, this angle is used to reduce the candidate matchings. Although

it has been shown that this method achieves better results, the problem remains when there is

no accepted rotation angle among images.

The main advantage of the methods that match groups of line segments is that more ge-

ometric information is available for disambiguation. For instance, in the method proposed

by Wang et al. and referred to as LS[142], line segments are grouped based on the spatial

proximity and relative saliency, and then these groups are matched by using angles and length

ratios to describe geometric configuration of their segments, and also average gradient mag-

nitudes to describe appearance information. This strategy is shown to be useful to deal with

large viewpoint changes, and non-planar scenes. However, in order to improve the repeata-

bility of line signatures among images, a multi-scale scheme for line extraction is applied to

divide all the curves in many consistent ways, so that each curved connected-edge is polygo-

nized at various scales and all possible segments are kept. This overestimation in the number

of line segments makes this method computationally expensive.

A classification of the related methods for line matching can be done in two groups: one

implementing hypothesis generation for the correspondences using exclusively data from 2D

observations while avoiding to use homography constraints, and a second group that roots the

matching candidate selection criteria on homography constraints.

One option for obtaining hypothetical counterparts based on 2D is to use a descrip-

tor, like the above mentioned LS[142]. It parameterizes different similarity measures for

scale and rotation invariance, altogether with affine invariance attributes. MSLD[143] en-

codes a SIFT-like description of the different regions of a line into a description matrix.

LBD[159] improved MSLD by adding geometric constraints and an outliers topological fil-
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ter. SMSLD[138] added scale invariance to MSLD, by creating a scale-space from the im-

ages, and matching the regions close to each segment. Nevertheless it is required an ample

region beside the lines for the algorithm to success. Other methods include the definition of

junctions as intersections of line segments subject to some geometrical conditions, in order

to broaden the measurable characteristics of groups of segments. It is the case of LJL [75],

a method that categorizes detected lines touching each other in one of their endpoints, and

compares intensity changes along the segments, the angle that the pair of segments is draw-

ing, and takes in account other neighboring line junctions. Finally, sole lines are grouped

and become matching candidates to the segments detected close to the junction counterpart

on other images. It is also possible to match lines over pairs of images by employing Harris

edge detection[47] and matching the areas around these edges for instance using normalized

cross-correlation (NCC) of the gray levels of contained pixels. Line matching candidates are

found according to proximity measures to these matched areas [104]. Zeng et al.[154] uses

appearance and structure for hypothesis generation, but adding feature point descriptor SIFT

for outliers detection and removal. Another approach is by drawing convex hull around the

clusters of segments, and exploiting affine invariants in the hull[84]. The ratios of the areas

of triangles drawn inside the hull are compared. This method has been improved for the pro-

posed work. For this group of approaches, additional efforts are required for outliers filtering,

in order to prevent a critical degradation of the final 3D reconstruction. These issues come

up more relevantly if the experiments are conducted with datasets featuring a wide camera

viewpoint change.

The second group of methods is employing homography constraints in order to obtain

the relations among detected segments. The method LJL was evolved to VJ ([76]) by adding

homography constraints from the intersections of the elongations of closely located pairs

of line segments. It is possible to separate groups of hypothetical matches just by spatial

proximity to other hypothetical 3D representations, meaning that it is more likely that a match

is true if it is close to other 3D line hypothesis[53].
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LPI[31] exploits the line-points affine invariants analogously to the methods of the first

group, and takes advantage of the projective homography invariants by using four feature

points beside the line. A recent evolution of this method is CLPI[62], that construct the line-

points projective invariant on the intersections of coplanar lines. The drawback is that for

both exploitations they had to suppose that all points and the line are coplanar, and often the

lines resemble the limits of two planar surfaces. The downside of these methods is that they

require a previous result from a feature point based SfM pipeline.

The recent work from Shen and Dai[125] shows a line matching based on matching points

along the segments. It is required to provide the homography for the views. Instead of

matching lines directly, for each segment it gets sample points as representation to match the

whole line, by using optical flow along the line.

3.3 3D abstraction based on straight segments

Two different problems can be considered regarding 3D abstraction from primitive matching:

The first kind of problems aims to obtain the 3D abstraction from known camera poses,

being these sourced from ground-truth data. In the second type of problems, referred to as

SfM, camera extrinsics are not provided, so both the camera poses and the location of scene

primitives have to be estimated altogether. This differentiation is decisive for the quality

of the resulting reconstruction. For instance, the case of a moving UAV stands for unknown

camera extrinsics, and both camera positions and environment abstraction have to be retrieved

from a set of captures from the camera.

Another differentiation can be made based on the used representation for the 3D lines.

The most recent works build representations for spatial lines that employs just 4 parameters,

the same number as the degrees of freedom of a 3D straight line. Nevertheless, some other

works published during this century still used 6 parameters for the representations. These

parameters are either the two 3D endpoint coordinates[127, 43] or the closest 3D point on the
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spatial line plus the direction vector. Another classification for the 3D abstraction methods

can be done attending to the adjustment method, geometrical, by the Extended Kalman Filter

(EKF), or by using non-linear optimization. The recent ones which use an EKF and aimed

for SLAM are taking account of the camera velocity [127] and model based tracking [43].

Point based SfM pipelines may be teamed with line based solutions. The objective is to

use the point based pipeline to obtain the camera poses. The camera extrinsics can be used

to match detected lines by exploiting homography constraints, and to forward project the

matched segments. The implementation of a line projection function has been proven prof-

itable to source the correspondences from the camera extrinsics computed by a point-based

SfM pipeline, given that this point cloud is dense enough to provide sufficiently accurate

poses for the cameras[54], or more directly when the ground truth camera poses are used as

input[160].

The first published methods based on minimization of an objective function, reconstructed

the infinite line instead of the segment limited by the endpoints, provided partial extrinsic pa-

rameters of the cameras and generated initial estimates for the rest of them [134]. Bartoli

et al.[7] goes a step forward and brings up the Plücker coordinates 4-parameter represen-

tation of lines, for the will of a more suitable SBA optimization. They also include the

trifocal tensor[109] because they just used lines as input. Same as did [160], whose in addi-

tion avoided enforcing Plücker constraints to improve the SBA efficiency, by employing the

Cayley representation of the Plücker coordinates. Their cost function computes the squared

re-projection error from the sum of the squared shortest distance from each observed endpoint

to the reprojected infinite line.

In 2011 Elqursh and Elgammal[26] proposed a line-based pose estimation method based

on choosing groups of three pairs of matched lines between views. Two of the three lines have

to be parallel, and perpendicular to the third one. Under this condition the relative camera

rotation is computed, and the relative translation is obtained from two intersection points of

the mentioned lines.
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The above mentioned work about straight line detection from Salaün et al.[115] was fol-

lowed by their SfM method for wide baselines and just 3 images [116]. Another sophisticated

method for line segment based SfM was published in 2016 by Micusik and Wildenauer[92].

They captured line segments in fisheye lens images, based their matching on SIFT descrip-

tors for the segment endpoints, estimated relative camera poses similarly to Elqursh and

Elgammal[26],and built the 3D model incrementally: First computed relative camera ori-

entations for all image pairs using the segment correspondences, then they simultaneously

estimated their translation and built the 3D model by a simple RANSAC procedure.

After putting primitives in correspondence among views, we can distinguish three com-

mon further stages of a reconstruction process: The first stage for the spatial reconstruction

is the estimation of camera poses by Structure-from-Motion (SfM), which outputs the esti-

mated camera poses and reconstructed features. The second step is the computationally more

expensive Multi-View Stereo (MVS)[41, 113] that can add up to millions of points into a

dense cloud. The third stage is intended for post processing, and based on fitting more com-

plex 3D elements to the estimated point clouds, including planes in a Manhattan World[63],

planes reconstructed employing a stereo camera rig[110] or lines[160, 92]. However, these

approaches are heavily dependent on the dense point clouds, and will not permit a feasible

solution when a dense point cloud is not available. That applies, for example, to the case of

UAVs, when an on-flight real time reconstruction is required, because expensive adjustments

can not be delivered on time, when the video stream lacks high definition, the digital noise

is persistent, or the received images have to be converted from an analog video source. Even

with the appropriate setup, conditions related to poor texture of the surrounding objects, a

poor environment illumination, blurring or the lack of high definition pictures of the scene

available when the vehicle is moving fast, might compromise the building of a dense cloud.

In order to classify the observations, line clustering has been proven to be profitable at

grouping lines before entering the pose estimation algorithms [120, 6]. The spatial position

of clustered inlier matchings have to be recovered. This spacial dimension retrieval was
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done classically by linear algorithms [79, 131], including a closed-form solution [145]. The

addition of matrix factorization [136, 97] increased the applicability but did not solve the

lack of support of matching outliers. Despite the Extended Kalman Filter (EKF) is not an

optimal estimator [58], in the early 1990s some works[19, 139] used it. A minimum of six

line correspondences in three images are required to solve this SfM problem [32]. The first

nonlinear iterative approaches [78] were limited to a few lines in three views, but were later

followed by methods using minimization of an objective function [134].

This clustering increases its relevance when the application is intended for UAV real-

time video streams and other low quality image sources, because the number of matched

lines drops to sparse densities. From point-based SfM pipelines it is expected to obtain low

density point clouds, and a high rate of feature point matching outliers due to low image

resolution, digital noise and changes in illumination conditions. Hence, matching algorithms

exclusively based on straight segments detections avoid the source of uncertainties tied to the

use of nearby feature points for matching. The major difference in performance is where the

textures of surrounding objects are not available, and the line information is the only way to

reach the convergence of the final adjustment.

A method to reconstruct a room from a single panorama image[162] was published in

2018. It used Manhattan World assumption and the vertical lines resembling the edges of the

room are employed to shape its main geometry. After the geometry of the room is estimated,

the texture is finally plotted on the sides of the model.

For large sets of images, the approach of perform line matching every view to the other

ones can be problematic because the number of matching operations grows exponentially,

so does the computational cost. In order to overcome this issue a common approach is to

estimate the extrinsics for all the cameras by employing a feature-point based SfM pipeline,

and use the homography constraints to match lines[55]. Moreover, it is easy to set a distance

threshold for the cameras in order to decide whether two images get to be line matched. If

they are too far apart the algorithm may decide that it will not be beneficial to match both im-
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ages. Alternatively, the line matching algorithm can be executed just between images by fol-

lowing the ant colony optimization algorithm, like in the line-based SfM method from Shen

and Dai[125] published in 2018. For this method, camera poses are estimated by matching

the representative points lying on the lines, with the OpenMVG[100] pipeline.





Chapter 4

Straight segment detection

A straight line segment in 2D is a single primitive that can be defined by the coordinates of its

two endpoints, or alternatively by just one point plus the angle and the length of the segment.

Straight line detection is commonly rooted on edges detected in the image. A straight line

detection algorithm generally works altogether with an edge detector that provides it with an

edge skeleton comprised by curvy and straight sections. Every branch in the edge skeleton

needs to be chopped into sections and fitted to straight segments. Therefore, in an image,

several straight segments can be fitted to a curvy edge.

The early and basic detectors of edges in images are gradient based, meaning that the edge

detection algorithm marks the points in the image with the highest contrast of pixel values,

then draws the edge as a patch through them, adding joints when necessary. The problem

with these are that changes in the global contrast will directly affect the edge detection, and

moreover, filters can also affect the shape of edges and joints.

Fragmentation of lines occurs when an uniquely perceived segment entity is detected as

an array of shorter segments. The generated problem is that these sections have to be merged

into an unique entity before searching for segment matching hypotheses. One approach to

47



48 CHAPTER 4. STRAIGHT SEGMENT DETECTION

minimize fragmentation is to fetch segments in a way resilient to changes in contrast and illu-

mination. It was proved that this can be accomplished by rooting straight segment detection

on edges detected in the scale-space and employing the monogenic signal[130], because the

maxima of differential phase congruency resemble the main edges on every picture in the

scale-space.

The straight line segment detection algorithm described in this thesis is rooted on an

edge detection method that exploits local energy and local phase. This approach has been

proved profitable by the line detection method EDLines[2], and is also the same underlaying

idea as the approach used by Zhang and Koch[158] to source the line segments for their line

matching method. Nevertheless, for the latter method edge detection is performed in several

scaled versions of the original image. These downscaled versions of the image are referred

to as octaves.

The first hypothesis of the presented line detection method is that a straight segment

detection method will profit of detecting edges from the maxima of phase congruency in the

scale-space[71], specially in sets of images with variable illumination conditions. The second

hypothesis is that these edges can be reliably fitted to straight line segments by using linear

regression, like performed when fitting data to lines in a plot. The third hypothesis is that

additional appearance information can be extracted from the scale-space after merging the

straight lines detected in different octaves. Therefore lines detected in the original image can

be classified according to the depth it was detected in the scale-space, meaning in how many

octaves the line segment has been observed. The goal of the method is to input an image, and

without additional information detect solely straight line segments in the whole area of the

image, avoiding fragmentation, and resiliently to changes in contrast and illumination.

The remaining of the chapter follows the Section 4.2, that sets the theoretical bases for

the energy based method employed to extract the edges. The description of the method is in

Section 4.2. The method is proved experimentally in Section 4.5.
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Figure 4.1: Representation of the different steps of the line detection method described in this

chapter.

4.1 Overview of the Line Detection method

Fig. 4.1 is a graphical representation of the step-by-step process for straight line segment

detection in an image. In this section the different steps of this detection process are reviewed:

First the creation of a scale-space by downsizing the input image and applying a Gaussian

filter on the octaves for successively smoothing them. Secondly, edges are detected in the

octaves by looking for the extrema of differential phase congruency. Thirdly, these curvy

edges are fit to straight lines by linear regression. The fifth step relates the straight segments

between the different octaves according to their appearance. Finally these segments detected

in the octaves are fusioned with the ones detected in the original image. These extracted lines

are classified according to the number of octaves they were found in.

Table 4.1 shows an example of the process by plotting intermediate images as result of

the steps that lead to the straight line detection: a) shows the original image. The points

where the Fourier components of the image function get maximum phase congruency are

marked in black in the image b), and are referred to as points of differential phase congruency.
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This remainder skeleton of points is filtered by applying a threshold attending to its phase

congruency, by removing the ones with slope lower than 0.2. Furthermore, the connected

components drawing an angle greater than 5 degrees are removed, same as done with the

ones featuring a length under 5 pixels. This let us with the image c). Next, the remainder of

points are fitted to straight lines by linear regression, like explained in Subsection 4.4. This

leaves us with the image d), which shows the separated line segments. Finally, an algorithm

fuses straight segments into unique entities attending to the distance between endpoints and

its inclination, coming up with image e).
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a) Original image b) Points of max. diff. PC

c) After thresholding d) After continuity criterion

e) After fusion

Table 4.1: This table follows the process of straight line detection in an image, and it is better

viewed in a computer monitor with a 400%. a) Original image. b) Marked in black,

the points of differential phase congruency. c) Points are filtered using a threshold

attending to the Phase Congruency, length and inclination. d) The remainder of

points are fitted to straight lines by linear regression. e) After the fusion algorithm

for fragments of segments.
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4.2 Energy based edge detection

There are three concepts that are referred to in the description of the method, and these must

be understood separately: the Monogenic Signal, the Gaussian Scale-Space and the Phase

Congruency. The applicability and advantages of the presented edge detection method are

dependent on how these concepts are teamed.

The Monogenic Signal

A 2D image can be thought as a two dimensional signal. The energy based edge detection

approaches use this abstraction, and for each point in the image the signal has an orientation, a

spectra of frequencies and phases. In order to leave space to the frequency dimension to live,

we have to think about an abstract extension of the images. We can think this third dimension

as space in-between scales, filled by waves created by the image signal in the image. The

Riesz transform for two dimensions is a generalization of the Hilbert transform [35] for these

two dimensions. Let the vector H = (H1,H2) be the transfer function of the Riesz transform,

and represent filters in the frequency domain:

H1(u1,u2) = i
u1√

u2
1 +u2

2

and H2(u1,u2) = i
u2√

u2
1 +u2

2

. (4.1)

The convolution kernel for the filter H respect to the coordinates in the image is:

( fo1(x1,x2), fo2(x1,x2)) =

(
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3
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3
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)
. (4.2)

If we combine the image signal f with its Riestz transform, we can obtain a multi-

dimensional generalization of the analytic signal, called the monogenic signal:

fM(x1,x2) = ( f (x1,x2),(fo1 ∗ f)(x1,x2),(fo2 ∗ f)(x1,x2)) (4.3)

The local amplitude of fM is the vector norm of fM , and denoted as A f :

|fM|= A f =

√
f2 +(fo1 ∗ f)2 +(fo2 ∗ f)2 (4.4)
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For a triple we need two phases. Using the standard spherical coordinates:

f = A f cos(φ) (4.5)

(fo1 ∗ f) = A f sin(φ)cos(θ) (4.6)

(fo2 ∗ f) = A f sin(φ)sin(θ), (4.7)

where φ ∈ [0,2π) and θ ∈ [0,π).

In order to filter the Riesz transform to reduce its infinite pulse to a local filter mask, a

triple of spherical quadrature filters (SQF) is applied. This triple comprises the radial band-

pass filter and the radial bandpass filtered kernels. In this case the bandpass filter employed

is a lognormal filter, which is a Gaussian filter if considered in logarithmic scale.

Ge(u1,u2) = F{ fe(x1,x2)}= exp

(
−

(log(
√

u2
1 +u2

2/2k))2

2(log(ω))2

)
, (4.8)

where k indicates the octave (the center frequency) and the bandwidth-parameter ω is either

0.55 for two octaves, or 0.41 for three octaves. Therefore, the triple of SQF that is applied is:

(Ge,H1Ge,H2Ge). As explained by Felsberg and Sommer[35], the response of these SQF is

drawn in Fig. 4.2. The components of the monogenic signal are represented in Fig. 4.3, as

described by[35]. An example of the application of each one of the components of the filter

is shown in Fig. 4.4.

The Gaussian scale-space

The Gaussian is the only function that is located on both space and frequency domains. The

natural scale parameter to vary in the calculation of phase congruency is the size of the anal-

ysis window over which to calculate local frequency information. Scale is varied using high-

pass filtering rather than low-pass or band-pass filtering, in order to avoid losing significance

of the edges with more relevance in the image.
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Figure 4.2: Frequency-domain representations of a set of spherical quadrature filters. Figure

from [13].

Figure 4.3: The decomposition of the componentes of the monogenic signal. Figure from

[13].
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Figure 4.4: On the left, test image. On the right its monogenic signal. It is presented on

increased scale from up to down. From left to right it is decomposed on their even

and both odd components. Figure from [13].

Line detection starts by constructing a Gaussian scale-space pyramid of the input image

by repeatedly smoothing it with a Gaussian and subsequently downsampling[35, 71, 70] the

original image into octaves. For each scaled image, edge features are extracted by means

of phase congruency[71], which is a dimensionless quantity that is invariant to changes in

image brightness and contrast. These edge features are then locally approximated to line

segments according to a continuity criterion, and finally, the multi-scale information is com-

bined to perform a more meaningful merging of those line segments which may correspond

to fragments of the same real line.

Given a grayscale image, Gaussian filtering is applied in order to suppress image noise

and smooth out the image. Gaussian filters of different sizes are applied in order to downscale
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the original image into different octaves.

The Gaussian scale-space of an image is a family of functions L(x,y;s) defined by the

convolution of a Gaussian G(x,y;s) with the input image I(x,y):

L(x,y;s) = G(x,y;s)∗ I(x,y) (4.9)

where ∗ is the convolution operator in x and y, and s is the scale parameter.

The Gaussian scale-space is sampled in both space and scale to obtain a pyramid repre-

sentation. Our results are obtained by using three images: I(x,y), L(x,y;s1) and L(x,y;s2),

using a convolution kernel of size 5× 5, where s1 = 1.3, s2 = 1.6, and where the last two

images are downsampled by a factor of M1 =
√

2 and M2 = 2, respectively.

Phase congruency

An application of the spherical quadrature filters is the detection of edges and lines in images.

If we take the local amplitude as measurement for setting the edges in images, the problem

that rises is how to fix the threshold. If it is too low, a lot of false-positives are raised.

On the other hand, if the threshold is set too high, many edges will be missed with low local

contrast. Nevertheless, since the phase information is independent of the local amplitude, it is

possible to use the phase congruency: Edges in images are ideally described by dimensionless

quantities, and these should be independent of illumination and magnification. In order to

predict edges using such parameters it is not possible to use the gradient magnitude, but

instead the local energy model of feature detection[99]. Phase congruency is a dimensionless

measure of feature significance. This model postulates that features are perceived at points of

maximum phase congruency in the image. The phase congruency function is developed from

the Fourier series expansion of a signal[71]:

F(x) = ∑
n

Ancos(nωx+φn), (4.10)
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where ω is a constant. The phase congruency function is defined as

PC(x) = max
θ∈[0,2π]

∑n Ancos(nωx+φn −θ)
∑n An

. (4.11)

The value of the added phase θ that maximizes PC(x) in the equation 4.19 is the weighted

mean phase angle of all the Fourier terms at the point being considered. Finding the values

of x where phase congruency is a maximum is approximately equivalent to finding where the

weighted standard deviation of phase angles is a minimum.

Phase congruency is usually weighted by some measure of the spread of the frequencies

that are present at each point in an image. In order to extrapolate the concept of phase con-

gruency to two dimensions, a spreading function has to be applied across the filter, perpen-

dicularly to its orientation. A good choice for this function is the Gaussian function, because

the convolution does not corrupt the phase data in the image. In the frequency domain, any

function smoothed with a Gaussian suffers amplitude modulation of its components, while

phase remains unaffected.

4.3 Edge Detection

Classical approaches to edge detection involve the localization of significant local changes

in image intensity. However, these methods are sensitive to scene illumination, blurring, and

magnification[161]. Moreover, most of them are optimized to detect only step-edges and

will give spurious responses when applied to real image edges, which are a combination of

step, peak, and roof profiles[107]. In contrast, rather than assuming that a feature is a point

of maximal intensity gradient, the local energy model postulates that features are perceived

at points in an image where the Fourier components are maximally in phase, equivalently,

points of maximal phase congruency[98, 99], which is a dimensionless quantity that provides

a contrast invariant way of identifying features[72]. Due to practical difficulties in estimating

phase congruency, most of the existing methods use a related quantity, the local energy, for
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feature detection[12], but the problem is that this quantity is not invariant to illumination

changes and contrast. In last years, a few methods to directly compute phase congruency have

been developed by Kovesi[69]. However, these methods require to compute the responses of

a bank of filters over many orientations and scales, with the consequent high computational

cost.

In this thesis, differential phase congruency proposed by Felsberg and Sommer[34] is

used to achieve robustness to different illumination conditions, which has the consistency of

Kovesi approach while solving its drawbacks. Differential phase congruency is derived on

the basis of the monogenic scale-space, which arises from the combination of the monogenic

signal with a Poisson scale-space representation[34, 37]. The monogenic signal IM(x) is a

2D generalization of the analytic signal, that uses the Riesz transform instead of the Hilbert

transform.

IM(x,y) =
(
I(x,y),(fo1 ∗ I)(x,y),(fo2 ∗ I)(x,y)

)�
(4.12)

where I(x,y) is the image signal, and ( fo1, fo2) are the components of the Riesz transform,

which is a scalar-to-vector signal transformation with an impulse response given as:

h(x,y) = ( fo1(x,y), fo2(x,y))� =

(
x

2π‖x,y‖3
,

y
2π‖x,y‖3

)�
(4.13)

The Poisson scale-space representation of the monogenic signal forms the monogenic

scale-space IM(x,y;s):

IM(x,y;s) =
(
u(x,y;s),v(x,y;s)

)�
(4.14)

where v(x,y;s) is the Riesz transform of u(x,y;s), which is the image convolved with the

Poisson kernel ps(x,y) = s ·
(

2π(s2 +‖(x,y)‖2)
)−3/2

. In this framework, points of differen-

tial phase congruency are defined by the zeros of the scale derivative of the local phase-vector

∂sr(x,y;s) = 0, defined as:

r(x,y;s) =
v(x,y;s)

‖v(x,y;s)‖ · arctan

(‖v(x,y;s)‖
u(x,y;s)

)
(4.15)
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The advantage is that for intrinsically one-dimensional neighborhoods (i.e. neighbor-

hoods where the signal varies only in one direction), this derivative can be expressed analyti-

cally, and points of phase congruency can be computed directly as:

∂sr(x,y;s) =
u(x,y;s)∂sv(x,y;s)−v(x,y;s)∂su(x,y;s)

u(x,y;s)2 +‖v(x,y;s)‖2
= 0 (4.16)

In practice, similarly to the use of quadrature filters to estimate the analytic signal[12], the

monogenic signal is estimated by convolving the image signal with a spherical quadrature fil-

ter (SQF)[33], which is a triplet consisting on a band-pass filter and its Riesz transform. The

band-pass filter used is the Difference of Poisson (DOP), which is combined with the cor-

responding Difference of Conjugate Poisson (DOCP) filters to form the SQF. Their impulse

responses are:

b(x,y;s) =
s

2π(s2 +‖(x,y)‖2)3/2
− ŝ

2π(ŝ2 +‖(x,y)‖2)3/2
(4.17)

c(x,y;s) =

(
1

2π(s2 +‖(x,y)‖2)3/2
− 1

2π(ŝ2 +‖(x,y)‖2)3/2

)
(x,y) (4.18)

where s is the scale parameter, and ŝ = s+ Δs. Results are obtained with s = 1 and ŝ =

3. And then, for intrinsically one-dimensional neighborhoods, points of differential phase

congruency are obtained as those (x,y) that satisfy:

(
b(x,y;s)∗ I(x,y)

) · (∂sc(x,y;s)∗ I(x,y)
)

− (c(x,y;s)∗ I(x,y)
) · (∂sb(x,y;s)∗ I(x,y)

)
= 0.

(4.19)

By linear regression these zeros are detected with subpixel accuracy.

4.4 Straight line segments detection

Edge features may correspond to straight lines, but also curved lines, which can be locally

approximated to straight line segments. Consequently, a linearity criterion is required to
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Figure 4.5: Continuity criterion for the extraction of line segments from edge features of an

image.

decide whether a connected-edge fits well to a straight line, but also a split criterion is needed

to select the break point to divide those edges that do not satisfy the linearity condition.

From edges to straight lines

Fig. 4.5 shows a scheme of the applied process, which is carried out iteratively until all the

connected-edges are fitted to line segments. As seen in this figure, a robust regression is per-

formed for each connected-edge to estimate the corresponding straight line segment, which

is done to reduce the influence of possible outliers due to image noise. This robust regression

is implemented by using iteratively reweighted least squares (IRLS) with a bisquare weight-

ing function[57], which involves the following steps: Consider an ordinary robust regression

with the model:

yi = x′iβ +σεi, (4.20)

where β is the regression parameter or slope of the line, the errors {εi} are independent and

identically distributed, and σ is the scale parameter.

1. Fit the model by weighted least squares, solving the normal equations:

(
W1/2X

)�(
W1/2X

)
β =

(
W1/2X

)�(
W1/2y

)
(4.21)
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where W = diag(w1, · · · ,wN) is the diagonal matrix built from the weights (which are

set to 1 at the first iteration), β is a column vector with the two regression coefficients,

and y= [y1, · · · ,yN ]
� and X=

[
1|(x1, · · · ,xN)

�
]

are a column vector and a 2×N matrix

respectively, with (xi,yi) the image coordinates of the N points forming the connected-

edge. These normal equations are solved by means of a QR decomposition of the

matrix (W1/2X), given by: W1/2X = QR = [Q1Q2] [R10]� = Q1R.

2. Compute the adjusted residuals given by:

radj
i =

ri√
1−hi

, (4.22)

where ri = yi −∑ j Xi, jβ j are the residuals, and hi are the leverage values from a least-

squares fit (the diagonal elements of the hat matrix, H = Q1Q�
1 , of the first iteration),

which adjust the residuals by reducing the weight of high-leverage data points.

3. Compute the standardized adjusted residuals as:

ui =
radj

i
K ·σ , (4.23)

where K = 4.685 is a tuning constant, and the scale parameter σ = 1.4826 · MAD

represents an estimate of the standard deviation of the error term, estimated by using

the median absolute deviation (MAD) of the adjusted residuals. The constant 1.4826

makes the estimation unbiased for the normal distribution.

4. Compute the bisquare weights as:

wi =

⎧⎪⎪⎨
⎪⎪⎩
(

1− (ui)
2
)2

, |ui|< 1

0 , |ui| ≥ 1

(4.24)

5. Return to the first step until the fit converges, or until it reaches a maximum number of

iterations (set to 50).
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Linearity and splitting criteria for edges

Once the robust fit is performed, the linearity criterion accepts a line segment as valid if:

1. The dispersion in the orientation (computed following[73]) of the connected-edge is

less than π/12. This threshold roughly corresponds to the error of 1% for the approxi-

mation of sinθ ≈ θ , which corresponds to θ = 0.244 radians (14◦).

2. The maximum of the residuals is less than 5 pixels, in order to chop ample arcs. It has

been proved empirically to be a safe perpendicular distance from the fitted straight line

to the edge pixels, by letting through thick or blurred segments that are still considered

valid, while being a good compromise by considering to bisect long arcs.

The connected-edges that are not accepted as valid segments are split in two. The split-

ting criterion selects points on the edges that did not meet the linearity criterion to be candi-

date points where the edges are chopped. These are the points on the edge whose derivative

of the local orientation meet any of the following conditions:

1. It is a local maximum, because the high peaks of the derivative of the orientation coin-

cides with the points of inflection of a curve.

2. It exceeds the predefined angular threshold of π/12, because the edge might be reach-

ing an inflection there, or a change of direction of the line.

For each splitting point candidate, the total dispersion in the orientation on both sections

of the edge is computed, so the splitting point candidate with the least total dispersion is

selected as the final splitting point. Edges shorter than a threshold of 5 pixels are discarded

because are considered too small for being practical with the proposed applications. The

image c) in Table 4.1 shows the line segments extracted from the edge detector response for

an image.
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Multi-scale fusion stage

The previous subsection went through the extraction of straight line segments for the original

image and each downscaled octave. Now, at this fusion stage, all these multi-scale sets must

be combined to provide a single set of lines that corresponds with the perceived segments in

the original input image as precisely as possible. Thus, the purpose of this stage is to reduce

the presence of fragmented and overlapping segments which may correspond to the same per-

ceived line, and this is done through the use of the multi-scale information provided by the

previous stages. It is clear that the lines extracted from the smallest octaves (lower resolution)

will be located with a more inaccurate pose due to Gaussian smoothing and downsampling.

But on the other hand, the lines in these small octaves will be more significant due to the

reduced noise. The line set extracted from the original image will be located more precisely,

but it may contain spurious lines caused by noisy edges, which could lead to erroneous merg-

ing. For this reason, the scale-wise merging is spreading from the smallest octaves to the

original image, looking for merging the significance given by the segments in the smallest

octaves with the precision in the location of the segments in the original image. Two steps

are required: the first one is to identify homologous lines along scales for providing the pos-

sibility of extending a merge from high to low scales, and the second is to conduct merging

when the appropriate conditions are met.

Two lines at different scales are identified as homologous based on four parameters, which

are assigned with their respective distance thresholds:

1. The difference in the orientations of both lines ω is set to be less than π/12, preventing

the error for the approximation sinω ≈ ω of exceeding 1%.

2. The distance between midpoints in the normal direction is configured to be no greater

than 14 pixels. This distance might seem excessive at first sight, but has been proved

profitable for short segments that might be detected with high uncertainty in the their



64 CHAPTER 4. STRAIGHT SEGMENT DETECTION

slope for the smaller scales. This is mainly due to Gaussian smoothing or noise. The

slight difference in slope plus the uncertainty in the point location after scaling can

be combined with a shift of location of the segment along the line, bumping the nor-

mal distance between endpoints further than expected for the same actual segment in

different scales.

3. The maximum distance between endpoints has to be less than three times the length

of the longer segment: 3 ·max(Li,L j). This similarity condition applies to ensure the

lengths of the segments are roughly proportional between scales.

4. The minimum distance between endpoints has to be less than 24 pixels, because the

minimum possible line for detection for every scale has been defined as 5 pixels, so

24 is three times the length of this segment in the higher scale. By loosing restrictions

between the location of endpoints we allow incomplete detections in smaller scales to

still add in with information about the importance of the line segment detected in the

original scale.

If there are multiple candidates for the same line, it will take the closest based on the distance

between endpoints. Moreover, the algorithm may encounter two aligned segments located

close together in a scale. In this case, the merging criterion is applied in order to discern

if both segments resemble the same real segment that was detected as two fragments in the

scale, and merge them accordingly:

Scale-wise merging criterion:

Two aligned segments are selected as merging candidates based on three parameters:

1. The difference in the orientations of both aligned segment to be less than π/12, for the

same reason that in the linearity criterion.
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2. The distance between midpoints in the normal direction will be no greater than just 2

pixels because here we are just measuring alignment.

3. The minimal distance between endpoints is fixed to 0.02L, where L is the largest di-

mension of each image.

The iterative process forces the new merging candidate segment to undergo the linearity

condition described in the previous subsection, in order to be finally accepted. Then, newly

merged lines are introduced again into an iterative process, which scans through all scales

until no mergings are left.

The final output is composed just by segments detected in the the original scale, whose

length exceeds 0.025L.

4.5 Experimental results for line detection

Line detection methods are evaluated employing Ground Truth assessment, based on results

against public datasets. A human observer will mark the detected lines and assess if they

represent a true segment and if it is completely addressed by the detected feature. Detection

has been evaluated against synthetic and real public images.

Several aspects of the proposed approach are evaluated in this section. Regarding the

line detection method we will focus on evaluating its robustness against different illumina-

tion conditions and levels of noise, with the aim of quantitatively measure the benefits of

an energy-based edge detector. In addition, we also want to check the accuracy reached in

minimizing the number of fragmented and overlapping lines by means of the proposed line

extractor. On the other hand, for the line matching method we will focus on evaluating the

performance of line neighborhoods to deal with low-textured scenes, containing objects with

homogeneous surfaces and many repetitive patterns, which are common in industrial environ-

ments. Moreover, we want to test its accuracy under a wide range of differences in perspective
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between the pair of views, and also the quality of the resulting matching information from a

photogrammetric point of view.

In order to test line detection method we used a set of synthetic images subject to differ-

ent illumination conditions and levels of noise. These images contain 48 perceived lines with

different contrast settings on both sides, and a closed curve to observe its effect on the straight

line detection. The illumination conditions are not global brightness changes, but rather dif-

ferent settings of lights and shadows which try to simulate a more realistic scene. For each

one of these images with different illumination conditions, four different levels of Gaussian

noise are added with zero mean and variances 0.002,0.006,0.010 and 0.014 (intensity values

of the images are normalized in the interval [0,1]). Furthermore, the line detection method

is also tested on a real image under different conditions of illumination, level of noise, and

average gray levels. On the other hand, a set of wide-baseline image pairs containing real

industrial environments, specifically in the field of shipbuilding, were used for the quan-

titative comparison. These images were taken by workers without stopping the production

activities, under uncontrolled conditions. The images contain a set of objects, characterized

by containing low-textured surfaces and many repetitive patterns. There are also many of

them containing objects like temporary marks made by the industry workers, clothes, ca-

bles, etc. which lack clear lines, and they are therefore classified as non-relevant for line

matching. In addition, a set of images taken from public databases[122, 30] are used. The se-

lected images are of buildings because they share similar characteristics with industrial parts,

either for being images taken under uncontrolled illumination conditions, or for containing

many repetitive patterns of lines, and also for including views with small and moderate view-

point changes, different scale, and occlusions. The images are represented in Fig. 4.12 and

Fig. 4.12.

Our results are obtained with the aforementioned fixed parameters, and are compared with

two state-of-the-art line matching approaches: Line Signatures (LS)[142], and the method

proposed by Zhang et al. (AG)[158]. Both implementations are supplied by their authors,
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and are selected due to their good performance to deal with a wide range of image transfor-

mations.

Line Extraction Results

Results of line detection with the proposed method are shown in Fig. 4.6 and Fig. 4.7, al-

together with the results of two methods that output line detections: LS[142] and AG[158].

In these results it can be noted the different segment lengths obtained for each method. For

instance LS[142] is often marking non relevant lines, and the fragmentation of both LS[142]

and AG[158] is more severe than in the proposed method. Therefore a comparison of number

of extracted lines does not reflect the performance of methods against Ground Truth.

Fig 4.6 shows the line extraction results for three of the synthetic images under different

illumination conditions. It can be seen that both AG and LS overestimate the total number of

lines on the images, exceeding in all of them a minimum of 221 and 147 respectively, which

is more than three times the number of perceived lines (48). Moreover, for one of the images,

LS extracted 288 lines which is more than five times the number of perceived lines. As seen

in the figure, this overestimation is due to many overlapping segments are extracted from the

same single lines, and also because many straight lines are fragmented into several segments.

In contrast, the number of lines extracted by our approach in the three images (58, 59 and

60 lines) is very close to the real number of perceived lines (48). Furthermore, it can be

seen that there are no overlapping detected segments, even in the polygonal approximation of

the ellipse, and also that almost no straight line is fragmented, which is due to the proposed

fusion stage.

Table 4.2 shows in a quantitative way the dependence of both LS and AG on illumination

conditions and noise level. Especially note that the number of lines extracted by LS varies

very strongly among different conditions, becoming more than twice in some cases. This

is because both LS and AG use gradient-based methods for line extraction, which are very
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[Three synthetic images with different illuminations (48 perceived lines).]

[Detection results with the method AG: 147, 136 and 137 extracted lines.]

[Detection results with the method LS: 236, 221 and 288 extracted lines.]

[Detection results with the Proposed method: 58, 59 and 60 extracted lines.]

Figure 4.6: Line segment detection results. Lines extracted from synthetic images under dif-

ferent illumination conditions. Colors were randomly assigned to segments in

order to distinguish them from their neighbors. Quantitative results are shown in

table 4.2.
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[AG: 975 and 778 lines extracted (a difference of 197 lines).]

[LS: 2632 and 2015 lines extracted (a difference of 617 lines).]

[Proposed: 292 and 283 lines extracted (a difference of 9 lines).]

Figure 4.7: Line extraction results under different illumination conditions for the same real image (the

same image in Fig. 4.7).



70 CHAPTER 4. STRAIGHT SEGMENT DETECTION

[Original images]

[LS: 757 and 405 lines extracted respectively. Times: 1s and 0.8s.]

[result of the SALM method: 373 and 386 lines respectively. Times: 3.5s and 3.9s.]

Figure 4.8: Line extraction results for the images in the dataset outdoorlight[74].
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[Original images]

[LS: 622 and 938 lines extracted respectively. Times: 0.8s and 0.9s.]

[result of the SALM method: 346 and 231 segments respectively. Times: 3.6s and 3.4s.]

Figure 4.9: Line extraction results for the images in the dataset drawer[74].
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Figure 4.10: Line extraction results for the images in the dataset lowtexture1[74] . On the left, the result

of LS with 194 lines extracted and cost of 0,7s. On the right, the result of SALM featuring

56 segments and obtained in 3.8s.

Table 4.2: Total number of lines extracted for the synthetic images. On the left:fixed illumi-

nation conditions and different levels of Gaussian noise G(μ , σ2). On the right:

different illumination conditions and same noise level. The number of perceived

lines in the images is 48.

Noise AG LS Proposed

G(0, 0.002) 175 147 61

G(0, 0.006) 193 290 63

G(0, 0.010) 205 189 59

G(0, 0.014) 185 368 64

Illumination AG LS Proposed

Level 1 175 147 61

Level 2 147 236 58

Level 3 136 221 59

Level 4 137 288 60

Table 4.3: Total number of lines extracted from a real image (the one in Fig. 4.7), under differ-

ent transformations. On the left: fixed illumination conditions and different levels

of Gaussian noise G(μ , σ2). On the right: different illumination conditions and

same noise level.

Noise AG LS Proposed

G(0, 0.002) 975 2632 292

G(0, 0.006) 813 2161 233

G(0, 0.010) 746 2410 210

G(0, 0.014) 673 2471 206

Illumination AG LS Proposed

Level 1 975 2632 292

Level 2 821 2041 278

Level 3 778 2015 283

Level 4 714 1985 283
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Figure 4.11: Images used for evaluation: The first row is comprised by synthetic images and

the rest of images are grouped in pairs, taken from real industrial environments.
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Figure 4.12: Images from public databases used for evaluation: the first four image pairs under

various transformations are taken from[30]; the remaining two image sequences

are taken from ZuBuD database[122].
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sensitive to these conditions. In contrast, our approach gives practically identical results for

all images, exhibiting robustness to noise level and illumination changes.

The performance of the line detectors for a real image in addition of Gaussian noise under

two different illumination conditions is shown in Fig. 4.7. As seen, the overestimation in the

number of lines performed by AG and LS becomes more evident on real images. While our

approach extracts about 285 lines, AG reaches more than 750, and LS more than 2000, which

is a very high number of lines, considering that the image resolution is not very large, but

only 1024×768 pixels. Closely observing the images one can see the large number of over-

lapping and fragmented lines extracted by both gradient-based methods, and also the large

number of detection failures performed by LS, where many lines are extracted where none

exists. In contrast, our approach extracted much less fragmented lines and no overlapping

segments, achieving a much clearer detection with less lines extracted. It is important to note

that a large number of overestimated lines will increase the computational cost of any post-

processing, which may be impracticable for very high resolution images in which the number

of perceived lines can be huge. In Fig. 4.8, Fig. 4.9 and Fig. 4.10 additional comparisons

has been performed for the interest of this thesis. These comparatives has been performed

against LS because this line detection method is used as base of a line matching method

subject to quantitative comparison in the following chapter. In this way, the comparisons

has been performed for the same datasets that will be employed for matching comparisons

in the following chapter. In general, the number of lines and their plot highlight the high

redundancy and fragmentation of the segments in the results by LS. For instance, Fig. 4.10

features very low number of perceived lines, but still LS marks 193 segments, while SALM

shows a more reasonable number of 56, while both method are showing virtually the same

human perceivable lines. Also Fig. 4.8 and Fig. 4.9 are examples of how the lines extracted

by SALM present more accuracy in the direction and location of the actual human perceived

line. In The nature of LS, based on gradient, is the responsible of its lower processing cost

than SALM.
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Figure 4.13: The variation of the total number of lines extracted by the methods for the same

real image with different average gray levels.
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It can be also observed in Fig. 4.7 the large variability in the number of lines extracted

by AG and LS under the two different illumination conditions for the same image. There are

∼ 200 lines of difference between the results given by AG, and this number becomes in more

than 600 lines for LS, whereas our approach gives only 9 lines of difference, providing almost

the same detection for the same image under different illumination conditions. Table 4.3 gives

a more complete information about the dependence of the methods on illumination conditions

and noise levels. As seen, AG results vary in more than 300 lines along the different levels of

Gaussian noise, and this difference is greater than 250 lines along the different illumination

conditions. For its part, LS varies in more than 450 lines across noise levels and in more

than 650 for the different illumination conditions. Meanwhile, our approach is practically

invariant to illumination conditions (the biggest difference is only 14 lines), and also exhibits

robustness to noise level with a maximum difference of 86 lines.

In Fig. 4.13 it can be seen the total number of lines extracted for the real image with

different average gray levels. This figure shows very clearly the huge difference in the number

of lines extracted by the methods for a real image, and also shows that even global brightness

variations in the image cause significant variations in the total number of lines extracted by

AG, and specially by LS, while our results remains quite stable.





Chapter 5

Straight line segment matching

Matching creates relations between elements of an image or several images. It is a basic tool

in Computer Vision and the root for many applications in manufacturing industry, robotics or

autonomous vehicles.

A basic problem in matching of primitives takes two different images showing the same

scene, common elements or the same object. Both images may be different in image filtering,

illumination, contrast, pose of 2D shapes or objects, different viewpoint or coloring. Addi-

tionally, the algorithm has to be provided with a set of detected primitives of the same kind in

the images, which may be obtained from a detection algorithm on the images, other physical

perception methods, or provided by humans. The challenge of a line matching method is to

relate every primitive in one image to its counterpart in the other view.

Matching between edges on a pixel-by-pixel basis works in stereo systems with known

epipolar camera geometry. However for the problem of freely moving cameras it is not

possible to obtain the exact correspondence for each pixel between images without knowing

the extrinsic and intrinsic parameters of the cameras. Representing curvy edges as a set of

straight line fragments might not be a good approach for trying to match them. These ample

79
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arcs can be detected or decomposed as discrete straight lines that the matching algorithm can

handle. Nevertheless, the segment matching might not work properly in this case, because

curvy edges and textured edges are expected to be decomposed differently for each different

capture of the same object or scene.

The matching method we are proposing is referred to as SALM, which is the acronym

of Structure and Appearance Line Matching. It integrates an outliers removal extension that

employs 3D projections to group lines according to their coplanarity. The remainder of the

chapter is organized as followed: Section 5.1 goes through a comprehensive short overview

of the method. A detailed description is followed in Section 5.2, and the process of going

from the images to the final straight line segments is mathematically explained. Section 5.3

expose the experimental set-up, the quantitative results, and compare them with several other

state of the art line matching methods.

5.1 High level overview

A line matching method comprises a set of algorithms which put in correspondence segments

across different images showing common elements, environment or regions of interest. A 3D

reconstruction is the result of an estimation of the position of singular primitives captured in

several images. The approach followed by SALM is framed in the group of line matching

methods aimed for 3D reconstruction from pictures of objects built by humans, buildings,

urban structures, industrial elements or computer generated models.

The SALM line matching algorithm is aimed for application altogether with 3D line based

abstraction. It employs an iterative voting algorithm running in groups of lines with the

same structural distribution[84], and the outliers rejection algorithm exploits 3D structures

to discriminate potential outliers. SALM’s approach is based on three core elements: The

first one is that a segment matching method will profit of detecting the segments based on

edges obtained from the maxima of phase congruency in the scale-space, specially in sets of
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images with variable illumination conditions. Secondly, a blend of descriptions of individual

line appearance and the structure of groups of neighboring segments is the best approach

for finding counterparts of the straight segments detected on different images. The last core

element introduces an outliers detection algorithm based on coplanar line intersections of

the lines put in correspondence. The inputs for the segment matching method are both the

images and the intrinsic parameters of the camera, being the output the relation of matched

lines among the images and the potential matching outliers.

5.2 Low level description

Fig. 5.1 shows a diagram of blocks with the main steps of the process from the images.

A two-stage iterative algorithm is designed for line matching, and the set of matching

lines increases at each iteration. Both stages are executed sequentially, and both ones share

the same iterative design. The inputs to the first stage are those lines that have been robustly

detected along scale-space on both images, whereas the input of the second stage consists

of all unmatched lines. These line sets are introduced in an iterative process for matching,

which is performed in four steps. First, several kinds of line neighborhood are computed for

each line to obtain local structure information. Secondly, a similarity measure is computed

for each pair of line segments by taking into account their local structure, their geometric

properties (such as orientation, length, location of endpoints) and also their local appear-

ance (by using intensity correlations, and phase congruency averages). Thirdly, the strongest

correspondences are added to the set of matched lines on the basis of a matching criteria. Fi-

nally, the weakest correspondences are broken by checking several conditions over the whole

set of matched lines, ensuring that it grows robustly. The loop ends when all the matching

lines remain paired with the same partner for at least T iterations. Results are obtained with

T = 5 which is found to be a balanced choice between the stability of line matches and time

consumption.
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Figure 5.1: Diagram of blocks for the SALM method. The upper region represents the inte-

grated line detection method disclosed in Chapter 2.

The similarity between two lines relies on comparing their geometric properties and local

appearance, but also the structural context where they are framed by taking into account the

geometrical arrangement of their neighboring segments. Thus, two similarity measures are

needed: a line-to-line measure to compare two lines purely, and a neighborhood measure to

compare each of its neighborhoods. Figure 5.2 shows an overview of the steps involved in

calculating the similarity between two lines.
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Figure 5.2: Computation of the similarity measure for each pair of lines. The total similar-

ity between two lines (equation 5.22) depends on the structural similarity of their

neighborhoods (equation 5.20), which integrates the line-to-line similarity (equa-

tion 5.1) between the neighboring segments.

Computation of individual similarity.

Given an unordered set of detected lines, related to one of the images: L ={l1,l2,l3,...,lA}, the

measure of similarity of li to an hypothetical counterpart on the other image l j is stored into

a similarity vector d, comprising the similarity attributes both lines have in common. These

components are:

Line-To-Line Similarity Measure

The similarity z(i, j) between two lines i and j is measured based on geometric relationships

and local appearance. Geometric relationships are constructed by using properties such as

orientation, length, and location of endpoints. Local appearance is estimated by comparing

gray level intensity averages, phase congruency averages, and also intensity correlations in

the local neighborhoods of the segments.

A feature vector d= (dcr,dcl,dPC,dρ ,dθ ,dl,dx,dy) is built for each pair of segments (i, j),
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whose components are in [0,1] according to their similarity, where all of them vanish for a

segment with itself. The feature vector components are:

1. Contrast: average gray level intensity of the image. dcr(i, j) = (Ir
i − Ir

j)/max(Ir
i , I

r
j),

where Ir is the ratio of the average gray level intensity on the right side of the segment to

the average gray level intensity of the image. The component dcl is defined analogously

on the left side.

2. Phase Congruency, dPC(i, j) = |PCi−PCj|
max(PCi,PCj)

, where PCi and PCj are the phase congru-

ency averages of the pixels of the segments.

3. Intensity correlation: dρ(i, j) = 1− ρ2(Ri,R j). For each segment, a local region R

is defined, normalized by an invariant resampling under rotation and length (Fig. 5.3).

ρ(Ri,R j) is the correlation coefficient among gray level intensities of the two segments

regions. This measure is invariant to global illumination changes.

4. Angular distance, dθ (i, j) = 2
π · ∣∣(θi −θ j)

∣∣ where θ is the segment orientation, θ ∈
[−π/2,π/2].

5. Difference in length: dl(i, j) = |li−l j|
max(li,l j)

, where l is the segment length.

6. Distance between midpoints: dx(i, j) =
∣∣∣mi

x −mj
x

∣∣∣/max(mi
x,m

j
x), where mi

x,m
j
x are

the x components of the midpoints of each segment, analogously for dy(i, j).

The line-to-line measure is computed as:

z(i, j) =
8

∑
k=1

wk ·dk(i, j) (5.1)

where dk are the components of the feature vector, and wk are a set of normalized weights to

take into account the relative importance of each component for matching. These weights are

set at the beginning of the algorithm for each pair of input images by using a Principal Com-

ponent Analysis (PCA), as followed in the next paragraph. The reason for introducing the
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Figure 5.3: Local region Ri defined for a line segment i, consisting of nl × nr samples uni-

formly distributed along the segment, with nr = 61 and nl = 100. Examples of

these regions for three different lines on a real image.

weights is to adapt the algorithm to each different image pair, according to the discriminative

power of each component of the feature vector. The attributes for the individual similarity of

lines are graphically represented in the upper half of the Fig. 5.4.

Figure 5.4: Computation of the individual similarity for the line segments, in the SALM

method.
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Initial estimation of the weights of the feature vector.

The statistical procedure PCA creates an orthogonal linear transformation to convert a set

of observations of possibly correlated variables into a set of values of linearly uncorrelated

variables (principal components), in such a way that the first principal component has the

largest possible variance, and each subsequent component in turn has the highest possible

variance, fulfilling orthogonality to the previous components[105]. This analysis is used for

the computation of lines’ individual similarity to obtain an estimation of the weights of the

feature vector.

In order to set the initial weights wk of the feature vector, the line-to-line similarity mea-

sure for each possible line pairing is calculated at the beginning of the algorithm, obtaining a

data matrix X ∈ R
P×8:

X =
[
dcl(in, jm) |dcr(in, jm) |dPC(in, jm) | . . . |dy(in, jm)

]
(5.2)

where in, jm are all lines on both images (n = 1 . . .N, m = 1 . . .M and P = NM)

Then, PCA is performed over this data matrix, obtaining a linear transformation that

let us write each element of the data matrix d(i)k in the new coordinate system as a linear

combination of the principal components p(i)t .

d(i)k =
8

∑
t=1

αkt · p(i)t ,k = 1 . . .8 (5.3)

where αk j are obtained directly from the analysis, and satisfy ∑t α2
kt = 1.

Since matchings are made between all possible line pairs, most of them will be wrong.

So, ideally, all the components of the feature vector should return a value of dk = 1 because

it implies the highest possible dissimilarity. Therefore, those components dk that contribute

less to the variability of the data will be the ones of most interest for the line matching since

they are able to discern that almost all matches are wrong, getting almost all values close to
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Figure 5.5: Histogram of the component dl of the similarity vector, showing the change of

length of the matched lines for an image pair. The dominant value in the histogram

corresponds to the dominant scale transformation between the two images.

1. The weights wk are assigned as follows:

wk =
1

∑8
t=1 α2

kt ·St
,k = 1 . . .8 (5.4)

where St is the total percentage of variance associated with the principal component pt , which

is obtained directly from the analysis. Thus, for example, the vector components whose

projection on the p1-direction (the direction of maximum variance) is large will be assigned

to a small weight, because they are responsible for a large variance in the data, and are not

distinguishing that almost all matches are wrong.

Estimating a global transformation between images.

The line-to-line similarity of the matched lines at each iteration is used to estimate whether

the images are related by a global transformation: global illumination changes, rotations,

scalings and displacements. Thus, the algorithm is able to infer information about the image

transformation, which in turn is used to correct the line-to-line similarity measure in the next

iterations.

The histograms of the components {dcr,dcl,dθ ,dl,dx,dy} are computed for the matched

lines at each iteration, and the dominant values (those exceeding 33%) are associated with

the existence of a global transformation. Fig 5.5 gives an example of a length histogram of
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an image pair obtained from the matched lines at a fixed iteration, in which it can be seen

that the dominant value is related to the global scale transformation. These dominant values

are then used to shift the feature components in the next iterations, in such a way that if there

are some dominant values of the component dk, then it is recomputed as the minimum of the

difference between dominant values and old value. The idea was inspired by[158], where

line direction histograms were used to deal with global rotations.

A similarity vector d is computed for every possible pairwise combinations, and embed-

ded into the matrix XP×8:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dcl(i1, j1) dcr(i1, j1) dPC(i1, j1) . . . dy(i1, j1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dcl(in, jm) dcr(in, jm) dPC(in, jm) . . . dy(in, jm)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dcl(iA, jB) dcr(iA, jB) dPC(iA, jB) . . . dy(iA, jB)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.5)

where A and B are the numbers of detected segments in the first and second images respec-

tively, therefore the pair of indexes (in, jm) represents all possible pairwise combinations of

segment between views (n = 1 · · ·A, m = 1 · · ·B).

A PCA is applied over the rows of the matrix X, obtaining a linear transformation that lets

us write each element of the data matrix dk(in, jm) in the new coordinate system as a linear

combination of the principal components pct :

dk(in, jm) =
8

∑
t=1

α t
k(in, jm) · pct

k(in, jm) ,k = 1 . . .8 , (5.6)

where α t
k(in, jm) is the set of k variables that are obtained directly from the analysis, and

satisfy ∑8
t=1 α t

k(in, jm)2 = 1. This procedure discriminates the hypothetical correspondences

with the lowest dissimilarity. The weight applied to each component of a similarity vector

is intended to give more relevance if it has low variability, and to damp the ones with higher

dissimilarity through the whole set of hypotheses. In addition, this set of similarity vectors
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is drawing the most probable global transformation between both images. Since the corre-

spondences are made between all possible line pairs, most of the hypotheses will be wrong,

meaning that the majority of the components should have a value close to 1, i.e. the highest

dissimilarity. Those dk that contribute less to the variability of the data are the components

that allow to discern the hypothetical correct matches, consequently weights wk are assigned

as follows:

wk =
1

∑8
t=1 α t

k
2 ·St

,k = 1 . . .8 , (5.7)

where St is the total percentage of variance associated with pc1
t . Thus, vector components

whose projection on the direction pc1 are large, will be assigned to small weights. This

is done because this direction features a large variance in the data, and does not allow to

distinguishing the most probable matches. The appearance similarity measure is therefore

computed as:

z(i, j) =
8

∑
k=1

wk ·dk(i, j) , (5.8)

Distances between geometric and appearance features of matched lines are used to es-

timate whether the images are related by a global transformation in illumination or affine

geometry [159]. A tenth of the range of values of a similarity component is considered to

resemble a global transformation when more than 33% of the total number of hypotheses

falls into it.

A group of neighboring line segments can be enclosed into a convex hull polygon[152],

the smallest convex polygon containing all the vertices of the neighbors and the line segment

itself.By making use of the area invariance property associated with the affine transformation,

a set of convex hull affine invariants are constructed by taking ratios between the areas of the

polygons formed by connecting consecutive vertices on the convex hull. For a line li with

a neighborhood N(i) = {li
1, l

i
2, . . . , l

i
R}, the set of affine invariants ΩN(i)

= {ΩN(i)

1 , . . . ,ΩN(i)

R },

stores the ratios of the areas of every possible triangle in the quadrangle to the area of the

quadrangle itself. In order to establish the correspondence between two hypothetically match-
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ing neighborhoods N(i) and N( j), the following measure is used:

c(N(i),N( j)) = min
e=1,...,R

min
f=1,...,S

‖ΩN(i)

e −ΩN( j)

f ‖2 , (5.9)

where ΩN(i)
and ΩN( j)

are the set of the affine invariants of the two neighborhoods, n and m

are the number of vertices of their convex hulls respectively. For a neighborhood N(i), the

quantity c(N(i),N( j)) gets minimum for the pair of neighborhoods with the highest probability

of resembling affine-regular polygons. A maximum threshold cT H = 0.02 is set to decide

whether the transformation is affine or not, and discard hypotheses.

The final structural measure Z(N(i),N( j)) for two neighborhoods N(i) = {i1, . . . , li
R} and

N( j) = {l j
1, . . . , l

j
S} adds to the equation the appearance similarity, and is computed as:

Z(N(i),N( j)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ,c(N(i),N( j))> cT H

1
(A+1)τ

√
z2(i, j)+ min

σ∈SN

N
∑

k=1
z′2 (ik, jk)

)
,otherwise

, (5.10)

where SN is the symmetric group including all permutations among neighboring segments,

aimed to achieve invariance against the order they were taken. τ is the number of elapsed

iterations when all the neighborhoods N(i) and N( j) are matched, or τ = 1 otherwise, and

z′(·, ·) is a refinement of z(·, ·) in Eq. 5.8, defined as:

z′(i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , (i,j) match with each other

1 , i matches k �= j, or vice versa

z(i, j) ,otherwise

, (5.11)

z′(i, j) favors a matching of two lines if their neighbors are already matched.

The scores obtained for both the appearance and geometric properties between two hy-

pothetical matching segments need to be merged into a single final distance measure. This

measure is noted D(i, j) ∈ [0,1] and given as:

D(i, j) =
∑9

k=1 Wk ·Z(N(i)
k ,N( j)

k )

∑9
k=1 Wk

, (5.12)
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where N(i)
k and N( j)

k are the neighborhoods of the matching lines and Wk a set of weights.

These weights are initiated to 1 and are updated at each iteration by using PCA, analogously

as described in Eq. 5.7 for the appearance similarity weights wk, but in this case the data

matrix is obtained from the structural similarity Z(N(i)
k ,N( j)

k ) for each neighborhood of the

matched lines. Distances get close to 0 for most of the neighborhoods, and therefore we

should assign a higher weight to those neighborhoods that have so far contributed less to

the variability of the data, since they are able to discern that almost all matches are correct.

Consequently, weights Wk are updated as follows:

Wk =
1

1−∑9
t=1 α t

k
2 ·St

,k = 1 . . .9 , (5.13)

where α t
k are a set of coefficients obtained directly from the analysis, and St ∈ [0,1] resembles

the total percentage of variance associated with each component. Therefore the weights are

dynamically updated during the execution of the algorithm.

A pair of segments {li, l j} is matched based on a nearest/next distance ratio criteria. Let’s

consider a line li with the highest similarity to hypothetical counterpart l j, and followed by

another candidate lq. On the other hand, l j has the highest similarity to li, and is followed by

lp:

D(lp, lp j)/D(lpi, lp j)> δ (5.14)

D(lpi, lpq)/D(lpi, lp j)> δ (5.15)

D(lpi, lp j)> Dth , (5.16)

being δ the distance ratio threshold, and Dth a global distance threshold. δ = 1.5 and Dth = 1

for the first stage of the algorithm, that takes just lines that are robustly detected in the scale-

space and ending after collecting the best N = 10 line correspondences. For the second stage
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of the algorithm, that takes all the detected lines on both images, δ = 1.2 and Dth = 1. This

second stage runs until all the lines with candidate counterparts are paired. The weighting

of the components of the feature vector for the computation of the individual similarity is

graphically represented in the lower half of Fig. 5.4.

Neighborhood computation.

Line neighborhoods provide structural information around each line in the images. For each

line i, several neighborhoods L(i)
k ,k = 1 . . .9, are computed. The usage of several kinds of

line neighborhoods has the advantage of making the method more robust to occlusions and

differences in perspective, fragmentation of lines and misdetections between views. The

reliance on a single type would cause the method to fail in many situations where the selected

neighbors of a line and its homologous does not match for that type of neighborhood, and

also in situations where multiple lines have an identical local structure (repetitive patterns)

for which more structural information is required for disambiguation. Fig. 5.7 illustrates these

difficulties and Fig. 5.6 shows a representation of each one of the neighborhoods, which are

described below:

1. Endpoints: This neighborhood is formed by the three closest segments to i based

on the minimum distance between endpoints. The neighbors must be closer than a

threshold Dth = 14.

2. Head and tail: Formed by the closest segment to one of the endpoints of the line i, and

another segment which is the closest to the other endpoint of i. The neighbors must be

closer than Dth.

3. Three on its right: Formed by three segments i1, i2 and i3. The segment i1 is the closest

to i that has their endpoints at the right of i, fulfilling dθ (i, i1) = 2
π · ∣∣(θi −θi1)

∣∣< 1
4 and

dl(i, i1)=

∣∣∣li−li1

∣∣∣
max(li,li1 )

< 1
2 , where θ is the segment orientation, and l is the segment length.
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(a) Close endpoints. (b) Head and tail. (c) Three on its right. (d) Three on its left.

(e) Crossing endpoints. (f) Intersection. (g) Closed polygon. (h) Parallel. (i) Perpendicular.

Figure 5.6: Classification of the different kinds of neighborhoods for a line i attending to the

relative pose of its neighboring lines i j.

Figure 5.7: Example of a real situation which illustrates the need of several line neighbor-

hoods. The images show three simultaneously coexistent neighborhoods. The

image on the left shows the original region of the low-textured scene, in which the

six central lines are very similar. The middle left and middle right images show

line neighborhoods of the type ’Three on its right’ for two different lines. Both

neighborhoods are too similar to be discerned by the algorithm when matching

to a different view. Therefore, more structural information has to be provided in

order to distinguish the counterparts of both segments in other image. In the right

hand image, another kind of neighborhood (’Head and Tail’) is represented for

both lines. Note that this latter neighborhood solves the disambiguation, meaning

that the votes of the segments in these neighborhoods will produce different scores

that will be used to distinguish both segments.
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The segment i2 is chosen in the same way with respect to i1, and equivalently for i3 with

respect to i2.

4. Three on its left: Analogously, but to the left.

5. Crossing endpoints: Formed by the two closest segments to i based on the distance

between segment and midpoint. Those segments that have one endpoint to the right

and the other endpoint to the left of i are preferred.

6. Intersection: This neighborhood is formed by the three segments the closest to i based

on the euclidean distance between midpoints, under the contraint that both intersect i.

7. Closed polygon: Formed by a chain of segments, {i1, i2, . . . , iN}, where the segment i1

is the closest to the head endpoint of i, the segment i2 is the closest to the endpoint of

i1 which is the farthest to i, the segment i3 is the closest to the endpoint of i2 which is

the farthest to i1, and so on. The neighborhood is only considered if the tail endpoint of

i is closest to the endpoint of some iN , closing the chain. It is only allowed N < 4, and

the neighborhood must be the same when exchanging the ’head’ and ’tail’ conventions

of i.

8. Parallel: The two closest segments are parallel to i: dθ (i, j)< 1
4 .

9. Perpendicular: The two closest segments are perpendicular to i: dθ (i, j)> 3
4 .

These line neighborhoods have been chosen to provide enough structural information

around each line, trying not to add too many to avoid slowing the process.
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Figure 5.8: Process of neighborhood computation for the SALM method.

Neighborhood Similarity Measure.

The neighborhood similarity measure estimates the likelihood that two line neighborhoods

are the same under an affine transformation. The measure uses the previous line-to-line mea-

sure to compare the neighboring segments of two line neighborhoods, as well as a set of affine

invariants for taking into account the geometrical arrangement of the segments.

Figure 5.9: Image on the left: example of the convex hull (shaded region) from a line neigh-

borhood for a real image. In the center: representation of the convex hull of

the line neighborhood L = {i1, i2, i3} of the line i. Image on the right: construc-

tion example of an affine invariant vector ΩB
k , which is obtained by taking the ra-

tio of the areas of the four triangles {k,k+1,k+2}, {k+1,k+2,k+3}, {k+2,k+3,k},

{k+3,k,k+1} to the area of the quadrangle {k,k+1,k+2,k+3}.
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To obtain the set of affine invariants, the convex hull of each line neighborhood is con-

structed as the smallest convex polygon containing all the vertices of the neighboring seg-

ments as well as of the line itself. Then, by making use of the area invariance property asso-

ciated with the affine transformation, a set of convex hull affine invariants are constructed by

taking ratios between the areas of the polygons formed by connecting consecutive vertices on

the convex hull, as explained in [153]. In such a way that, for a line i with a neighborhood

L = {i1, i2, . . . , iN}, the set of affine invariants is ΩL = {ΩL
1 ,Ω

L
2 , . . . ,Ω

L
n}, with n being the

number of vertices of the convex hull, and where:

ΩB
k =

{
S1(k)
S(k)

,
S2(k)
S(k)

,
S3(k)
S(k)

,
S4(k)
S(k)

}
,k = 1 . . .n, (5.17)

where S(k) is the area of the quadrangle k formed from the four consecutive vertices (k,k+

1,k + 2,k + 3) of the convex hull, and S1(k),S2(k),S3(k),S4(k) are the areas of the 4 sub-

triangles of the quadrangle k. Fig. 5.9 shows an example of the construction of an affine

invariant vector.

Due to occlusions and overlappings, the number of vertices of the convex hull may vary

for the same line neighborhood from one image to another, and consequently, the number of

affine invariants may be different even for homologous neighboring segments. So, to establish

the correspondence between two neighborhoods L and M, the following measure c(L,M) is

used:

c(L,M) = min
j=1,...,n

min
k=1,...,m

cLM( j,k,w), (5.18)

with

cLM( j,k,w) = ‖ΩL
j −ΩM

k ‖2 +‖ΩL
j+1 −ΩM

k+1‖2

+ · · ·+‖ΩL
j+w−1 −ΩM

k+w−1‖2,
(5.19)

where ΩL and ΩM are the set of the affine invariants of the two neighborhoods, n and m are the

number of vertices of its convex hulls respectively, and w is a parameter to balance between

relying on local shape through the use of local invariants to establish correspondence versus
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relying on more regional shape. Results are obtained with w = 1. Thus defined, c(L,M)

vanishes for two neighborhoods L and M when their convex hulls are affine-regular polygons.

In practice, an affine threshold cT H = 0.02 is set such that c(L,M) < cT H implies that L and

M are related by an affine transformation.

The final neighborhood measure Z(L,M) for two neighborhoods L = {i1, i2, . . . , iN} and

M = { j1, j2, . . . , jP} of the lines i and j respectively, is computed as:

Z(L,M) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 ,c(L,M)< cT H

1 ,N �= P

1
(N+1)τ

(
z2(i, j)+ min

σ∈SN

N
∑

k=1
z′2
(

ik, jσ(k)

))1/2

,otherwise,

(5.20)

where z(·, ·) is the line-to-line measure defined previously, SN is the symmetric group for

checking all permutations among neighboring segments to achieve invariance against the

order they were taken, τ is the number of elapsed iterations when all the neighbors of L and

M are matched with each other, or τ = 1 otherwise, and z′(·, ·) is a refinement of the line-to-

line measure for taking into account the matching information from previous iterations of the

algorithm, defined as:

z′(i, j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 ,(i, j) matched with each other

1 , i matched with a line different from j, or vice versa.

z(i, j) ,matched with no line.

(5.21)

Therefore, by using z′(i, j), the neighborhood similarity measure takes advantage of the

matching information obtained in previous iterations, producing a better score for those pairs

whose neighbors are already matched, and by using τ this information becomes more reliable

as the iteration progresses. The computation of the neighborhood similarity is graphically

represented in the left hand side of Fig. 5.10.
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Figure 5.10: Graphical representation for the computation of the similarity of neighborhoods,

the integration with the individual similarity to obtain the total similarity, and last

steps towards obtaining the final segment matchings.

Total Similarity Measure:

The similarity measure between two lines D(i, j) ∈ [0,1] is given as:

D(i, j) =
∑9

k=1 Wk ·Z(Bk,Mk)

∑9
k=1 Wk

, (5.22)

where Bk and Mk are the neighborhoods of the lines i and j respectively, and Wk a set of

weights. These weights are set to 1 at the beginning, and are updated at each iteration by

using PCA, in a similar way to that described above (Eq. 5.7) for the weights wk. In this

case, the data matrix is obtained from the neighborhood similarity measure Z(Bk,Mk) for

each neighborhood of the matched lines. The process followed is identical to the one already

described, but here the way to assign the weights is different, since we are now using mostly

matches that are correct (and not wrong ones as in the previous case). So, ideally, we should

now get the highest similarity measure (Z(Bk,Mk) = 0) for all neighborhoods, and therefore

we should assign a higher weight to those neighborhoods that have so far contributed less to

the variability of the data, since they are able to discern that almost all matches are correct,

getting almost all values close to 0. The weights Wk are assigned as follows:

Wk =
1

1−∑9
t=1 α2

kt ·St
,k = 1 . . .9, (5.23)
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where αk j are a set of coefficients obtained directly from the analysis, and St ∈ [0,1] is the

total percentage of variance associated with each principal component. Thus, we assign a

higher weight to those neighborhoods which are choosing consistent neighbors according to

the current matching information, becoming more significant in the following iterations. In

this way, the importance of each kind of neighborhood is dynamically weighted through the

execution of the algorithm.

Matching criteria.

Once the total similarity measure is computed, the most similar lines are added to the set of

matched lines. A pair of segments (i, j) are matched based on a NNDR (nearest/next distance

ratio) criteria, i.e.:

D(p, j)/D(i, j)> λ , (5.24)

D(i,q)/D(i, j)> λ , (5.25)

D(i, j)< Dth, (5.26)

where p and q are the next nearest to j and i respectively, λ is the distance ratio and Dth

a global threshold. Results are obtained with λ = 1.5 and Dth = 1.0 for the first stage of

the algorithm, and λ = 1.2 for the second one to achieve a greater number of matchings.

Besides, for the first iteration, only the N = 10 lines with the best distance ratio are matched,

even without satisfying the thresholds, ensuring that the algorithm starts with an initial seed

of a suitable size.

Voting hypothetical counterparts.

At each iteration, the weakest correspondences are broken to ensure that the set of matched

lines grows robustly throughout the iterative process. The weakest correspondences are se-

lected by means of an affine-regular voting method, in which each pair of matched lines votes
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to the other pairs. A matched pair (i,mi) gives a positive vote (p = 1) to the pair ( j,m j) when

the line neighborhoods B = {i, j} and M = {mi,m j} are related by an affine transformation

(c(B,M)< cT H ), and gives a negative vote (p= 0) otherwise. Once all pairs have voted, those

matches with a low number of votes (∑N−1 pi < 0.4N) are broken. Therefore, this strategy

removes most dubious matches (although they can be correctly matched), under the assump-

tion of a locally affine transformation. The voting mechanism for the final matchings in the

method SALM is graphically represented in the middle region of Fig. 5.10.

A flow chart embedding both the line detection method and SALM is included in Fig. 5.11.

Outliers detection

The outliers in the line matching process are lines that get matched to an incorrect counter-

part, meaning that a human would not mark that line as being the same on both images. The

assessment for counting matching outliers has to be performed by a human. Line matching

outliers can occur either originated by segment misdetections on some images, line fragmen-

tation, overlapping, or be triggered by a weak understanding of line neighborhood structures

by the matching algorithm. The latter mentioned source of outliers can be overcome by a

proper description of the 2D structure of groups of detected lines.

The SALM method includes two different approaches to detect incorrect matches. The

first one is simple and is integrated into the matching algorithm, it is based on a voting method

and runs at the end of each iteration, after computing the structural similarity. Each pair of

matched segments votes other pairs according to their presence on their respective set of

convex hulls: The hypothetically matched line that is voting {li, l j} will give a positive point

to {lp, lq} just if lp and lq are included in the convex hulls habited by li and l j respectively. As

a line can simultaneously be part of multiple convex hulls, several different structural relations

are built within the neighborhood of each segment. Every neighbor segment votes other

hypothetical correspondences located in their respective convex hulls. The correspondences
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between segments that are voted positive by less than 40% of their neighbors, are considered

as outliers and are rejected.

A more sophisticated outliers detection method runs over the final matches, to double-

check the set of line correspondences by performing geometric relations among their mutual

intersections. Matched segments are extended to intersect neighbors within the image bound-

aries. This intersection and its counterpart are stored if they are apart from the each segment

a distance less than two times the length of the shortest originating segment, and the inner an-

gle drawn by the intersecting lines is greater than π/6. These requirements are implemented

because intersections will carry the uncertainty in the direction and location of both crossing

lines. Firstly, the set of corresponding 2D intersections on both images I = {I i,I j} is

divided into groups according to their coplanarity: I i = {I i
1,I

i
2, · · · I i

V} being V the total

number of planes with more than 10 3D points. A triangulation of these points is performed.

Although for this problem the camera matrix KKK is provided, the camera poses P = {PPPi,PPP j}
are unknown, therefore we have chosen to estimate them from the line crossing correspon-

dences. The Essential Matrix E is estimated by using the Five-Point Algorithm[102]. Having

E = RRR[ttt]× and the set of 3D points Y , the relative camera rotation and translation among the

first pair of cameras PPP j = KKK × [RRR|ttt] are estimated by using cheirality check and discarding

the triangulated points of Y that are not in front of the cameras.

The grouped line intersections are used to double-check groups of matched lines for con-

sistency. A line crossing several intersections in different order than its counterpart is prone to

be a matching outlier. The output of the algorithm is a set of line correspondences flagged as

not trustworthy. This algorithm is depicted in Algorithm 1. At the start of this algorithm the

triangulated 3D points are fit to different planes. RANSAC is employed for the generation of

hypothetical groups of 3D points. A minimum threshold of 10 points is required to resemble

a valid plane, and the 3D points that are not related to any plane after 100 iterations will be

discarded for the rest of the algorithm. Therefore, each fitted plane gets related to a group

of known corresponding intersections. Within each group, a search for neighboring coplanar
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intersections is performed by a k-Nearest-Neighbors (kNN) algorithm, as shown in the main

loop of Algorithm 1 and drawn on Fig. 5.12.

Algorithm 1: Line matching outlier detection

Data: Set of matched lines {li
1, l j

1},{li
2, l j

2}· · ·{li
L, l j

L} and their

intersections on both images {I i,I j} ; KKK
Result: Most probable matching outliers Z
initialization;

Selection criteria for intersections → {I i,I j}
Linear Triangulation for {I i,I j} → 3D points Y , camera poses {PPPi,PPP j}
Fit Y to V different planes; v ∈V
for ({ci

AB,c
j
AB}) ∈ {I i

v ,I
j

v } do
k-NN: Find 5 Nearest Neighbors of {ci

AB,c
j
AB} → {di,d j}

di = {di
1,d

i
2,d

i
3,d

i
4,d

i
5} ∈ I i

v

d j = {d j
1,d

j
2,d

j
3,d

j
4,d

j
5} ∈ I j

v
for u ∈ [1,5] do

if Counterpart of di
u ∈ d j then

Score({ci
AB,c

j
AB}) = Score({ci

AB,c
j
AB})+1

end
end
if Score({ci

AB,c
j
AB})< 2 then

{li
A, l j

A} and {li
B, l j

B} are potential outliers and stored in Z .

end
end

The relative 2D position of the intersections within these groups are compared on both

images, to unveil a subset of Y comprised by the intersections that are most likely to be

outliers. Any matched segment that originates four or more suspicious intersections is quar-

antined, as written in the last condition of the Algorithm 1. A graphical representation for the

outlier rejection algorithm depicted in this subsection is drawn in Fig. 5.13.
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Figure 5.13: Graphical representation for the algorithm that exploits planes to obtain possible

line matching outliers. This algorithm can be run after a line matching process.
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Figure 5.11: Flow chart embedding both the line detection algorithm and SALM.
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Figure 5.12: Visual example of the k-Nearest-Neighbors search for close coplanar intersec-

tions.
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5.3 Experimental results

Public datasets are selected looking for a fair compromise of scenes with and without texture,

transformations that include camera translation, moderate global rotations, and changes in

illumination conditions. The dataset "Castle" comprises the pictures {0,1} of the dataset

[94]. It features a viewpoint change with a camera rotation, unveiling repetitive structures

that can be tricky to identify. It was chosen in order to evaluate the structural cohesion of the

line neighborhoods. The rest of datasets were extracted from [74]. The pairs "Low Texture"

and "Textureless corridor" portrait a complicated classical interior of a building, featuring

few observed long segments, and are selected to evaluate the resilience of the method to an

absence of texture information. "Outdoor light" and "Leuven" are included to test changes of

illumination in two different scenarios. Finally, "Drawer" combine changes of viewpoint and

light exposition into a scene featuring repetitive similar line patterns. The SALM method is

quantitatively compared against the state-of-the-art methods LS, CLPI, LBD and LJL. These

implementations are provided by their respective corresponding authors, and its applicability

is restricted to pairs of views.

The whole set of algorithms described in this thesis is implemented into a ROS node,

which is executed by a notebook with Intel i7 3720QM Quad-Core and 16GB DDR3.

Both the line matching results for all the methods in the quantitative comparison and the

processing times are shown in Tab. 5.1. The images with the experimental results are plotted

in Tab. 5.5, 5.6, 5.7, 5.8, 5.9 and 5.10. The averages of the most relevant variables are shown

in Tab. 5.3. The Ground Truth evaluation of the methods adopted an approach similar to

[138]: A line is marked as correct match if located 5 or less pixels apart from the human-

perceived line in the orthogonal direction, and if the difference in line direction respect to the

Ground Truth match of the counterpart is less than 5 degrees of rotation. Despite the ratio of

matching inliers brings up meaningful information of the performance of each method, it is

not possible to extract an unique global score to compare methods as a whole, as the average
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segment length their similarity and redundancy might be more relevant in specific scenarios.

Dataset Method
Line Corre-

spondences

Correct

counterparts

Redundant

lines

Avg. length

dissimilarity

Avg. segment

length (pix.)

Total length

(pix.)
Time (s)

Castle

CLPI 158 137 0 0.31 66.2 10459,6 45

LJL 451 440 7 0.23 30.0 13559.6 704

LBD 255 72 8 0.29 37.8 9643.2 4

LS 183 171 ND ND ND ND 8

SALM 114 104 1 0.11 69.3 7897.3 125

Low-Texture

CLPI 0 0 - - - - 20

LJL 27 27 3 0.38 100 2699.9 4

LBD 40 17 2 0.51 93.0 3722.8 1

LS 44 40 ND ND ND ND 7

SALM 22 22 0 0.12 187.5 4124.9 38

Corridor

CLPI 0 0 - - - - 50

LJL 34 28 3 0.46 93.5 3177.8 3

LBD 38 12 0 0.49 103.1 3919.3 1

LS 53 40 ND ND ND ND 3

SALM 13 11 0 0.24 161.4 2098.1 45

OutdoorLight

CLPI 0 0 - - - - 60

LJL 210 202 1 0.27 36.2 7615.6 73

LBD 193 25 7 0.37 49.8 9614.9 3

LS 190 190 ND ND ND ND 6

SALM 85 80 2 0.10 68.2 5804.6 66

Leuven

CLPI 151 116 0 0.15 68.4 10328.4 54

LJL 320 315 1 0.25 34.0 10889.5 100

LBD 328 42 7 0.34 48.1 15774.5 1

LS 190 190 ND ND ND ND 7

SALM 108 106 0 0.10 70.6 7624.8 85

Drawer

CLPI 1 0 - - - - 7

LJL 52 41 2 0.38 62.2 3300 38

LBD 24 8 0 0.38 67.7 1692.8 1

LS 49 45 ND ND ND ND 6

SALM 42 33 0 0.16 73.9 3104.9 20

Table 5.1: Quantitative evaluation of methods for matching of lines across two images

The data on the column of redundant lines on the Tab. 5.1 is externally computed from

the resulting line coordinates. Two pairs of matched segments are considered redundant if

and only if the shortest distance between them is less than 2 pixels, and their angles differ

in less than 5 degrees. Redundant line segments are considered matching inlier if they prop-

erly meet the above mentioned requirements of correct fitting to the Ground Truth matching

counterpart.

The results in Tab. 5.1 show that the SALM method extracts line correspondences featur-

ing longer, less fragmented lines than the competition. In addition these segments of are more
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similar in length to their respective counterparts compared with the results of other methods.

Full length and non fragmented matched lines profit when the method is applied to line-based

3D reconstruction from three or more images. Therefore, an average segment length has been

extracted from all the results, and shown in the seventh column of the Tab. 5.1. Besides this

data, it is shown the total number of pixels covered by the matched segments on one image.

Another measure that is crucial for the success of spacial reconstructions is the similarity

between features in correspondence. This measure is valuable if the zoom global transfor-

mation is not featured in the image datasets, like in the ones included in this study. It is

computed as the absolute value of the difference of lengths of the lines in correspondence,

divided by the length of the longer segment, and shown in the sixth column of the Tab. 5.1. A

better score is given to a result if both segments in correspondence are of similar length. This

mark penalizes correspondences of atomic short segments, as they return poor geometric in-

formation of the scene. These length and dissimilarity values could not be computed for the

method LS because the authors just provided the binaries and these exclusively return images

showing matched lines and it does not output the coordinates. The best average matched seg-

ment length is obtained by the SALM method, with an average of 105.1 pixels, as written in

Tab. 5.3. It is distantly followed by the other methods, with resulting average lengths of less

than two thirds the number of pixels covered by the segments put in correspondence by the

presented method. SALM also returns the best average dissimilarity score of 0.14. This result

shows a high advantage compared to the other methods in this mixed comparative, because

the second on the line is CLPI with an average dissimilarity score of 0.23.

The last column in the Tab. 5.1 shows the processing times in seconds for each specific

method on the evaluated dataset. The highest processing times were taken by LJL.

The method CLPI failed to return any correspondence from pairs of images featuring low

texture and repetitive patterns. The most severe fragmentation was observed on the results

of the methods LBD and LJL. The method LJL performed very well, just with downs in the

images that present the segments more isolated. On the other hand, LBD performed poorly in
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almost all the scenarios, showing a lackluster understanding of the structure cohesion. LS was

the second on the line, just losing edge on the textureless corridor scene. The comparative

uses a fair mixture of scenes, and the SALM method obtained an inlier ratio second to none.

The method LS stands out for its good performance, despite it returns some inexistent

line matches. For instance, there are no perceived edges along the matched segments 78,

155, 157 and 158 in the dataset "Castle", despite they might loosely match their counterparts.

Moreover these are crossing other real lines on the images. Although these segments are

detected over the same texture on the counterpart, no real edge is perceived there by a human.

Trying to match unrelated scenes

The highest average inlier ratio for the selected datasets was achieved by the method SALM,

though the method LS performed very well. We wanted to try both methods against pairs

of unrelated captures, images that does not feature the same scene or structures. In order to

build the pairs, images were picked randomly among industrial and public[30, 122] datasets.

This is a way to test the robustness of the structural description of each method. The ideal

result would be 0 matches for all the image pairs. In all the pairs both scenes feature a

high number of short segments in every possible pose, forming repetitive structures. If the

segment matching relied exclusively on their individual appearance, there would be many

correspondences. Nevertheless both matching methods feature a robust structural description,

and therefore few segments are matched by the methods. The results show that SALM returns

lower number of correspondences than the method LS for the six image pairs, and for some of

them it returned 0 matches. This reveals that the structural description of the method SALM

is more robust than the one of LS.
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Image pair LS SALM

8 5

8 7

11 0

11 0

8 0

14 0

Table 5.2: Number of line matchings given by the methods on a set of image pairs of unrelated views.

The images of each pair have been randomly selected from industrial and public[30, 122]

datasets.
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Analyzing the outliers for SALM by a human

Fig. 5.14 shows the result of the Ground Truth assessment against the method SALM. Fig. 5.15

shows the matching results for public datasets[30, 122]. Firstly, a human notices that some

outliers are located on regions of the images with high repeatability of patterns. The higher

the number of repeated structures, the higher the probability of matching outliers. If the

individual appearance of segments similar between many segments, the algorithm cannot

exploit individual measures to discern matching hypotheses, so it has to rely mostly on the

structural description. Secondly, the matching errors are more frequent in the outer regions

of the neighborhoods of detected lines. In other words, the algorithm tends to fail more with

segments that are not completely surrounded by neighbors. This happens as consequence

of the nature of the structure based description of neighborhoods. The segments detected in

these outer regions has less surrounding neighbors for the structural description, therefore

they are more prone of missing their correct counterparts.

Method Inlier ratio Avg. length Avg. dissimilarity Processing time (s)

CLPI ([62]) 27.25% 67.3 pix. 0.23 39

LJL ([75]) 85.91% 59.3 pix. 0.33 154

LBD ([159]) 24.27% 66.6 pix. 0.40 2

LS ([142]) 91.94% - - 6

SALM 92.22% 105.1 pix. 0.14 39

Table 5.3: Average line matching accuracy and processing times from the results shown in

table 5.1
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[Extracted: 220, 222; Matches: 97; Correct: 96; Matching score: 0,97]

[Extracted: 336, 170; Matches: 58; Correct: 57; Matching score: 0,96]

[Extracted: 297, 177; Matches: 68; Correct: 66; Matching score: 0,89]

Figure 5.14: On the top, three pairs of industrial images. The rest of the figure shows the

matching results by the method SALM for the three pairs of images. The coloring

of the line segments corresponds to the human ground truth: Black lines are

correct matches, red lines are wrong matches, and blue lines are non-significant

lines.
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[Extracted: 309, 282; Matches: 150; Correct: 142; Matching score: 0,92]

[Extracted: 196, 181; Matches: 84; Correct: 84; Matching score: 0,99]

[Extracted: 348, 307; Matches: 153; Correct: 151; Matching score: 0,96]

Figure 5.15: On the top, three pairs of images from public datasets[30][122]. The rest of

the figure shows the matching results by the method SALM for the three pairs

of images. The coloring of the line segments corresponds to the human ground

truth: Black lines are correct matches, red lines are wrong matches, and blue

lines are non-significant lines.
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Evaluation of the outliers detection algorithm

The outliers detection algorithm is only applicable when there is a noticeable change of view-

point among both images. Therefore results have been extracted for both datasets featuring

perspective change. These results shown on Tab. 5.4 brings up to the validity of the SALM

outliers detection method. The addition of the outliers detection improves the results on

both datasets, without increasing the processing times. On the dataset "Drawer", the out-

liers detection algorithm extracts the most noticeable segment correspondence outlier which

is surrounded by lines visible on both images. There are other outliers on the figure, but

the structural context does not contain minimum number of neighboring matching intersec-

tions. On "Castle", 13 suspicious line matches that are indicated, from whose just 4 are actual

correct matches, and 9 are real outliers.

Dataset Outliers detection Correspondences GT inliers Inliers ratio Processing time (s)

Castle
Without outliers detection 110 95 86% 46

With outliers rejection 97 92 95% 46

Drawer
Without outliers detection 46 37 80% 20

With outliers rejection 45 37 82% 20

Table 5.4: SALM method. Average line matching accuracy and processing times from the

results shown in table 5.1
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Figure 5.16: Examples of the search for outliers using coplanar neighbor intersections.
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Method Castle

CLPI

LJL

LBD

LS

SALM

Table 5.5: Quantitative evaluation of methods for matching of lines against the dataset "Cas-

tle". The images are recommended to be displayed in a computer monitor with a

500% zoom.
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Method Low Texture

CLPI No result

LJL

LBD

LS

SALM

Table 5.6: Quantitative evaluation of methods for matching of lines against the dataset "Low

Texture". The images are recommended to be displayed in a computer monitor with

a 500% zoom.
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Method Textureless corridor

CLPI No result

LJL

LBD

LS

SALM

Table 5.7: Quantitative evaluation of methods for matching of lines against the dataset "Tex-

tureless corridor". The images are recommended to be displayed in a computer

monitor with a 500% zoom.
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Method Outdoor light

CLPI No result

LJL

LBD

LS

SALM

Table 5.8: Quantitative evaluation of methods for matching of lines against the dataset "Out-

door light". The images are recommended to be displayed in a computer monitor

with a 500% zoom.
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Method Leuven

CLPI

LJL

LBD

LS

SALM

Table 5.9: Quantitative evaluation of methods for matching of lines against the dataset "Leu-

ven". The images are recommended to be displayed in a computer monitor with a

500% zoom.
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Method Drawer

CLPI

LJL

LBD

LS

SALM

Table 5.10: Quantitative evaluation of methods for matching of lines against the dataset

"Drawer". The images are recommended to be displayed in a computer monitor

with a 500% zoom.
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5.4 Applications for SALM

The presented method SALM is implemented in C++ for ROS Jade in Ubuntu 14.04, Mac

OSX and also for Windows 7 and 10. This implementation has a wide range of applications

in Computer Vision and engineering. A major part of SALM algorithm has been integrated in

the method 3DwSkt aimed for 3D abstraction for urban environments or man-made objects,

which is followed in the next chapter of this thesis. The segment maching algorithm SALM

can be used for indoor robot navigation, and also as complement for point based Simultaneous

Localization and Mapping systems.



Chapter 6

3D abstraction based on lines

This chapter goes through the engineering of a 3D abstraction method based on straight line

segments. It employs the SALM line matching method for building correspondences between

pairs of images. Then it groups the geometric relations and exploits them to generate the 3D

sketch. The 3D sketch is a spatial representation based on lines that features estimations for

the camera poses and for the 3D straight segments.

The logical evolution of the environment abstraction from multiple views is to incorpo-

rate line-based pipelines that do not require a detailed point-based description of the areas of

interest. Beside, coplanar line primitives can be intersected to further reveal geometrical in-

formation. Likewise, groups of segments will also indicate the location of the most probable

vanishing points from a camera plane[101]. These advantages make lines a good candidate

to team with point feature detectors and descriptors[54, 160]. They offer the possibility of

combining individual similarities of pairs of segments, related to strong constraints of par-

allelism and orthogonality [91, 18], and specially coplanarity constraints [64]. This chapter

exploits the latter ones, and the potential outliers are determined based on the homography

between different views. The exploited constraint is that the intersection of a pair of coplanar

123
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lines, even if it might not resemble a physical point, is still geometrically invariant under

perspective projection.

The remaining of this chapter is organized as follows: an enumeration of the headlines

of the 3D sketching method, and its structure is discussed in Section 6.1, while a detailed

description of the 3D devoted layers takes place in Section 6.2. An experimental quantitative

study for the whole 3D sketching method is followed in Section 6.4.

6.1 High level overview for the 3DwSkt 3D sketching method.

The 3DwSkt 3D abstraction or sketching method features a set of improvements over the

state-of-the-art algorithms based on lines. The contributions of the 3DwSkt method are aimed

for a more suitable 3D abstraction from images featuring low texture, and in scenarios in

which is impossible to generate a dense point cloud:

1. The 3DwSkt method does not require to be provided with camera poses, nor a dense

point cloud obtained from the input pictures. It makes feasible an abstraction based

exclusively on line correspondences, performed independently over pairs of images.

Our approach estimates camera extrinsics, but does not root the line matching on these

spatial projections, preventing the uncertainty from SfM to propagate and merge with

the uncertainty related to 2D line detection and matching. Previous reconstruction

methods rely on a third party SfM pipelines[67][55], in order to source the camera

poses and dense point clouds, to base line matching and 3D reconstruction on.

2. Our Line Observation is built by merging independent line matchings over pairs of

images. The correspondences between segments for each pair of images are obtained

with the SALM method. The groups of matched 2D lines define unique global entities,

and every entity is defined before the 3D stages of reconstruction, in order to avoid

the problem of redundancy of 3D lines and to reduce the number of matching outliers
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when dealing with multiple views. On the other hand, some recent methods qualify the

matching candidates based on their support on neighboring views[55], for later cluster-

ing them based on their spatial proximity, instead of performing a global matching of

the observed lines individually. This may represent a source of uncertainty if the cam-

era poses provided by the point-based SfM are not accurate enough, as the matching

criteria is tied to the accuracy of every camera pose that was adjusted with point-based

SfM, and used as input.

3. We propose to group the set of the spatial lines generated by the 3DwSkt method,

attending to coplanarity, by fitting them to different planes through RANSAC. The

observed intersections of 2D coplanar lines are therefore described according to the

observed matched lines. These segmented group of intersections are projected from

every camera plane. They are finally included into the cost function for a second SBA

run, taking advantage of this accurate source of observed points in correspondence.

Most of the published methods are intended for urban environments, where many lines

are coplanar. Nevertheless, they do not retrieve additional information from the images

according to the spatial structure. Hence, the projected lines use to be the sole primitive

input to the cost function for a least-squares minimization.

These contributions are intended for spatial abstractions of man made objects and environ-

ments. Our approach is fully automatic and only requires a set of pictures or video frames,

and camera calibration parameters as the inputs. This complete automatic process is depicted

will be followed in the different sections of this work.

The architecture of the line sketching model comprises three layers as shown in Fig. 6.1.

i) The 2D layer extracts and unifies the observed projections of edges from the set of views

of a scene, where in general there might be large camera translations and rotations among the

different views. ii) The 3D abstraction layer builds stereo subsystems for every possible pair

of views, which are fed into a first SBA, that outputs a 3D wireframe-based sketch and the
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Figure 6.1: Flow for the 3DwSkt method. The SALM method is integrated into the upper 2D
layer.
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camera poses, valid up to scale. iii) Finally, the optimization layer detects the intersections

of the coplanar lines in the sourced images and add them to the least squares optimization for

the sake of a more accurate reconstruction.

Line detection and matching between pairs of views are computed in the 2D layer and

based on the method SALM, described in Chapter 5. In this case the matching outliers de-

tector based on planes is not teamed with SALM. Segments that remain unmatched after the

described iterative matching process are definitely discarded, so all the line segments the 3D

layer receives have a defined counterpart in other image of the input set. Scene 3D abstraction

will be based on the pair-wise correspondences of line segments.

Line matching is performed by SALM between all the possible pairs of images available.

The maching results are stored into multi-view entities. Each entity represent an unique 3D

straight segment, and links to its counterpart in every image where it was matched. The first

set of multi-view entities is created by the lines matched in the first pairwise combination

of views. Relations between detected lines in the other images are incrementally built by

matching among each other, and counterparts for the already created entities in other images

are found. New multi-view entities are created for segments with known counterpart, if

no previous record is found matching the segment. Line relations can be built even if line

matching failed to flag them as counterparts. Moreover, a distance threshold can be set in

order to minimize the number of pairwise line matching between images, and hence, the total

computational cost. This is visually represented in Fig. 6.2: no direct matching has been done

between views 1 and 6, though these are related because the matching among views 3 and 4

identifies the line matched between captures 1 and 3, to be the counterpart of the one related

between views 4 and 6. Algorithms look for multi-view matching inconsistencies during this

merging stage. These outliers rejection algorithm scan through all the counterparts of each

multi-view feature entity, looking for potential outliers.
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Figure 6.2: Example of merging of two groups of counterparts.

6.2 Low level description of the 3DwSkt method.

Given an unordered set of images, related to a set of unknown camera planes ϒ={ϒ1,ϒ2,ϒ3,...,ϒM},

the 3D abstraction layer computes the initial estimations for each 3D line segment in the set

Γ={Γ1, Γ2, Γ3 ,..., ΓN}. These are estimated from two or more observed projections, there-

fore Γi may firstly embed one or more estimations of the 3D line before they are unified into

a single estimation. The set of line projections observed in ϒ is represented as l={l1
1 , l1

2 , ...,

l1
N , ..., lM

N }. A Line Feature is defined as a subgroup of projections from l of the same 3D

line Γi. The set of Line Features is noted as L={L1, L2, ..., LN}. The 3D lines Γ are obtained

by forward projecting the endpoints of l from pairs of camera planes of ϒ, by using linear

triangulation, analogously to Direct Linear Transformation (DLT)[109]. The cameras ϒ are

sequentially bundled in the same reference frame, by stacking the new ones according to the

L-to-Γ correspondences computed in the previous stereo pair of cameras. The unification of

all the estimations on each {Γi} is computed as the center of gravity of these estimations.

The 3D sketch {ϒ,Γ} generated by linear triangulation is used as input for the 3D abstrac-

tion layer. The least-squares optimization named SBA is based on the Levenberg–Marquardt

algorithm, and uses as input the estimated camera extrinsics ϒ and the set Γ, now containing
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unique estimations for each 3D line.

The optimization layer fits the spatial line segments Γ to a set of different planes P . Γ

is therefore segmented into different groups according to the planes P , and so is done with

their projections L. The group of Line Features fitted to the plane Pt is noted as Ft . The

intersections of the coplanar lines Ft on the camera plane ϒ j is the set of points T j
t . These

intersections are observed on the input images, and described like a feature point, being the

descriptor the pair of two coplanar lines drawing it. Like was performed in the 3D abstraction

layer with the endpoints of l, now the point correspondences in T j
t are fed into the linear

triangulation algorithm, in order to create initial estimates for the 3D intersections by forward

projecting T j
t . The set of estimations for the 3D intersections is a sparse cloud and is denoted

as R. The 3D intersections R enter the least-squares optimization. These new iterations of

SBA are based on a simple 3D point reprojection distance to the observations on ϒ. The

outputs are the new optimized estimations for ϒ and the optimal 3D intersections R. The

line poses are corrected by forward projecting them from the newly estimated camera planes

ϒ, generating the final sketch {ϒ,Γ}. The high level diagram on Fig. 6.3 shows the process

described in this section.

The 3D line based sketch {ϒ,Γ} is built from the knowledge of correspondences among

line projections l on camera planes and the intrinsics of all the cameras. The linear triangula-

tion of these observations is performed from scale-space images, and this is a novelty of the

method compared to other recently published ones[55, 160, 7]. This allows to discriminate

and weight down lines that have been detected on two or more scales with a different slope.

The practical consequence is that prior to any 3D extrapolation of the observed lines, match-

ing inliers with inconsistent endpoint location among scales on both images can be avoided,

as these lines might introduce uncertainty in the camera.

The first problem is that the camera poses P are unknown. We have chosen to estimate it

from the endpoint correspondences of l. For this task we first estimate the Essential matrix E

for the camera pairs, by using the Five-Point Algorithm[102] and RANSAC for hypotheses
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Figure 6.3: Graphic representation of the 3D abstraction layer of the method.

generation. Having E and l, the relative camera rotation and translation among the first pair

of cameras PPP j = [R|t] are estimated using cheirality check and discarding the triangulated

endpoints that are not in front of the cameras. The left camera is chosen to have the pose

PPP1 = [I|0], and the newly added cameras are stacked from this position in the unique reference

frame.

The forward projection of lines in 3-space is described in the page 196 of Hartley and

Zisserman’s book[109]. The 3D forward projection ΓΓΓiii of a line, bundled in the same reference
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frame, can be obtained using the DLT method [48] on the set of stereo 3D camera back-

projections. This is performed in homogeneous coordinates because it allows to consider line

endpoints in the infinite. Therefore, from now on, when a 2D point is mentioned it will be

supposed homogeneous coordinates. There exists a 3 × 3 matrix E, known as the essential

matrix, such that if u and u′ are a pair of matched points, then u′Eu = 0. If a sufficient

number of matched points are known, the matrix E may be computed as the solution of an

overdetermined set of linear equations. For the present problem, the internal calibration of

the cameras is known, therefore it is possible to determine from E the relative placement of

the cameras and hence the relative locations of the 3D points corresponding to the matched

points. A linear triangulation method is projective-invariant because only camera and line

distances are minimized.

The execution order for DLT over the cameras (view pairs) obeys to the inlier ratio of

line matching, i.e. the number of matched lines divided by the total number of detected lines

for each camera pair. Therefore, the DLT starts with the segments on the pair of cameras

{ϒa,ϒb} with the highest inlier ratio. Next, the camera ϒc is chosen among the ones with the

higher inlier ratio of line matching with ϒa and ϒb. At successive steps, a new camera ϒn is

chosen among the ones with the higher inlier ratio of line matching with previously selected

cameras.

The inaccuracy in the observation of the 2D lines l implies that there will not be a 3D point

XXX which exactly satisfies that their projections on cameras ϒ1 and ϒ2 are xxx111 = PPP1XXX , xxx222 =

PPP2XXX respectively, and that the image points do not satisfy the epipolar constraint xxx222FFFxxx111 =

0. Therefore, a projective-invariant triangulation method, that only minimizes the image

distances to the observations, is required. A linear triangulation[109] method does not depend

on the projective frame in which XXX is defined.

The forward projection from a normalized 2D line observed on the camera image plane
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m, denoted by lllmmm
iii , is the plane PPPT

mmmlllmmm
i , so the condition for a point XXXa to be in this plane is:

(((lllmmm
iii )))

T PPPmmmXXXa = 0. (6.1)

Each point XXXa returns a linear equation in the entries of PPPmmm. Denoting by xxxi
m,E and xxxi

m,F

the forward projection of the endpoints of llli
m, named XXXi

E and XXXi
F , under PPPm, then any other

3D point on the line XXXiii(((μμμ))) = XXXi
E +μXXXi

F projects to a point:

xxxm
i (μ) = PPPm(XXXi,E +μXXXi,F) = xxxm

i,E +μxxxm
i,F , (6.2)

which is on the line segment lllmmm
i .

In this method, an unique reference frame is built. The world reference system is fixed

onto the first camera, hence its camera matrix, PPPEEE , is computed with RRREEE === III and TTT EEE === 000. The

extrinsics for the partner camera PPPmmm on the baseline is obtained from the essential matrix by

using RANSAC. Before the subsequent DLT triangulations with a new camera, its extrinsics

are estimated also by RANSAC from the 2D-3D results of the already computed DLT. From

here, new cameras will be added incrementally, just one per DLT iteration, in order to avoid

DLTs between two uninitialized camera projection matrices.

For DLT it is required a set of observed line correspondences, lllm
j to llln

j , matched among

images. The projection on the image plane of camera m of an endpoint XXXi,E of the spatial

line ΓΓΓ j is denoted as xxxm
j,E = PPPmXXX j,E . This point on the m-th camera plane is matched to

its counterpart on the n-th camera xxxn
j,E = PPPnXXX j,E . Both equations can be combined into

AAAXXX j,E = 0 , where AAA is the matrix of equation coefficients. It is built from the matrix rows AAAr

contributed from each correspondence, whose resemble the movement of each line between

both views. XXX j,E contains the unknowns for the endpoint position.

By using the cross product on the m-th camera: lllm
j × (PPPmXXX j,E) = 0 ,
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xm(ppp3T
mmm XXX j,E)− (ppp1T

mmm XXX j,E) = 0, (6.3)

ym(ppp3T
m XXX j,E)− (ppp2T

m XXX j,E) = 0, (6.4)

xm(ppp2T
m XXX j,E)− ym(ppp1T XXX j,E) = 0, (6.5)

where (xm,ym) and (xn,yn) are the coordinates of xxxm
j,E and xxxn

j,E respectively. ppprT
m is the r-th

row of PPPm. It can be decomposed similarly for PPPn, and compose the equation of the form

AAAXXX j,E = 0. Solving:

AAA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xm ppp3T
m − ppp1T

mmm

ym ppp3T
m − ppp2T

m

xn ppp3T
n − ppp1T

n

yn ppp3T
n − ppp2T

n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6.6)

The solution for the 4 equations of the over-determined problem (four equations for four

homogeneous variables) is only valid up to scale. The set of points in space mapping to a 3D

line ΓΓΓ jjj via PPPmmm, is the plane PPPmΓΓΓ j.

The result of the linear triangulation process is ΓΓΓiii and υυυ jjj, represented in cartesian coor-

dinates. The next subsection will cover the change of coordinate system that will allow an

efficient least-squares optimization for the pose of the lines and cameras.

SBA optimization

The SBA for the matched lines uses a simple function that takes as the cost a distance measure

between the observed line segments in the original images and the reprojected ones on the

camera plane. If a line in 3-space is represented by Plücker coordinates, then its image can be

expressed as a linear map on these coordinates[109, 157]. For the 3DwSkt approach, spatial

lines are represented in Plücker coordinates in the cost function of the optimization process.
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A forward projected 3D line ΓΓΓ jjj is represented in Plücker coordinates, following [109, 7],

as ΓΓΓ jjj = (uuu jjj, ttt jjj)

uuu jjj =
XXX j,0 −XXX j,1

‖XXX j,0 −XXX j,1‖ (6.7)

ttt jjj = XXX j,d ×uuu jjj, (6.8)

where uuu jjj is the unit vector in the direction of the line, and ttt jjj is the moment vector around

any 3D point uuu jjj laying on the straight segment ΓΓΓ j, respectively. As this moment vector ttt jjj is

independent of the choice of XXX j,d on the segment, we have used the center of gravity for the

group of forward projections obtained by DLT with all the camera pairs.

The second constraint imposes that the determinant of the Plücker matrix UUU has to be

null[109].

The Cayley representation used for the 3D lines ΓΓΓ j is similar to the one employed by[160].

Plücker coordinates have two constraints:

∥∥uuu jjj
∥∥= 0 , uuuT

jjj ttt jjj = 0 , (6.9)

which keep the degrees of freedom of a spatial line equal to four. It is not recommended to

enforce the constraints during the optimization process[7]. This is the reason why the Cayley

representation is defined to ensure that an orthogonal matrix can be built from the Plücker

coordinates of a line under the constraints in Eq. 6.9. This orthogonal matrix can be written

as

QQQ =

[
uuu jjj,

ttt jjj∥∥ttt jjj
∥∥ , uuu jjj × ttt jjj∥∥uuu jjj × ttt jjj

∥∥
]

, (6.10)

and the skew-symmetric matrix

[sss]× = (QQQ− III)(QQQ+ III)−1 , (6.11)

The Cayley representation of a spatial line is defined as the four dimensional vector vvv =

(ω,sss), being ω =‖mmm‖ the distance between the origin of the reference frame and the closest
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point lying on the line, and the three dimensional vector sss encodes the rotation of the line.

From the chosen definition for QQQ at Eq. 6.10, it can be derived that

uuu jjj = qqq1 , ttt jjj = ωqqq2 . (6.12)

The equations to convert from Plucker coordinates to the Cayley representation’s four

parameters are Eq. 6.10 and Eq. 6.11. These four parameters are used in the SBA to update

the spatial lines during the optimization process. When the convergence of the least-squares

optimization is reached, the lines are converted from Cayley representation back to Plücker

coordinates:

QQQ = [qqq1,qqq2,qqq3] = (III − [sss]×)−1(III − [sss]×) =
(1−‖sss‖2)III +2[sss]×+2ssssssT

1+‖sss‖2
, (6.13)

The inputs to the line based SBA are the estimated 3D lines converted to Plücker coor-

dinates [52] and written on Cayley representation[7], and the cameras intrinsic parameters.

In order to avoid the singularity around the center of the image plane, the error distance for

each line is chosen as the squared shortest distance from observed endpoints to the repro-

jected infinite line, as suggested by[160]. The center of projection for the camera had been

previously subtracted from the reprojected lines, in order to compare with the observed line

on the image.

QQQ = [lll,eee1,eee2] (6.14)

det(UUU) = l12l34 + l13l42 + l14l23 = 0, (6.15)

being lab the components of the Plücker matrix UUU .

Each input 3D estimate for an spatial line is generated from the main of the triangulated

endpoints of all the lines of each cluster, ppp222 and ppp111, in vectorial form.

The SBA is performed incrementally, starting with the pair of views with the lowest

rate of matching inliers, as suggested in [129], and then sequentially adding the remaining

cameras with their respective DLT results. After each camera has been added to the set of
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Figure 6.4: The Plücker coordinates for the line ΓΓΓ j are (uuu jjj, ttt jjj × uuu jjj), taking any point ddd on

the line, and lll being the unit vector in the direction of the difference between its

endpoints

Figure 6.5: In order to avoid the singularity around the center of the image plane, the error

function is chosen as the squared shortest distance from the observed segment

endpoints to the reprojected infinite line, as suggested by[160]

.

views to be adjusted, the algorithm executes a line-based SBA run, based on the cameras that

have been added so far, and the lines that have counterpart on these views. The cost function

minimizes a residual equal to the squared shortest distance from the observed endpoints to

the re projection of the adjusted infinite line on the camera plane, as suggested by[160] and

represented in Fig. 6.5.

minimize
∑εi

ε2
i = d2

iA +d2
iB, (6.16)

The output of the algorithm will be the estimated optimal pose of 3D line segments {LLLiii}, and
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the optimal poses for the cameras {(((RRRiii,,,TTT iii)))}.

6.3 Line intersections

Any line segment detection process is prone to misalignments, wrong segmentation, incorrect

placement of endpoints and also cases of unsuited merging of two curved edges resembling

a real straight line. Likewise, some line endpoints are neither well defined in an image, when

resembling the edges of shadows, or over-exposed photos. Even with these non optimal

conditions, edge segments might be correctly matched on several pairs of view. While this

kind of inlier matchings would be welcome in a comparison of matching algorithms, they

introduce uncertainty in the location of endpoints set used for the spatial abstraction. Some

improvements can be achieved by exploiting coplanarity constraints.

The goal of the optimization layer is to extract structural information from groups of

coplanar lines and exploit them to improve the accuracy of camera poses and the placement

of 3D lines. This approach is rooted on the hypothesis that coplanar line intersections encode

accurate geometric information for the reconstruction. The points we are looking for are

not just joints of segments touching each other, but also more relevant intersections of the

extensions of long structural segments.

The point of intersection of coplanar lines is computed in the original 2D input frames,

once we have computed the first 3D line based abstraction. The 3D estimations for the lines

Γ are fitted to a set planes P = {P1,P2, ...,P p}, being p the total number of planes.

Two spatial lines ΓΓΓ111 and ΓΓΓ222 in Plucker coordinates are coplanar if and only if the reciprocal

product of their Plucker coordinates is zero:

(û1, ttt1)∗ (û2, ttt2) = û1 · ttt2 + û2 · ttt1 = 0. (6.17)

The group of coplanar Line Observations Ft , fitted to the plane t, contains all their counter-

parts on all the camera planes extended and intersected. The intersection of the observations
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lll j
i and lll j

ii is denoted as T j
i,ii = {lll j

i ∩ lll j
ii}. The complete group of observed intersections of Ft

is Tt . This is expressed right after the first loop in Algorithm 2.

Figure 6.6: The image on the top left left is a graphic explanation for the usage of coplanarity

conditions. Just the intersections of matched lines that are coplanar are counted

(line 1 intersects 2 and 3, but not the yellow line under the "L" label). The pair

of images placed in the top right shows the result of the method SALM for line

matching between two images of the dataset "CUBE"[134]. The intersections

of coplanar segments extracted by the algorithm are highlighted in green. Note

that just the intersections of coplanar segments were highlighted. The pair of

images on the bottom of the figure are from the 3D sketch generated from the

pictures {3,4,5,6} of the dataset. These shows the segmentation of endpoints after

RANSAC. The planes with more inliers feature 68 and 39 inliers respectively.

Each element in the set of observed coplanar intersections T is dealt as a point feature



6.3. LINE INTERSECTIONS 139

described by the pair of Line Observations that originate it, and put in correspondence on all

images with counterparts for both original Line Observations. The first 3D estimations for the

intersection points on all images T are obtained by linear triangulation, and denoted with Z .

This is done analogously as would be computed with described feature points, as followed in

Algorithm 2 inside the second cluster of loops. For this method, every 2D line intersection

is eligible to enter the spatial abstraction if and only if it matches a proximity rule and an

structural threshold. The first rule limits the sum of the distances from the intersection to the

segments to be less than 1.5 times the sum of lengths of both lines, in order to avoid short

segments with inaccurate slope to intersect far from them and with high uncertainty. The

second threshold is for the angle drawn by both lines, required to be more than 15o for the

sake of accuracy. A visual example of the algorithm for exploitation of coplanar intersections

described in this section is embedded in Fig. 6.6. The following subsection explains how the

obtained intersections are used like point correspondences in a second run of SBA.

SBA with lines and planes

The second run of the SBA employs a cost function that inputs the 3D estimations for the

line intersections Z , in addition to the previously optimized camera extrinsic parameters and

lines. The squared cost that will be used to compute the residuals is expressed in the last

cluster of loops in Algorithm 2. For this optimization process, the residuals are computed for

each iteration by using the squared cost like a simple problem of feature point reprojection

error:

{ε j
k}2 = d(projϒϒϒj{Zk},T j

k)
2, (6.18)

where projϒϒϒj{Zk} is the reprojection of the 3D intersection Zk over the camera plane ϒ j,

and T j
k is the location of the detected intersection in frame j. d(···,,, ···) denotes the 2D Eu-

clidean distance. An estimation of the location of a reconstructed intersections Zk has been

experimentally proven to be accurate enough, when verifying the following conditions:
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1. Both lines are not parallel, which can be guaranteed using a threshold of θ > π/8 for the

intersection angle. In Plucker coordinates, Γa and Γb being parallel implies:

Γ̂a =±Γ̂b. (6.19)

2. The perpendicular distance from a plane to each intersection is not greater than the average

perpendicular distance from the planar surface to the lines associated to it:

d⊥(Pp,Zk)< 1/Np ∑
k

d⊥(Pp,Γk), (6.20)

being Γk a 3D line fitted to the plane Pp, and Np the number of lines associated to plane Pp.

After the convergence of the optimization process, the lines Γ are forward projected from

the newly optimized camera planes ϒ. The 3D intersections Z can be represented alongside

the lines Γ.
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Algorithm 2: Line based sketching

Data: L, Camera intrinsics

Result: ϒ , Γ, and T
initialization;

Pairwise Linear Triangulation for L → Γ
for ϒϒϒ j ∈ ϒ do

for ΓΓΓi ∈ Γ do
Add cost function with:

{ε j
i }2 = d(projϒϒϒj ΓΓΓi,A

j
i )

2 +d(projϒϒϒj ΓΓΓi,B
j
i )

2, with {A j
i ,B

j
i } ∈ LLLi observed

endpoints of LLLi on ϒ j

end
if j >= 2 then

Solve SBA for ϒ , Γ
end

end
Fit Γ to several planes P → F
for ϒϒϒ j ∈ ϒ do

for Ph ∈ P do
for {lll j

i , lll
j
ii}h ∈ Fh do

if {T h = {lll j
i ∩ lll j

ii} ∈ T ,

lll j
i � ‖ lll j

ii, θ(lll j
i , lll

j
ii)> π/8} then

Add T h for Linear Triangulation

end
end

end
end
Pairwise Linear Triangulation for T → Z
for ϒϒϒ j ∈ ϒ do

for Zk ∈ Z do
Add cost function with:

{ε j
k}2 = d(projϒϒϒj{Zk},T k)

2

end
end
Solve SBA for ϒ , Z
Forward-project L from ϒ → optimized Γ
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6.4 Experimental results of 3D sketch generation

Ground truth datasets for SfM are built by taking synthetic images from 3D models[60], or

with real pictures[132] teamed with 3D model data including the pose of the cameras and

the measurements from 3D scanning or Lidar. Both synthetic and real Ground-Truth datasets

come with a 3D model. The resulting point cloud is aligned with the Ground Truth mesh.

The normal distance between the surface of the mesh and the points is computed.

In the case of 3D line sketch: Compare sketch to mesh. Equivalent to cloud to mesh

distance. 3D straight segments must be discretized into points. In order to measure the

difference in proportions between the generated 3D sketch and the Ground Truth mesh, the

normal distance between the surface of the mesh and the points on the lines is computed.

Using the obtained error distances, discretized points on the lines are coloured to account

how far they are from the surface of the mesh. There are several variables that condition the

resulting 3D sketch number of images. The number of images showing common elements

of the scene is one of them. Secondly, the number of segments that can be matched between

images. Thirdly, the transformation between both images might condition the matching inlier

ratio, and hence, the number of segments correctly projected into space.

For the 3DwSkt method, the length of the final 3D lines will depend on the fragmentation

of the detected lines, and its number is closely related to the number of line correspondences

between the images. Therefore, results of 3D reconstructions will unavoidably depend on the

performance of the method for stages before the spatial projection. Quantitative measure-

ments for 3D abstraction are performed on Ground Truth datasets. The proportions of the

generated sketch is measured based on the distance between the segments and the Ground

Truth mesh.

The experimental section of this work is willing to test the 3DwSkt line based recon-

struction method and compare it against other methods under the same conditions. Our fully

automatic approach performs all the processes from image datasets or video frames capture,
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through line detection and matching, to camera pose estimation and 3D abstraction. This

section is willing to prove the following facts:

1. The 3DwSkt method, if based exclusively on lines, returns the pose of the cameras and

a line-based reconstruction of the scene up to scale. An analysis compares the number

of 3D segments against the number of 3D points obtained with a SIFT-based SfM[148].

Based on this point cloud it is computed the result for the method Line3D++[55], and

this line based abstraction is also compared with the result of the 3DwSkt method. In

these test cases the 3DwSkt method is not using any point-based SfM pipeline, but

instead it just employs self detection and matching of lines. These are described in

Sec. 6.4.

2. The 3DwSkt method improves the results of feature point based SfM pipelines in vari-

ous scenarios. For proving this fact, the presented method is teamed with SfM pipelines

based on KAZE. Our results are compared against Ground Truth, and the results ob-

tained by[55]. These tests are followed in Sec. 6.4.

3. The current implementation is able to extract a reconstruction by its own, just requiring

the images and the camera extrinsics as input.

In this study we have used a set of well known public image datasets [60], [146], [134] .

These datasets feature a balanced compromise of line structure combined with large textured

elements, it is intended to allow a fair comparison with feature point based reconstruction

methods.

Camera intrinsics are provided as inputs for each set of views, and every method has to

estimate the extrinsic parameters of all the cameras, the location of feature points or the poses

of the principal lines defining the structure of the region of interest, and the planes adjusted

to these lines, when applicable.
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Two kinds of experiments can be distinguished depending on whether the objective is to

validate both the camera poses and the 3D line sketch against the ground truth, or just to val-

idate the 3D line sketch. In the first case the camera poses are estimated altogether with the

set of 3D lines, as explained in this chapter. Nevertheless, in the second case the employed

camera extrinsics are primarly estimated from point-based SfM. The 3D lines obtained with

our model are densely discretized into a set of 3D points laying on the line. Then the Haus-

dorff distance is computed from these points to the surface of the ground truth polygonal

model. The RMSE of this distance is computed and provided as a measure of the error of the

prediction compared against the ground truth. The figures referred from this section show the

complete result returned by the algorithm, no alteration has been performed by human, and

all the lines are shown, including outliers and wrongly posed lines.

In Table 6.1 the main high level differences between the 3DwSkt method and the method

Line3D++[55] used for the evaluations are overviewed.

Method Line detection and matching Depends on cloud First 3D estimation Final result

3DwSkt Appearance and structure[80] NO Linear triangulation SBA
Line3D++[55] LSD and SfM pipeline YES Depends on point cloud SBA

Table 6.1: Overview of evaluated methods

Experiments estimating camera poses and 3D lines

In this subsection we are evaluating the implementation of the model strictly as explained in

this chapter, meaning that the camera extrinsics are estimated right from the matched lines

on the images and a solution obtained without using feature points at all. Therefore the

images showing a common region of interest are selected from the datasets. The pictures

showing just a fraction of this region were also avoided. The selected subsets comprise picture

numbers {3-6} from the dataset "CUBE"[134].The result is presented in Fig. 6.7. This set

is characterized by low resolution and poor illumination. In order to compare this result, the
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same subset has been used with the VisualSfM[148] SIFT-based SfM pipeline teamed with

Line3D++[55], nevertheless no usable line based result has been obtained with this subset

comprised of just 4 low resolution pictures. This is an example of test case for which the

3DwSkt method performs better than Line3D++[55]. Being the line matching based on 2D

appearance features, it can still reconstruct the scene on the absence of a thick point cloud.

The figure shows 4 estimated camera poses and the line sketch formed by 50 spatial segments.

The good fitting to the mesh of a cube proves that the proportions are fairly well represented

with the 3DwSkt method.

Experiments teaming 3DwSkt with feature point descriptors

The most difficult scenario for line matching are sets of images featuring a large number of

lines embedded in an structure of repetitive pattern. Also, most of the ground-truth public

datasets we found in the literature feature wide baselines, large relative distances between

pictures, and not all the structural elements are framed on each picture. The ideal dataset for

line based reconstruction should include most of the structural elements on every picture, and

minimize the number of occlusions. A solution we took for creating the test cases was to pick

subsets from these sequences of images that can fairly serve for evaluation and comparison.

On the other hand, matching outliers make difficult the convergence of the SBA of a large

datasets. This happens also in the case of employing line intersections, because a single

line mismatch can trigger the misplacement of multiple intersections. For these cases it is

unavoidable to team the pose estimator based on line correspondences with a point-based

descriptor. In this study KAZE[3] point feature detector and descriptor is teamed with the

3DwSkt method and executed after the line detection and matching stages, and right before

the triangulation among views. The addition of this SfM pipeline gives an initial estimation

for the cameras, avoiding the increased uncertainty of obtaining it from triangulation of the

line endpoints.
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(a) Picture 3 from the dataset. (b) Picture 4 from the dataset. (c) Picture 5 from the dataset. (d) Picture 6 from the dataset.

(e) Result of 3DwSkt method. Two different views.

(f) Result of Line3D++. It does not resemble a cube.

Figure 6.7: Comparative results using the 3DwSkt method of line-based reconstruction ex-

clusively based on lines. The selected subset from the dataset "BOX"[134] com-

prises the picture numbers {3-6}. a) Sample from the dataset. b) Result obtained

with the 3DwSkt method. Two different views of the sketch are plotted, in order

to show that the proportions are correct. c) A SIFT-based reconstruction per-

formed with VisualSfM[148] returned an sparse cloud, and therefore this result of

Line3D++[55] presents just 26 unconnected 3D lines, and it is not understandable.

Having an initial estimation of the cameras allows to set a maximum distance between

the cameras for the pairwise line matching to be performed among the respective images.

In the implementation, this solution translates into setting a distance threshold between the

camera centers for the line matching algorithm to be executed over the respective images.

This prevents that the algorithm spend time on the search for line correspondences between

two images showing opposite faces of an object, and avoids potential matching outliers due
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to similar sides of the same man-made object. Additionally, limiting the line matching to

close neighboring views drops the total processing time dramatically.

The quantitative evaluation of the precision of the method is employing the synthetic

dataset Timber-Frame-House[60], for performing two different comparative evaluations with

the methods Line3D++[55] and Jain[60]. Results are shown on Table 6.2, Fig. 6.8 and

Fig. 6.9. The 3DwSkt method returns a 3D line based sketch of the model from as low as

6 images, whereas Line3D++[55] requires 12 or more images to draw an abstraction that

includes the main long structures of the house. Moreover, the number of images required

for the model to output all or mostly all the edges visible in the original 3D representation

with fair accuracy is represented on Fig. 6.10. In order to consider a valid reconstruction

for this comparison it was also required that most of the 3D segments extend to the whole

length of their Ground Truth counterparts, oppositely to feature sequences of atomic short

3D segments. For a resulting sketch, the number of 3D segments correctly represented as an

unique entity resembling the whole edge is denoted as P. Quantitative measurements have

been performed on the results. Every 3D line is discretized into points, and the measure used

to evaluate the precision of a resulting abstraction is the distance between these points and the

Ground Truth mesh. The level of subdivisions of the octrees at which this Cloud-To-Mesh

distance computation was performed is 3[44]. The test cases are created looking for the min-

imum number of images that resulted in a reconstruction comprising most of the lines shown

in the Ground Truth dataset. These include both the edges of the polygonal model and the

lines present in the texture. In order to capture all the segments of the representation, each

test case comprise two groups of pictures, one for the front and the second one capturing

the opposite side of the house. The test cases are labeled as S6, comprising image num-

bers {6,9,86,46,49,126}, S8 further add two more images {89,129} to the list, S10 includes

{8,10,12,88,90,48,50,52,128,130}, and S12 further adds images {92,132} to the latter. The

resulting 3D line sketches from both sides of the house are aligned by using common lines.

This completed sketch is finally aligned to the Ground Truth in order to measure the preci-
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sion. The time employed by the 3DwSkt method is clearly outperformed by Line3D++[55].

One of the reasons is the lower number of lines included in the results of the latter one. In

the case of Line3D++[55], the time taken by the required SfM pipeline[148] is added to the

amount.

The quantitative comparison and Ground Truth evaluation is performed firstly using a

low number of images, and then more images are incrementally added. The comparisons

performed against S6 and S8, are shown in Fig. 6.8. The result proves that the 3DwSkt method

is able to obtain a number of structures of the house from as low as 6 images, and still

holding a decent accuracy. On the other hand, the method Line3D++[55] returns sparse short

segments for both cases. This sparsity complicates the understanding of what the spatial line

cloud is resembling, and difficult the alignment to the Ground Truth mesh. Note that this

method also fails to retrieve any long segment of the house for these test cases.

The results for a larger number of images of 10 and 12, using S10 and S12, are shown

in Fig. 6.9. S10 turns out to be the minimal test case to return a complete line-based recon-

struction from the original synthetic images by using the 3DwSkt model. It is the subset with

the minimum number of images required for the method to generate a complete abstraction,

meaning that it includes most of the segments resembling the main edges and lines on the

original 3D model and texture. It is proved that the 3DwSkt method is able to return a greater

number of complete segments that resemble the original representation, while holding a level

of precision equivalent to the one achieved by the method Line3D++[55] in this case. For

S12 the point cloud obtained by VisualSfM pipeline[148] is dense enough for Line3D++[55]

to generate a fair abstraction, showing completeness and continuity between the segments.

The obtained mean values, and the Ground Truth segment count for the mentioned test

cases against the two methods are displayed on Table 6.2. The mean distance to GT mesh

is lower for Line3D++[55] than for the 3DwSkt method, mainly because their line poses are

estimated based on SIFT-originated point clouds. Nevertheless, the number of 3D segments

represented as a whole for the first three subsets is much lower than in the 3DwSkt method,
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as clearly seen on the images of Fig. 6.8 and Fig. 6.9.

The result of the method of Jain et al.[60] is included in this subsection for reference. It

is based on Ground Truth camera poses, instead of estimating these from the lines or SfM

pipelines. The actual code neither the executables are provided by the authors, so it could

not be tested against the 3DwSkt method. Nevertheless the shown result gives an idea of

the precision achieved by the method, as reference. This result is provided by the authors,

altogether with the complete dataset and the used subset, with 72 images.

Fig. 6.10 shows a qualitative comparison of the 3DwSkt method and [55] based on the

same dataset[60], but including a larger number of cameras facing the same region of inter-

est. The employed number of 12 images was the lowest necessary for SIFT to generate a

cloud thick enough to allow Line3D++[55] to create the 3D abstraction with most of the line

segments present in the model. This minimal cloud must be comprised by at least 10,000

SIFT-generated points. The greater this number of points gets decreased, the 3DwSkt method

gains more edge compared to Line3D++[55]. For this test case we want to put in value

that the 3DwSkt method provides an additional grouping of the structural information. The

coplanar lines and their intersections are grouped and the 3D abstraction of these intersec-

tions are plotted. This is shown as an analogy of a SIFT-like generated point cloud. With the

higher amount of views of this test case, the result of Line3D++[55] shows a large number of

segments precisely located, nevertheless most of the shown edges are comprised by a discon-

tinuous array of short segments. This result contrasts with the completeness and uniqueness

of the segments returned by the 3DwSkt method.

It was found out that our method is able to obtain a reconstruction in adverse situations

where Line3D++[55] is not able to return a valid abstraction, for instance when the number

of pictures is low and they do not present clear textures. The famous datasets[146] comprise

few low resolution images, and are always difficult to represent by feature point based SfM

pipelines. These have been selected because the addition of 3D segment abstractions improve

the overall representation. In addition to plot the reconstructed lines by the 3DwSkt method,
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Set Method Lines Completed lines Processing time
Mean distance to

GT
std deviation

S6
3DwSkt 175 52 122s 0.1 0.36

Line3D++[55] 6 0 18s No alignment No alignment

S8
3DwSkt 294 74 160s 0.21 0.3

Line3D++[55] 91 1 20s 0.07 0.11

S10
3DwSkt 475 244 235s 0.08 0.24

Line3D++[55] 290 112 30s 0.08 0.11

S12
3DwSkt 556 305 374s 0.8 0.25

Line3D++[55] 622 176 42s 0.07 0.24

Table 6.2: Quantitative comparison of both methods against the subsets S6, S8, S10 and S12

created from the public dataset Timber-Frame-House[60]

Fig. 6.13 also show the estimated spatial intersections of the coplanar lines. For the first

one, built of just 3 pictures, the point cloud provided by VisualSfM[148] is too sparse for

Line3D++[55] to be able to construct a 3D abstraction. For the second dataset, comprising

5 views, it does place 3D segments because the obtained point cloud is denser, as the set

comprises more views. Nevertheless, the cloud is not thick enough for Line3D++[55] to rep-

resent all the main lines in the scene, as can be observed in the picture included in Fig. 6.13.

On the other hand, the 3DwSkt method manages to obtain an usable result for both datasets.

In addition, on both cases the lines were fitted to several planes, being the two planes with

more inliers the corresponding to the vertical walls of each building. This allowed to use

the intersections of coplanar lines to estimate the camera poses for the final bundled results

shown on the figures.

The dataset Building-Blocks[60] is used for another quantitative analysis. Fig. 6.12 al-

lows the comparison of the results of the 3DwSkt method with the ones provided by VisualSfM[148]

and Line3D++[55]. A subset of 6 views from close camera positions was selected in order

to enhance the differences between the methods. In this case the 3DwSkt method is able to

obtain a bundled result with more lines and with visually better grasped connectivity than the

abstraction provided by Line3D++[55].
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Quantitative comparison with 6 images: Dataset S6.

(a) Sample

(b) Proposed method. (c) Proposed method.

(d) Proposed. Superposed GT mesh. (e) Proposed. Superposed GT mesh.

(f) Histogram of distances to GT.

(g) Result of the method Line3D++.

Quantitative comparison with 8 images: Dataset S8.

(h) Proposed method. (i) Proposed method. (j) Proposed. Superposed GT mesh. (k) Proposed. Superposed GT mesh.

(l) Histogram of distances to GT.

(m) Result of method Line3D++. (n) Line3D++. Superposed GT.

(o) Line3D++. distances to GT.

Figure 6.8: Quantitative comparison using the sets S6 and S8[60]. This figure is better viewed on a screen with a 4x
zoom. a) Sample of the set. b) and c) 3DwSkt method against S6, resulting 175 lines. The distance from
each point in the cloud to the surface of the Ground Truth mesh is represented in colors. d) and e) Same
superposed onto the Ground Truth mesh. f) Histogram of distances to Ground Truth with the 3DwSkt
method. The maximum distance to be accounted is set to be 0.8, already considered as outlier. g) Sparse
atomic lines returned by the Line3D++[55] method. It has been aligned with the Ground Truth mesh. h)
to l) The 3DwSkt method against the set S8, with 294 segments. m) and n) same measurements for the
result by Line3D++[55]. o) shows the histogram for this latter result.
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Quantitative comparison with 10 images: Dataset S10.

(a) Proposed method. (b) Proposed method. (c) Proposed. Superposed GT mesh. (d) Proposed. Superposed GT mesh.

(e) Proposed. Distances to GT.

(f) Line3D++. Superposed GT. (g) Line3D++. Superposed GT.
(h) Line3D++. Distances to GT.

Quantitative comparison with 12 images: Dataset S12.

(i) Proposed method. (j) Proposed. Superposed GT mesh. (k) Proposed. Superposed GT mesh.
(l) Proposed. Superposed GT mesh.

(m) Result of method Line3D++. (n) Line3D++. Superposed GT. (o) Line3D++. Superposed GT.

(p) Line3D++. Distances to GT.

Figure 6.9: Quantitative comparison using the sets S10 and S12[60]. This figure is better viewed on a screen with a 4x
zoom. a), b) and c) 3DwSkt method against S10. The obtained 475 lines have been discretized in points.
The distance from each point in the cloud to the surface of the Ground Truth mesh is represented in colors.
d) and e) Same superposed onto the Ground Truth mesh. f) Histogram of distances to Ground Truth with
the 3DwSkt method. The maximum distance to be accounted is set to be 0.8, already considered as outlier.
g) Sparse atomic lines returned by the Line3D++[55] method. It has been aligned with the Ground Truth
mesh. h) to l) Same for the 3DwSkt method against the set S12, with 556 segments. m) and n) same
measurements for the result by Line3D++[55]. o) shows the histogram for this latter result.
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(a) Proposed method.
(b) Intersections on first plane.

(c) Intersections on second plane.

(d) KAZE based point cloud. (e) SIFT based point cloud. (f) Result of Line3D++.

Figure 6.10: Qualitative comparison using the public dataset Timber-Frame-House[60]. This

figure is better viewed on a screen with a 4x zoom. The used subset comprises

image numbers {5-10},{85-90}, capturing the same corner of the house. a) Re-

sult of the 3DwSkt method, featuring the 12 camera poses and 583 lines. b)

3DwSkt method. Intersections of the matched lines fitted to the plane with more

inliers. c) Same for the next plane with more inliers. d) Point cloud compris-

ing 54041 points by using KAZE[3] point features, used just for retrieving initial

estimations of the camera poses for the 3DwSkt method, looking for a suitable

comparison with Line3D++[55]. e) SIFT-based reconstruction obtained with

VisualSFM[148], featuring 10608 points. f) Line based reconstruction obtained

with Line3D++[55], built over the result shown in (e). The abstraction features

617 segments, and more accurately located than the 3DwSkt method.
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(a) Result of the method Jain et al.
(b) Histogram of distances to GT.

Figure 6.11: a) The result of the method [60] versus a subset of 72 images is provided by the

author and shown for reference. b) Computed distances to GT mesh.
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(a) Sample of the dataset.
(b) Proposed method.

(c) SIFT based 3D abstraction. (d) Result of method Line3D++.

Figure 6.12: Qualitative comparison using the dataset Building-Blocks [60], of resolution

1440 × 1080. The used subset comprises the pictures {0,2,4,6,8,10}. a) Sample.

b) Result with the 3DwSkt method, featuring 329 lines and the estimations for

the six camera pose. c) On the left, the point based obtained by VisualSfM[148],

featuring 3052 points and the 6 camera poses. Based on this point cloud it was

generated the result obtained by Line3D++[55] that shown on the picture d), with

just 102 segments and difficult to understand.
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(a) Sample from Merton.

(b) 3DwSkt result. In red intersections in both main planes.

(c) Sample from Wadham.

(d) 3DwSkt result. In red intersections in both main planes.

(e) Wadham. SIFT point cloud.

(f) Wadham. Result from Line3D++.

Figure 6.13: a) Sample from the dataset Merton College[146], comprised by just 3 pictures. b)

Result of 3DwSkt method, featuring 234 lines. Marked in red the 3D estimations

for the intersections of lines that are fitted to the two planes with more inliers.

The picture of the left has marked the plane with more RANSAC inliers, and the

one on the right the second one. These represent the two planes of the front of the

building. For this small dataset the obtained point cloud comprises just 2250 3D

points, and is quite sparse and no valid result was obtained by Line3D++[55]. c)

and d) Same for the Wadham College[146] dataset comprising 5 pictures. e) and

f) In this dataset with two more pictures than Merton, the point cloud result of the

SIFT-based VisualSfM[148] comprises 3739 3D points. Based on this result, it

could generated the result by Line3D++[55] on the right, with fewer and shorter

lines but located with more accuracy than the 3DwSkt method.
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6.5 Applications for the 3D sketching method 3DwSkt

The method 3DwSkt altogether with the embedded SALM are implemented in C++ into a

ROS node that includes capturing the streamed video from the commercial drone Parrot Be-

bop. This node allowed experimental testing for the whole line detection, matching and

3D sketching method without a human in the loop, nor the requirement of any external im-

age processing pipelines. To our knowledge, there are no other line based reconstruction

pipelines completely integrated in ROS. The node was capable of real-time 3D abstraction in

a Quad Core 2nd Generation Intel i7 while processing a video streaming with a resolution of

640×368 and processing four frames each time. The illumination conditions and number of

edges on the image are also crucial for the processing times. The CERES1 library is used for

bundle adjustment.

Fig. 6.14 shows the result of an experiment conducted with the Parrot Bebop drone for a

real-time generation of a 3D sketch of an indoor office. In this case the system fetched four

frames of the live video stream while the quadcopter was moving with its camera pointing to

the wall. The resulting sketch features lines plotting the main structures on the wall, including

doors and pillars.

1http://ceres-solver.org
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Figure 6.14: Experiment with UAV real-time reconstruction indoors, based on lines. The left

picture shows the used UAV and the region of interest its camera is pointing to.

Four frames of the video stream were processed by SALM. The generated sketch

on the right hand picture shows the four camera poses and the reconstructed lines.



Conclusions

The work presented in this thesis goes through the steps followed by the author towards

building a straight line based 3D abstraction of a scene or object from pictures. It covers the

detection of straight segments in images, the search for their counterparts on other different

images, and the 3D estimation for the camera poses and spatial lines.

1. Line segments are extracted in images by means of differential phase congruency in the

Gaussian scale-space, which has been proven robust to varying illumination conditions

and noise level. The experimental result shows a good performance compared against

other methods of the state of the art, achieving a total number of extracted lines very

close to the real number of perceived lines in the images.

2. The SALM method for two-view matching of straight segments exploits a blend of de-

scriptions of both the individual line appearance and the structure of groups of neigh-

boring segments for finding the counterparts. Its inputs are both the pair of images

and the intrinsic parameters of the camera, being the outputs the straight lines matched

among the images and possible matching outliers as a measure of the confidence level.

The SALM method has been evaluated against Ground Truth with public datasets. It has

also been quantitatively compared altogether with four other state-of-the-art methods

against different man-made scenarios. The presented experimental results show that

SALM outperforms the competition in the mixed quantitative comparative against the

159
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overall segment matching inlier ratio, by returning relations between longer segments,

and by featuring noticeably higher similarity between the length of each segment and

its counterpart’s. In addition, it was observed lower redundancy and fragmentation of

lines compared to the other methods included in the comparative.

3. A novel outliers detection algorithm has been teamed with SALM. It is rooted on the

hypothesis that geometric relations between coplanar line intersections unveil incon-

sistencies in the resulting sets of correspondences. The method compares the order of

the crossings of the extension of a line segment with the one of their coplanar neigh-

bors. The method has been experimentally proved advantageous by highlighting a

large portion of the matching outliers in two datasets, and therefore to reduce the ratio

of matching outliers.

4. One of the applications for the line matching method SALM has been explored. The

3D abstraction method 3DwSkt receives as input the camera intrinsic parameters and at

least 3 pictures of the scene. It does not require the camera extrinsics estimated from

an external SfM pipeline, nor the Ground Truth camera poses. It sources the line cor-

respondences from the method SALM, and is able to generate 3D sketches from sets of

pictures. It gets an edge against datasets with low number of images, or when these

present corrupted texture, blurring, and low definition images where the feature point

descriptor fails to detect a fair number of keypoints. The reduced number of corre-

spondences limit the thickness of the point cloud generated by the SfM pipelines, and

therefore the accuracy of the estimated camera extrinsics. With inaccurate estimations

for the cameras, exploiting homography constraints is not adequate to source line cor-

respondences. Oppositely, 3DwSkt was able to reconstruct simple line-based sketches

with fair precision and number of lines. It required lower number of images to obtain

more complete abstractions than the competition. The range of scenarios where it is

advantageous to use the 3DwSkt method for 3D abstraction includes sets of pictures of
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simple objects, with low texture, poor illumination, low resolution, blurring or under

other conditions that make difficult the success of a point based algorithm. In these

scenarios it outperforms the competition in terms of quantity of lines, precision and

completeness of the abstraction. Another conclusion is that camera extrinsics are un-

avoidably required for 3D abstractions featuring many lines, because the estimation

for the camera poses will not be accurate if SALM returns matching outliers or line

fragmentation.

Future work might include a more advanced use of the planes in the line based reconstruc-

tion of man-made environments. For the implementation in a desktop or laptop computers,

all the code is parallelized for CPU, but in the future, some algorithms will benefit of the

use of GPU implementation. On the other hand, an implementation on a Raspberry Pi is a

feasible solution for onboard line based 3D reconstruction during UAV flight.
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Summary of the thesis

Implementing environment comprehension into machines is a challenge for mankind. The

ability to fetch, classify and interrelate the perceptible elements captured by cameras is the

link between our global net of cameras and the Artificial Intelligence. Therefore, the next

giant leap will occur when the digital captures of the outside world are observed by neural

networks, without requiring a human interpreter and translator. In order to make pictures

understandable by machines, these have to be reduced to atomic describable concepts like

points, lines or ellipses. The most simple forms, such as points or straight lines, are referred

to as primitives. The most traditional techniques detect primitives and classify them

attending to their apparent attributes. During these early stages many problems had to be

solved, originated by limitations of the digital technology, the similarity between primitives

in the same image, the impossibility of characterizing them unequivocally, and the nature of

the capture of light with changes on illumination or contrast. These approaches for

description and matching of primitives have been developed in parallel with spatial

abstraction methods, in such a way that nowadays it is common to derive from a series of

pictures an unique 3D representation including estimations for some of the captured

primitives with the relative position and orientation of the cameras. This memory is focused

on a single kind of primitives: the straight line segments. It goes through straight segment

matching between images and the other operations that lead to the creation of 3D
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representations from these detected primitives.

Straight line segments are frequently found in captures of man-made environments. The

inclusion of straight lines in 3D representations provide structural information about the

captured shapes and their limits, such as the intersection of planar structures.

The presented memory starts with an introduction. This first chapter goes through the

motivation of the author, and a description for every challenge faced during the making of

the work that derived to this thesis. The motivation resembles a link between the state of the

art and the goals of the work. The introduction is followed by an overview of the background

and the state of the art of the covered topics. The different concepts referred to in this thesis

are defined in this second chapter. These definitions are the base to understand the rest of

this memory. Concepts like primitives and their limits are introduced in the background.

After the background, a review of the related works published in the literature is followed

The first part of the thesis covers straight line detection methods in images. Straight lines

have to be obtained from the edges in the image. Edge detection methods are the root to

obtain primitives or forms in the image, such as points, lines or ellipses. A straight line can

be thought as an special case of an edge. The approach employed for edge detection is

reviewed in Chapter 4. A straight line segment in 2D is a single primitive that can be defined

by the coordinates of its two endpoints, or alternatively by just one point plus the angle and

the length of the segment. Straight line detection is commonly rooted on edges detected in

the image. A straight line detection algorithm generally works altogether with an edge

detector that provides it with an edge skeleton comprised by curvy and straight sections.

Every branch in the edge skeleton needs to be chopped into sections and fitted to straight

segments. Therefore, in an image, several straight segments can be fitted to a curvy edge.

The early and basic detectors of edges in images are gradient based, meaning that the edge

detection algorithm marks the points in the image with the highest contrast of pixel values,

then draws the edge as a patch through them, adding joints where necessary. The problem

with these are that changes in the global contrast will directly affect the edge detection, and
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moreover, filters can also affect the shape of edges and joints.

Fragmentation of lines occurs when an uniquely perceived segment entity is detected as an

array of shorter segments. The generated problem is that these sections have to be merged

into an unique entity before searching for segment matching hypotheses. One approach to

minimize fragmentation is to fetch segments in a way resilient to changes in contrast and

illumination. It was proved that this can be accomplished by rooting straight segment

detection on edges detected in the scale-space and employing the monogenic signal, because

the maxima of differential phase congruency resemble the main edges on every picture in

the scale-space.

The straight line segment detection algorithm described in this thesis is rooted on an edge

detection method that exploits local energy and local phase. This approach has been proved

profitable in the literature. For this method, edge detection is performed in several scaled

versions of the original image. These downscaled versions of the image are referred to as

octaves.

The first hypothesis of the presented line detection method is that a straight segment

detection method will profit of detecting edges from the maxima of phase congruency in the

scale-space, specially in sets of images with variable illumination conditions. The second

hypothesis is that these edges can be reliably fitted to straight line segments by using linear

regression, like performed when fitting data to lines in a plot. The third hypothesis is that

additional appearance information can be extracted from the scale-space after merging the

straight lines detected in different octaves. Therefore lines detected in the original image can

be classified according to the depth it was detected in the scale-space, meaning in how many

octaves the line segment has been observed. The goal of the method is to input an image,

and without additional information, detect solely straight line segments in the whole area of

the image, avoiding fragmentation, and resiliently to changes in contrast and illumination.

Chapter 5 of the present memory covers line matching between pairs of images. The term

matching in Computer Vision usually refers to the building of relations between elements of
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an image or several images. It is a basic tool and the root for many applications in

manufacturing industry, robotics or autonomous vehicles. A basic problem in matching of

primitives takes two different images showing the same scene, common elements or the

same object. Both images may be different in image filtering, illumination, contrast, pose of

2D shapes or objects, different viewpoint or coloring. Additionally, the algorithm has to be

provided with a set of detected primitives of the same kind in the images, which may be

obtained from a detection algorithm on the images, other physical perception methods, or

provided by humans. The challenge of a line matching method is to relate every primitive in

one image to its counterpart in the other view.

Matching between edges on a pixel-by-pixel basis works in stereo systems with known

epipolar camera geometry. However for the problem of freely moving cameras it is not

possible to obtain the exact correspondence for each pixel between images without knowing

the extrinsic and intrinsic parameters of the cameras. Representing curvy edges as a set of

straight line fragments might not be a good approach for trying to match them. These ample

arcs can be detected or decomposed as discrete straight lines that the matching algorithm

can handle. Nevertheless, the segment matching might not work properly in this case,

because curvy edges and textured edges are expected to be decomposed differently for each

different capture of the same object or scene.

The matching method the author is presenting in this thesis is referred to as SALM, which is

the acronym of Structure and Appearance Line Matching. It integrates an outliers removal

extension that employs 3D projections to group lines according to their coplanarity. A line

matching method comprises a set of algorithms which put in correspondence segments

across different images showing common elements, environment or regions of interest. A

3D reconstruction is the result of an estimation of the position for singular primitives

captured in several images. The approach followed by SALM is framed in the group of line

matching methods aimed for 3D reconstruction from pictures of objects built by humans,

buildings, urban structures, industrial elements or computer generated models. The SALM
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line matching algorithm is aimed for application altogether with 3D line based abstraction.

It employs an iterative voting algorithm running in groups of lines with the same structural

distribution, and the outliers rejection algorithm exploits 3D structures to discriminate

potential outliers. SALM’s approach is based on three core elements: The first one is that a

segment matching method will profit of detecting the segments based on edges obtained

from the maxima of phase congruency in the scale-space, specially in sets of images with

variable illumination conditions. Secondly, a blend of descriptions of individual line

appearance and the structure of groups of neighboring segments is the best approach for

finding counterparts of the straight segments detected on different images. The last core

element introduces an outliers detection algorithm based on coplanar line intersections of

the lines put in correspondence. The inputs for the segment matching method are both the

images and the intrinsic parameters of the camera, being the output the relation of matched

lines among the images and the potential matching outliers.

Chapter 6 goes through the engineering of a 3D abstraction method based on straight line

segments. It employs the SALM line matching method for building correspondences

between pairs of images. Then it groups the geometric relations and exploits them to

generate the 3D sketch. The 3D sketch is a spatial representation based on lines that features

estimations for the camera poses and for the 3D straight segments.

The logical evolution of the environment abstraction from multiple views is to incorporate

line-based pipelines that do not require a detailed point-based description of the areas of

interest. Beside, coplanar line primitives can be intersected to further reveal geometrical

information. Likewise, groups of segments will also indicate the location of the most

probable vanishing points from a camera plane. These advantages make lines a good

candidate to team with point feature detectors and descriptors. They offer the possibility of

combining individual similarities of pairs of segments, related to strong constraints of

parallelism and orthogonality, and specially coplanarity constraints. This chapter exploits

the latter ones, and the potential outliers are determined based on the homography between
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different views. The exploited constraint is that the intersection of a pair of coplanar lines,

even if it might not resemble a physical point, is still geometrically invariant under

perspective projection.

The 3DwSkt 3D abstraction or sketching method features a set of improvements over the

state-of-the-art algorithms based on lines. The contributions of the 3DwSkt method are

aimed for a more suitable 3D abstraction from images featuring low texture, and in

scenarios in which it is impossible to generate a dense point cloud:

1. The 3DwSkt method does not require to be provided with camera poses, nor a dense

point cloud obtained from the input pictures. It makes feasible an abstraction based

exclusively on line correspondences, and performed independently over pairs of

images. Our approach estimates camera extrinsics, but does not root the line matching

on these spatial projections, preventing the uncertainty from SfM to propagate and

merge with the uncertainty related to 2D line detection and matching. Previous

reconstruction methods rely on a third party SfM pipelines, in order to source the

camera poses and dense point clouds, to base line matching and 3D reconstruction on.

2. The Line Observation is built by merging independent line matchings over pairs of

images. The correspondences between segments for each pair of images are obtained

with the SALM method. The groups of matched 2D lines define unique global entities,

and every entity is defined before the 3D stages of reconstruction, in order to avoid the

problem of redundancy of 3D lines and to reduce the number of matching outliers

when dealing with multiple views. On the other hand, some recent methods qualify

the matching candidates based on their support on neighboring views, for later

clustering them based on their spatial proximity, instead of performing a global

matching of the observed lines individually. This may represent a source of

uncertainty if the camera poses provided by the point-based SfM are not accurate
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enough, as the matching criteria is tied to the accuracy of every camera pose that was

adjusted with point-based SfM, and used as input.

3. The method for exploiting 3D structures described in this memory groups the set of

the spatial lines generated by the 3DwSkt method, attending to coplanarity, by fitting

them to different planes through RANSAC. The observed intersections of 2D coplanar

lines are therefore described according to the observed matched lines. These

segmented group of intersections are projected from every camera plane. They are

finally included into the cost function for a second SBA run, taking advantage of this

accurate source of observed points in correspondence. Most of the published methods

are intended for urban environments, where many lines are coplanar. Nevertheless,

they do not retrieve additional information from the images according to the spatial

structure. Hence, the projected lines use to be the sole primitive input to the cost

function for a least-squares minimization.

The enumerated contributions are intended for spatial abstractions of man made objects and

environments. Our approach is fully automatic and only requires a set of pictures or video

frames, and camera calibration parameters as the inputs. This complete automatic process

will be followed in the different sections of this work. At the end of the Chapter 6, the

3DwSkt method is experimentally proved, and compared through quantitative and qualitative

experiments.

The conclusion of the summary of this thesis follows: The present memory goes through the

steps followed by the author towards building a straight line based 3D abstraction of a scene

or object from pictures. It covers the detection of straight segments in images, the search for

their counterparts on other different images, and the 3D estimation for the camera poses and

spatial lines.

1. Line segments are extracted in images by means of differential phase congruency in

the Gaussian scale-space, which has been proven robust to varying illumination
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conditions and noise level. The experimental result shows a good performance

compared against other methods of the state of the art, achieving a total number of

extracted lines very close to the real number of perceived lines in the images.

2. The SALM method for two-view matching of straight segments exploits a blend of

descriptions of both the individual line appearance and the structure of groups of

neighboring segments for finding the counterparts. Its inputs are both the pair of

images and the intrinsic parameters of the camera, being the outputs the straight lines

matched among the images and possible matching outliers as a measure of the

confidence level. This line matching algorithm starts by computing individual visual

attributes for every spare segment. The stored values serve to estimate a global

rotation, translation or change of scale. The final measure of similarity between

segments is computed by letting every correspondence to vote the others within its

line neighborhoods.

3. The SALM method has been evaluated against Ground Truth with public datasets. It

has also been quantitatively compared altogether with four other state-of-the-art

methods against different man-made scenarios. The chosen images feature different

man-made scenarios, including low texture, high texture with complex structures,

changes of illumination, camera viewpoints, global rotations, and scale. The ratio of

line matching inliers versus the total number of correspondences returned have been

computed for every method.

4. The experimental results presented in this memory show that SALM outperforms the

competition in the mixed quantitative comparative against the overall segment

matching inlier ratio, by returning relations between longer segments, and by

featuring noticeably higher similarity between the length of each segment and its

counterpart’s. In addition, it was observed lower redundancy and fragmentation of

lines compared to the other methods included in the comparative.
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5. A novel outliers detection algorithm has been teamed with SALM. It is rooted on the

hypothesis that geometric relations between coplanar line intersections unveil

inconsistencies in the resulting sets of correspondences. The method compares the

order of the crossings of the extension of a line segment with the one of their coplanar

neighbors. The method has been experimentally proved advantageous by highlighting

a large portion of the matching outliers in two datasets, and therefore to reduce the

ratio of matching outliers.

6. One of the applications for the line matching method SALM has been explored. The

3D abstraction method 3DwSkt receives as input the camera intrinsic parameters and

at least 3 pictures of the scene. It does not require the camera extrinsics estimated

from an external SfM pipeline, nor the Ground Truth camera poses. It sources the line

correspondences from the method SALM, and is able to generate 3D sketches from

sets of pictures. It gets an edge against datasets with low number of images, or when

these present corrupted texture, blurring, and low definition images where the feature

point descriptor fails to detect a fair number of keypoints. The reduced number of

correspondences limit the thickness of the point cloud generated by the SfM pipelines,

and therefore the accuracy of the estimated camera extrinsics. With inaccurate

estimations for the cameras, exploiting homography constraints is not adequate to

source line correspondences. Oppositely, 3DwSkt was able to reconstruct simple

line-based sketches with fair precision and number of lines. It required lower number

of images to obtain more complete abstractions than the competition. The range of

scenarios where it is advantageous to use the 3DwSkt method for 3D abstraction

includes sets of pictures of simple objects, with low texture, poor illumination, low

resolution, blurring or under other conditions that make difficult the success of a point

based algorithm. In these scenarios it outperforms the competition in terms of

quantity of lines, precision and completeness of the abstraction. Another conclusion is
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that camera extrinsics are unavoidably required for 3D abstractions featuring many

lines, because the estimation for the camera poses will not be accurate if SALM

returns matching outliers or line fragmentation.



Resumo da tese

Implementar a comprensión da contorna nas máquinas é un reto para a humanidade. A

habilidade para detectar, clasificar e interrelacionar os elementos perceptibles capturados

polas cámaras é o vínculo entre a nosa rede global de cámaras e a Intelixencia Artificial.

Polo tanto, o próximo gran salto para a humanidade ocorrerá cando as capturas dixitais do

mundo exterior sexan observadas polas redes neuronais, sen necesidade dun intérprete ou

tradutor humano. Para que as imaxes poidan ser comprendidas polas máquinas, deben ser

primeiro reducidas a conceptos atómicos susceptibles de ser descritos, como puntos, liñas ou

elipses. Ás formas máis simples, como os puntos ou liñas rectas, denomínaselles primitivas.

As técnicas máis tradicionais detectan as primitivas e clasifícanas atendendo aos seus

atributos aparentes. Durante estas primeiras etapas, moitos problemas tivéronse que resolver,

orixinados polas limitacións da tecnoloxía dixital, a similitude entre primitivas na mesma

imaxe, a imposibilidade de caracterizalas univocamente, e porque os cambios na

iluminación e o contraste son inherentes á natureza da captura da luz. Estes modelos para

describir e relacionar primitivas desenvolvéronse en paralelo con métodos de abstracción

espacial. Desta forma, hoxe é común obter unha representación 3D a partires dunha serie de

imaxes, que inclúa estimacións para as posicións espaciais das primitivas, xunto coa

posición relativa e orientación das cámaras.

Os segmentos de liña recta atópanse frecuentemente en capturas de contornas construídas
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polo home. A inclusión de liñas rectas nas representacións 3D proporciona a esta últimas

información estrutural acerca das formas rexistradas nas imaxes, así como dos seus límites.

Este é o caso das liñas que forman a intersección de dúas estruturas planas. A memoria

presentada comeza cunha introdución. Este primeiro capítulo describe as motivacións do

autor, e os retos aos que se enfrontou durante a realización do traballo que derivou nesta

tese. A motivación representa un vínculo entre a estado da arte e os obxectivos do traballo.

A introdución dá paso a unha revisión das bases necesarias para comprender o resto desta

memoria. Conceptos como as primitivas e os seus límites son introducidas neste segundo

capítulo. O terceiro capítulo é unha revisión bibliográfica dos traballos relacionados

publicados. O cuarto capítulo é o primeiro dos contidos, e versa sobre a a detección de liñas

rectas en imaxes. As liñas rectas deben obterse a partir dos bordos detectados na imaxe. Os

métodos para a detección destes bordos son a base para obter primitivas ou formas nas

imaxes, tales como puntos, liñas ou elipses. Unha liña recta pode, de feito, ser imaxinada

como un caso especial dun bordo. O método empregado para detectar bordos descríbese

tamén no mesmo capítulo 4. Un segmento de liña recta en 2D é unha primitiva simple que

pode ser definida polas coordenadas dos seus dous puntos extremos, ou ben simplemente

por un punto, o ángulo e a lonxitude do segmento. A detección de liñas está normalmente

baseada en bordos detectados nas imaxes. Un algoritmo de detección de liñas rectas

xeralmente funciona xunto a un detector de bordos. Este proporciónalle ao primeiro un

esqueleto formado tanto por seccións de liña curvas como rectas, así como por distintos tipos

de unións entre bordos. Cada rama do esqueleto de bordos debe ser dividida en seccións. O

algoritmo debe tratar de axustar estas seccións a segmentos de liña recta. Polo tanto, nunha

imaxe, distintos segmentos de liña recta poden ser axustados a un bordo curvo. Os detectores

de bordos en imaxes máis básicos baséanse en gradientes. Isto significa que estes algoritmos

de detección de bordos marcan os puntos da imaxe co contraste máis alto entre valores de

píxel, e traza o bordo a través destes puntos, engadindo unións onde sexa necesario. O

problema con este tipo de detectores é que o seu resultado depende de cambios globais no
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contraste da imaxe, e ademais os filtros poden tamén afectar á forma dos bordos e unións.

A fragmentación de liñas ocorre cando un segmento detéctase como unha sucesión de

segmentos máis curtos aliñados. O problema a resolver é a unión destas seccións nun único

segmento, para poder describilo e logo poder buscar aos seus equivalentes noutras imaxes.

Unha forma de minimizar a fragmentación é detectar os bordos dunha forma resiliente a

cambios en contraste e intensidade na imaxe. Probouse que isto pode lograrse baseando a

detección de liñas rectas en bordos detectados no espazo escala, e empregando o sinal

monogénica, porque o máximo da diferenza de fase diferencial coincide cos bordos

principais da imaxe.

O algoritmo de detección de liñas rectas descrito nesta tese está baseado nunha detección de

bordos que explota a enerxía e fase locais. Esta vía foi provada beneficiosa na literatura.

Para este método, a detección de bordos realízase en diferentes versións escaladas da imaxe

orixinal. Estas versións escaladas da imaxe denomínanse oitavas.

A primeira hipótese do método de detección de liñas presentado é que vai obter beneficios

de detectar bordos a partir dos máximos da congruencia de fase no espazo escala,

especialmente para imaxes que presentan condicións de iluminación variables. A segunda

hipótese é que estes bordos poden ser axustados a segmentos de liña recta usando regresión

lineal, tal e como se fai ao axustar a unha recta unha dispersión de puntos nunha gráfica. A

terceira hipótese é que a información adicional de aparencia pode ser extraída do espazo

escala tras unir os segmentos de liña detectadas en diferentes oitavas. Polo tanto, as liñas

detectadas na imaxe orixinal poden ser clasificadas atendendo á profundidade á que foron

detectadas no devandito espazo escala, ou noutras palabras, ao número de oitavas nas que

devandito segmento foi observado. A partires dunha imaxe, e sen información adicional, o

obxetivo do método é detectar segmentos de liña recta en todo a área da imaxe, evitando

fragmentación e de forma resiliente a cambios en contraste e iluminación. O capítulo 5 da

presente memoria abarca a procura de relacións entre pares de imaxes. O termo matching

en Visión por Ordenador refírese xeralmente a construír relacións entre elementos
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homólogos dunha imaxe, ou entre múltiples imaxes. É unha ferramenta básica e a base para

moitas aplicacións na industria de fabricación, robótica ou vehículos autónomos. Un

problema básico en matching de primitivas toma dúas imaxes distintas mostrando a mesma

escena, elementos comúns ou o mesmo obxecto. Ambas imaxes poden ser diferentes en

iluminación, contraste, filtrado, cor, pose de formas bidimensionales ou pose da cámara no

espazo. Adicionalmente, débeselle achegar ao algoritmo as primitivas do mesmo tipo

detectadas nas imaxes, que poden ter a súa orixe nun detector de segmentos de liña recta nas

imaxes, outros métodos de percepción, ou directamente proporcionadas por un humano. O

obxectivo dun método de matching de liñas é relacionar cada primitiva nunha imaxe coa súa

homóloga noutra imaxe.

A procura de homólogos entre bordos píxel a píxel funciona ben en sistemas estéreo nos

cales se coñece a xeometría epipolar das cámaras. Con todo, para o problema de cámaras

que se moven libremente, non é posible obter a correspondencia exacta para cada píxel entre

imaxes sen coñecer os parámetros extrínsecos e intrínsecos das cámaras. Polo mesmo

motivo, representar bordos curvos como unha serie de fragmentos de liña recta podería non

ser o mellor primeiro paso para logo poñelas en correspondencia. Estes arcos amplos deben

ser detectados ou descompostos como segmentos de recta discretos que o algoritmo de

matching poida describir. Con todo, o matching de segmentos rectos podería non funcionar

adecuadamente neste caso, debido a que os bordos curvos e os bordos texturizados son

frecuentemente descompostos de forma diferente para cada captura do mesmo obxecto ou

escena.

O método de matching que o autor presenta nesta tese denomínase SALM, que é o acrónimo

de Structure and Appearance Line Matching. Integra unha extensión para sinalar posibles

erros de matching que se basea en agrupar liñas atendendo á súa coplanaridade. Un método

de matching de liñas engloba unha serie de algoritmos que poñen en correspondencia

segmentos entre diferentes imaxes que mostren o mesmo contorna, ou elementos e rexións

de interese comúns. Unha reconstrución 3D é o resultado da estimación da posición de
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primitivas singulares capturadas en distintas imaxes. A aproximación seguida por SALM

está incluída no grupo de métodos de matching de liñas pensados para a reconstrución 3D a

partir de imaxes de zonas urbanas, oficinas, edificios, elementos industriais, modelos

xerados por computadora ou obxectos construídos polos humanos. O método para matching

de liñas SALM está pensado para aplicarse xunto a un método de abstracción 3D baseado en

liñas. Emprega un algoritmo iterativo de votación que funciona sobre grupos de liñas coa

mesma distribucion estrutural, e o algoritmo de selección de potenciais erros de matching

explota as estruturas 3D para discriminar potenciais outliers. O método SALM baséase en

tres premisas básicas: A primeira é que un método de matching de segmentos vai beneficiar

de detectar segmentos en base ao máximo da congruencia de fase no espazo escala,

especialmente baseado en imaxes con condicións de iluminación variables. En segundo

lugar, a unión de descriptores para a aparencia de segmentos de liña individuais é a mellor

forma de atopar homólogos para segmentos de liña recta detectados en diferentes imaxes. A

última premisa básica introduce un algoritmo que busca relacións entre liñas con baixa

fiabilidade, baseándose en interseccións das liñas coplanares que foron postas en

correspondencia. As entradas para este método de matching son as imagenes e os

parámetros intrínsecos da cámara, sendo a saída as liñas relacionadas entre as imaxes e cales

delas poderían non ser fiables.

O capítulo 6 abarca a creación dun método de abstracción 3D baseado en segmentos de liña

recta. Emprega o método de matching de liñas SALM para construír correspondencias entre

pares de imaxes. Seguidamente agrupa as relacións xeométricas e explótaas para xerar a

abstracción 3D. Esta abstracción 3D é unha representación espacial baseada en liñas que

mostra estimacións para as poses das cámaras e para os segmentos de liña 3D.

A evolución lóxica da abstracción da contorna desde múltiples vistas é incorporar solucións

baseadas en liñas que non requiran descricións detalladas baseadas en puntos das áreas de

interese. Da mesma forma, grupos de segmentos van indicar tamén a localización dos puntos

de fuga máis probable para cada plano de cámara. Estas vantaxes converten ás liñas en bos
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candidatos para unirse a detectores de puntos característicos e descriptores. Éstes ofrecen a

posibilidade de combinar a similitude individual de pares de segmentos, relacionada coas

ligaduras de fortes de paralelismo e ortogonalidade, e especialmente ligaduras de

coplanaridade. Este capítulo explota as últimas, e os potenciais outliers determínanse en

base á homoografía entre diferentes vistas. A ligadura explotada é que a intersección dun par

de liñas coplanares, mesmo se non representara un punto físico, segue sendo

geométricamente invariante baixo proxección de perspectiva.

O método de abstracción 3D 3DwSkt presenta unha serie de achegas sobre os algoritmos da

estado da arte baseados en liñas. As contribucións do método 3DwSkt están pensados para

obter unha abstracción 3D máis adecuada desde imaxes que presentan baixa textura, do

mesmo xeito que en escenarios nos cales é imposible xerar unha nube densa de puntos a

partires dunha solución SfM. O método 3DwSkt diferénciase da competencia nos seguintes

puntos:

1. O método 3DwSkt non require achegar as poses das cámaras como entrada, nin

tampouco unha nube densa de puntos obtida a partires das imaxes de entrada. Ao

contrario, é capaz de xerar unha abstracción 3D baseada exclusivamente en

correspondencias de liñas obtidas de forma independente sobre pares de imaxes. O

método estima os parámetros extrínsecos da cámara a partir das correspondencias

entre liñas, no canto de obter estas explotando a homografía entre as cámaras. Isto

evita que a incerteza do Structure From Motion propáguese ou se combine coa

incerteza carrexada pola detección e posta en correspondencia de liñas 2D. Outros

métodos de reconstrución empregan a estimación de cámaras obtida a partir de

solucións baseadas en puntos característicos de terceiros. Estas solucións son capaces

de estimar as poses da cámara e a nubes densa de puntos.

2. As correspondencias entre segmentos obtense para cada par de imaxes co método

SALM. Cada liña 2D relacionada en múltiples vistas define unha entidade global
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única. Cada unha destas entidades defínese antes das etapas de reconstrución 3D, para

evitar que aparezan redundancias na forma de liñas 3D repetidas, e para reducir o

número de erros ao sinalar aos homólogos. Doutra banda, algúns métodos recentes

clasifican aos segmentos candidatos a homólogos en función da súa proxección sobre

os planos de cámaras veciñas, para logo agrupalos en función da súa proximidade

espacial, en lugar de realizar primeiro unha comparación global das liñas observadas

individualmente. Isto pode representar unha fonte de incerteza se as poses das

cámaras proporcionadas polo SfM baseado en puntos non son o suficientemente

precisas, xa que os criterios para a posta en correspondencia están ligados á exactitude

de cada pose de cámara que se axustou co SfM baseado en puntos.

3. O método para explotar estruturas 3D descrito nesta memoria agrupa as liñas

espaciais xeradas polo método 3DwSkt, atendendo á súa coplanaridade. Os grupos

créanse tras axustar as liñas 3D a diferentes planos, empregando RANSAC como

xerador de hipóteses. Unha vez creados estes grupos, as liñas 2D coplanares que

conteñen intersécanse en cada unha das imaxes orixinais onde foran postas en

correspondencia. Os grupos de interseccións creados proxéctanse dende cada plano de

cámara. Finalmente, os puntos 3D inclúense na función de custo para un segundo

axuste por mínimos cadrados. A maioría dos métodos de abstracción 3D baseados en

liñas publicados están destinados a contornas urbanas, onde abundan as liñas

coplanares. Con todo, a meirande parte deles non chegan a obter información

adicional das imaxes de acordo coa estrutura espacial.

As contribucións enumeradas están pensadas para abstraccións de obxectos e contornas

construídos polo home. A nosa técnica é completamente automática e só require achegarlle

un conxunto de imaxes ou fotogramas de vídeo, xunto cos parámetros intrínsecos de

calibración das cámaras. Este proceso completo e automático detállase nas diferentes
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seccións deste traballo. Ao final do capítulo 6, o método 3DwSkt próbase

experimentalmente, e compárase mediante probas cuantitativas e cualitativas.

A conclusión deste resumo da tese é a seguinte: A presente memoria explica os pasos

seguidos polo autor co obxectivo de crear un método de abstracción 3D dunha escena ou

obxecto a partires de imaxes. A tese cobre a detección de segmentos de liña recta en imaxes,

a procura dos seus homólogos noutras imaxes, e a estimación da pose 3D para as cámaras e

liñas espaciais.

1. Os segmentos de liña extráense en imaxes baseándose na congruencia de fase

diferencial no espazo-escala Gaussiano. A robustez desta técnica foi probada contra

cambios en iluminación e nivel de ruído. Os resultados experimentais mostran un

número total de liñas detectadas próximo ao número de liñas percibidas por un

humano nas imaxes.

2. O método SALM para a posta en correspondencia de segmentos de liña recta explota

unha mestura de descricións da aparencia individual das liñas e da estrutura dos

grupos de segmentos veciños aos que pertence. As entradas do método son un par de

imaxes e os parámetros intrínsecos da cámara, sendo as saídas a relación de liñas en

correspondencia entre ambas imaxes, e tamén indica cales destas teñen un nivel de

fiabilidade baixo. Este algoritmo de matching comeza calculando os atributos visuais

individuais de cada segmento por separado. O conxunto de todos os atributos

observados nas liñas dunha imaxe serven para estimar unha rotación, translación ou

cambio de escala. A medida final de similitude entre segmentos calcúlase deixando

que cada correspondencia entre liñas vote ás posibles correspondencias das liñas

veciñas.

3. O método SALM foi avaliado contra Ground Truth en bases de imaxes públicas.

Tamén se comparou cuantitativamente con outros catro métodos da estado da arte para
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matching de liñas. As imaxes elixidas mostran diferentes escenas creadas polo home,

que inclúen dende baixa textura ata alta textura, estructuras complexas, cambios de

iluminación, punto de vista de cámaras, rotacións globais ou cambios de escala. A

fracción de acertos dos distintos métodos para matching de liñas foi calculada e

comparada co número total de correspondencias devoltas.

4. Os resultados experimentais presentados nesta memoria mostran que o método SALM

obtén unha mellor fracción de acertos que a competencia na comparativa mixta,

devolvendo relacións entre segmentos máis longos e presentando estes menor

variabilidade de lonxitudes en comparación co seu homólogo. En segundo lugar,

observouse unha menor redundancia e fragmentación de liñas en comparación con

outros métodos incluídos na comparativa.

5. Un novo algoritmo para detección de erros na posta en correspondencia de liñas

conxúntase con SALM. Este algoritmo está baseado na hipótese de que as relacións

xeométricas entre liñas coplanares e as súas interseccións poden revelar

inconsistencias no grupo de correspondencias. O método compara a orde na cal unha

liña interseca outras veciñas e coplanares, coa orde na cal se intersecan as súas

homólogas na outra imaxe. Este método foi probado experimentalmente en dous

dataset, resultando vantaxoso ao sinalar unha parte importante das correspondencias

erróneas devoltas polo algoritmo de matching. Como conclusión, o algoritmo serve

para reducir a fracción de erros na posta en correspondencia de liñas entre diferentes

imaxes.

6. Unha das aplicacións do método de posta en correspondencia de liñas SALM

describiuse no capítulo 6. O método de abstracción 3D recibe como entrada os

parámetros intrínsecos das cámaras e, polo menos, 3 imaxes da mesma escena. Non

require que os parámetros extrínsecos das cámaras fosen previamente estimados

mediante unha solución externa SfM, nin tampouco as poses das cámaras obtidas por
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outros medios. O método obtén as correspondencias de liñas de SALM e é capaz de

xerar abstraccións 3D formadas por liñas a partir de conxuntos de imaxes. O método

obtén unha vantaxe fronte á competencia en grupos de poucas imaxes, ou ben cando

estas imaxes presentan textura corrupta, blurring e baixa definición. Nestes escenarios,

os descriptores de puntos característicos non logran relacionar un número de puntos

elevado. Este número de puntos escaso limita a densidade da nube de puntos 3D

obtida polas solucións SfM, e polo tanto a precisión da estimación para as poses das

cámaras. As estimacións imprecisas para as cámaras dificultan a explotación das

ligaduras da homografía para obter as correspondencias entre as liñas detectadas nas

imaxes. Pola contra, nos mesmos escenarios 3DwSkt foi capaz de crear abstraccións

cunha precisión e número de liñas aceptable. Un menor número de imaxes é requirido

para obter abstraccións máis completas que a competencia. O rango de escenarios nos

cales é vantaxoso empregar 3DwSkt para abstracción 3D inclúe conxuntos de capturas

de obxectos simples, con baixa textura, iluminación deficiente, baixa resolución,

blurring ou outras condicións que fagan difícil para unha solución SfM a creación de

numerosas relacións entre puntos característicos. Nos devanditos escenarios 3DwSkt

mellora os resultados da competencia respecto á cantidade de liñas, precisión e

completitude da abstracción. Outra conclusión é que os parámetros extrínsecos das

cámaras son inevitablemente requiridos para crear abstraccións 3D que amosen

múltiples liñas, porque a estimación das poses das cámaras non será precisa se SALM

devolve correspondencias erróneas entre as liñas, ou ben fragmentación de liñas.
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